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Preface

This book explores the interplay among financial economic theory, the
availability of relevant data, and the choice of econometric methodology
in the empirical study of dynamic asset pricing models. Given the central
roles of all of these ingredients, I have had to compromise on the depth of
treatment that could be given to each of them. The end result is a book that
presumes readers have had some Ph.D.-level exposure to basic probability
theory and econometrics, and to discrete- and continuous-time asset pricing
theory.

This book is organized into three blocks of chapters that, to a large
extent, can be treated as separate modules. Chapters 1 to 6 of Part I provide
an in-depth treatment of the econometric theory that is called upon in our
discussions of empirical studies of dynamic asset pricing models. Readers
who are more interested in the analysis of pricing models and wish to skip
over this material may nevertheless find it useful to read Chapters 1 and
5. The former introduces many of the estimators and associated notation
used throughout the book, and the latter introduces affine processes, which
are central to much of the literature covered in the last module. The final
chapter of Part I, Chapter 7, introduces a variety of parametric descriptive
models for asset prices that accommodate stochastic volatility and jumps.
Some of the key properties of the implied conditional distributions of these
models are discussed, with particular attention given to the second through
fourth moments of security returns. This material serves as background for
our discussion of the econometric analysis of dynamic asset pricing models.

Part II begins with a more formal introduction to the concept of a
“pricing kernel” and relates this concept to both preference-based and no-
arbitrage models of asset prices. Chapter 9 examines the linear asset pricing
relations—restrictions on the conditional means of returns—derived by re-
stricting agents’ preferences or imposing distributional assumptions on the
joint distributions of pricing kernels and asset returns. It is in this chapter
that we discuss the vast literature on testing for serial correlation in asset
returns.

xi
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Chapter 10 discusses the econometric analyses of pricing relations based
directly on the first-order conditions associated with agents’ intertempo-
ral consumption and investment decisions. Chapter 11 examines so-called
beta representations of conditional expected excess returns, covering
both their economic foundations and the empirical evidence on their
goodness-of-fit.

Part III covers the literature on no-arbitrage pricing models. Readers
wishing to focus on this material will find Chapter 8 on pricing kernels to
be useful background. Chapters 12 and 13 explore the specification and
goodness-of-fit of dynamic term structure models for default-free bonds.
Defaultable bonds, particularly corporate bonds and credit default swaps,
are taken up in Chapter 14. Chapters 15 and 16 cover the empirical litera-
ture on equity and fixed-income option pricing models.
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1
Introduction

A dynamic asset pricing model is refutable empirically if it restricts the
joint distribution of the observable asset prices or returns under study. A
wide variety of economic and statistical assumptions have been imposed to
arrive at such testable restrictions, depending in part on the objectives and
scope of a modeler’s analysis. For instance, if the goal is to price a given
cash-flow stream based on agents’ optimal consumption and investment
decisions, then a modeler typically needs a fully articulated specification
of agents’ preferences, the available production technologies, and the con-
straints under which agents optimize. On the other hand, if a modeler is
concerned with the derivation of prices as discounted cash flows, subject
only to the constraint that there be no “arbitrage” opportunities in the econ-
omy, then it may be sufficient to specify how the relevant discount factors
depend on the underlying risk factors affecting security prices, along with
the joint distribution of these factors.

An alternative, typically less ambitious, modeling objective is that of test-
ing the restrictions implied by a particular “equilibrium” condition arising
out of an agent’s consumption/investment decision. Such tests can often
proceed by specifying only portions of an agent’s intertemporal portfolio
problem and examining the implied restrictions on moments of subsets of
variables in the model. With this narrower scope often comes some “robust-
ness” to potential misspecification of components of the overall economy
that are not directly of interest.

Yet a third case is one in which we do not have a well-developed theory
for the joint distribution of prices and other variables and are simply at-
tempting to learn about features of their joint behavior. This case arises, for
example, when one finds evidence against a theory, is not sure about how to
formulate a better-fitting, alternative theory, and, hence, is seeking a better
understanding of the historical relations among key economic variables as
guidance for future model construction.

1
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As a practical matter, differences inmodel formulation and the decision
to focus on a “preference-based” or “arbitrage-free” pricing model may also
be influenced by the availability of data. A convenient feature of financial
data is that it is sampled frequently, often daily and increasingly intraday as
well. On the other hand, macroeconomic time series and other variables
that may be viewed as determinants of asset prices may only be reported
monthly or quarterly. For the purpose of studying the relation between as-
set prices and macroeconomic series, it is therefore necessary to formulate
models and adopt econometric methods that accommodate these data lim-
itations. In contrast, those attempting to understand the day-to-day move-
ments in asset prices—traders or risk managers at financial institutions, for
example—may wish to design models and select econometric methods that
can be implemented with daily or intraday financial data alone.

Another important way in which data availability and model specifica-
tion often interact is in the selection of the decision interval of economic
agents. Though available data are sampled at discrete intervals of time—
daily, weekly, and so on—it need not be the case that economic agents make
their decisions at the same sampling frequency. Yet it is not uncommon for
the available data, including their sampling frequency, to dictate a mod-
eler’s assumption about the decision interval of the economic agents in the
model. Almost exclusively, two cases are considered: discrete-time models typ-
ically match the sampling and decision intervals—monthly sampled data
mean monthly decision intervals, and so on—whereas continuous-time mod-
els assume that agents make decisions continuously in time and then im-
plications are derived for discretely sampled data. There is often no sound
economic justification for either the coincidence of timing in discrete-time
models, or the convenience of continuous decision making in continuous-
time models. As we will see, analytic tractability is often a driving force be-
hind these timing assumptions.

Both of these considerations (the degree to which a complete economic
environment is specified and data limitations), as well as the computational
complexity of solving and estimating a model, may affect the choice of es-
timation strategy and, hence, the econometric properties of the estimator
of a dynamic pricing model. When a model provides a full characterization
of the joint distribution of its variables, a historical sample is available, and
fully exploiting this information in estimation is computationally feasible,
then the resulting estimators are “fully efficient” in the sense of exploit-
ing all of the model-implied restrictions on the joint distribution of asset
prices. On the other hand, when any one of these conditions is not met,
researchers typically resort, by choice or necessity, to making compromises
on the degree of model complexity (the richness of the economic environ-
ment) or the computational complexity of the estimation strategy (which
often means less econometric efficiency in estimation).
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With these differences in modelers’ objectives, practical constraints on
model implementation, and computational considerations in mind, this
book: (1) characterizes the nature of the restrictions on the joint distribu-
tions of asset returns and other economic variables implied by dynamic asset
pricing models (DAPMs); (2) discusses the interplay betweenmodel formu-
lation and the choice of econometric estimation strategy and analyzes the
large-sample properties of the feasible estimators; and (3) summarizes the
existing, and presents some new, empirical evidence on the fit of various
DAPMs.

We briefly expand on the interplay between model formulation and
econometric analysis to set the stage for the remainder of the book.

1.1. Model Implied Restrictions

Let Ps denote the set of “payoffs” at date s that are to be priced at date t ,
for s > t , by an economic model (e.g., next period’s cum-dividend stock
price, cash flows on bonds, and so on),1 and let πt : Ps → R denote
the pricing function, where Rn denotes the n-dimensional Euclidean space.
Most DAPMs maintain the assumption of no arbitrage opportunities on the
set of securities being studied: for any qt+1 ∈ Pt+1 for which Pr{qt+1 ≥ 0}=1,
Pr({πt (qt+1) ≤ 0} ∩ {qt+1 > 0}) = 0.2 In other words, nonnegative payoffs at
t + 1 that are positive with positive probability have positive prices at date t .
A key insight underlying the construction of DAPMs is that the absence
of arbitrage opportunities on a set of payoffs Ps is essentially equivalent to
the existence of a special payoff, a pricing kernel q∗

s , that is strictly positive
(Pr{q∗

s > 0} = 1) and represents the pricing function πt as

πt (qs) = E
[
qsq∗

s | It
]
, (1.1)

for all qs ∈ Ps , where It denotes the information set upon which expecta-
tions are conditioned in computing prices.3

1 At this introductory level we remain vague about the precise characteristics of the
payoffs investors trade. See Harrison and Kreps (1979), Hansen and Richard (1987), and
subsequent chapters herein for formal definitions of payoff spaces.

2 We let Pr{·} denote the probability of the event in brackets.
3 The existence of a pricing kernel q∗ that prices all payoffs according to (1.1) is equiva-

lent to the assumption of no arbitrage opportunities when uncertainty is generated by discrete
random variables (see, e.g., Duffie, 2001). More generally, when It is generated by contin-
uous random variables, additional structure must be imposed on the payoff space and pricing
function πt for this equivalence (e.g., Harrison and Kreps, 1979, and Hansen and Richard,
1987). For now, we focus on the pricing relation (1.1), treating it as being equivalent to the
absence of arbitrage. A more formal development of pricing kernels and the properties of q∗
is taken up in Chapter 8 using the framework set forth in Hansen and Richard (1987).



Page 4 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

4 1. Introduction

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[4], (4)

Lines: 42 to 66

———
0.42618pt PgVar
———
Short Page
PgEnds: TEX

[4], (4)

This result by itself does not imply testable restrictions on the prices
of payoffs in Pt+1, since the theorem does not lead directly to an empir-
ically observable counterpart to the benchmark payoff. Rather, overiden-
tifying restrictions are obtained by restricting the functional form of the
pricing kernel q∗

s or the joint distribution of the elements of the pricing en-
vironment (Ps , q∗

s , It ). It is natural, therefore, to classify DAPMs according to
the types of restrictions they impose on the distributions of the elements of
(Ps , q∗

s , It ). We organize our discussions of models and the associated esti-
mation strategies under four headings: preference-based DAPMs, arbitrage-
free pricing models, “beta” representations of excess portfolio returns, and
linear asset pricing relations. This classification of DAPMs is not mutually
exclusive. Therefore, the organization of our subsequent discussions of spe-
cificmodels is also influenced in part by the choice of econometric methods
typically used to study these models.

1.1.1. Preference-Based DAPMs

The approach to pricing that is most closely linked to an investor’s portfolio
problem is that of the preference-based models that directly parameterize
an agent’s intertemporal consumption and investment decision problem.
Specifically, suppose that the economy being studied is comprised of a finite
number of infinitely lived agents who have identical endowments, informa-
tion, and preferences in an uncertain environment. Moreover, suppose that
At represents the agents’ information set and that the representative con-
sumer ranks consumption sequences using a von Neumann-Morgenstern
utility functional

E

[ ∞∑
t=0

β tU (ct )
∣∣∣∣ A0

]
. (1.2)

In (1.2), preferences are assumed to be time separable with period utility
function U and the subjective discount factor β ∈ (0, 1). If the representa-
tive agent can trade the assets with payoffs Ps and their asset holdings are
interior to the set of admissible portfolios, the prices of these payoffs in
equilibrium are given by (Rubinstein, 1976; Lucas, 1978; Breeden, 1979)

πt (qs) = E
[
ms−t

s qs | At
]
, (1.3)

where ms−t
s = βU ′(cs)/U ′(ct ) is the intertemporal marginal rate of substi-

tution of consumption (MRS) between dates t and s. For a given parame-
terization of the utility function U (ct ), a preference-based DAPM allows the
association of the pricing kernel q∗

s with ms−t
s .
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To compute the prices πt (qs) requires a parametric assumption about
the agent’s utility function U (ct ) and sufficient economic structure to deter-
mine the joint, conditional distribution of ms−t

s and qs . Given that prices are
set as part of the determination of an equilibrium in goods and securities
markets, a modeler interested in pricing must specify a variety of features of
an economy outside of securities markets in order to undertake preference-
based pricing. Furthermore, limitations on available data may be such that
some of the theoretical constructs appearing in utility functions or budget
constraints do not have readily available, observable counterparts. Indeed,
data on individual consumption levels are not generally available, and ag-
gregate consumption data are available only for certain categories of goods
and, at best, only at a monthly sampling frequency.

For these reasons, studies of preference-based models have often fo-
cused on the more modest goal of attempting to evaluate whether, for a
particular choice of utility function U (ct ), (1.3) does in fact “price” the
payoffs in Ps . Given observations on a candidate ms−t

s and data on asset
returns Rs ≡ {qs ∈ Ps : πt (qs) = 1}, (1.3) implies testable restrictions
on the joint distribution of Rs , ms−t

t , and elements of At . Namely, for each
s -period return rs , E[ms−t

s rs − 1|At] = 0, for any rs ∈ Rs (see, e.g., Hansen
and Singleton, 1982). An immediate implication of this moment restriction
is that E[(ms−t

s rs − 1)xt] = 0, for any xt ∈ At .4 These unconditional mo-
ment restrictions can be used to construct method-of-moments estimators
of the parameters governing ms−t

s and to test whether or not ms−t
s prices the

securities with payoffs in Ps . This illustrates the use of restrictions on the
moments of certain functions of the observed data for estimation and infer-
ence, when complete knowledge of the joint distribution of these variables
is not available.

An important feature of preference-based models of frictionless mar-
kets is that, assuming agents optimize and rationally use their available in-
formation At in computing the expectation (1.3), there will be no arbitrage
opportunities in equilibrium. That is, the absence of arbitrage opportunities
is a consequence of the equilibrium price-setting process.

1.1.2. Arbitrage-Free Pricing Models

An alternative approach to pricing starts with the presumption of no ar-
bitrage opportunities (i.e., this is not derived from equilibrium behavior).
Using the principle of “no arbitrage” to develop pricing relations dates back
at least to the key insights of Black and Scholes (1973), Merton (1973), Ross

4 This is an implication of the “law of iterated expectations,” which states that E[ys] =
E[E(ys |At )], for any conditioning information set At .
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(1978), and Harrison and Kreps (1979). Central to this approach is the ob-
servation that, under weak regularity conditions, pricing can proceed “as if”
agents are risk neutral. When time is measured continuously and agents can
trade a default-free bond thatmatures an “instant” in the future and pays the
(continuously compounded) rate of return rt , discounting for risk-neutral
pricing is done by the default-free “roll-over” return e− ∫s

t ru du . For example,
if uncertainty about future prices and yields is generated by a continuous-
time Markov process Yt (so, in particular, the conditioning information set
It is generated by Yt), then the price of the payoff qs is given equivalently by

πt (qs) = E
[
q∗
s qs | Yt

] = EQ
[
e− ∫s

t ru du qs | Yt
]
, (1.4)

where EQt denotes expectation with regard to the “risk-neutral” conditional
distribution of Y . The term risk-neutral is applied because prices in (1.4)
are expressed as the expected value of the payoff qs as if agents are neutral
toward financial risks.

As we will see more formally in subsequent chapters, the risk attitudes
of investors are implicit in the exogenous specification of the pricing kernel
q∗ as a function of the state Yt and, hence, in the change of probability mea-
sure underlying the risk-neutral representation (1.4). Leaving preferences
and technology in the “background” and proceeding to parameterize the
distribution of q∗ directly facilitates the computation of security prices. The
parameterization of (Ps , q∗

s ,Yt ) is chosen so that the expectation in (1.4) can
be solved, either analytically or through tractable numerical methods, for
πt (qs) as a function of Yt : πt (qs) = P (Yt ). This is facilitated by the adoption
of continuous time (continuous trading), special structure on the condi-
tional distribution of Y , and constraints on the dependence of q∗ on Y so
that the second expectation in (1.4) is easily computed. However, similarly
tractable models are increasingly being developed for economies specified
in discrete time and with discrete decision/trading intervals.

Importantly, though knowledge of the risk-neutral distribution of Yt is
sufficient for pricing through (1.4), this knowledge is typically not sufficient
for econometric estimation. For the purpose of estimation using historical
price or return information associated with the payoffs Ps , we also need
information about the distribution of Y under its data-generating or actual
measure. What lie between the actual and risk-neutral distributions of Y
are adjustments for the “market prices of risk”—terms that capture agents’
attitudes toward risk. It follows that, throughout this book, when discussing
arbitrage-free pricing models, we typically find it necessary to specify the
distributions of the state variables or risk factors under both measures.

If the conditional distribution of Yt given Yt−1 is known (i.e., derivable
from knowledge of the continuous-time specification of Y ), then so typically
is the conditional distribution of the observed market prices πt (qs). The
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completeness of the specification of the pricing relations (both the distri-
bution of Y and the functional form of Ps) in this case implies that one can
in principle use “fully efficient” maximum likelihood methods to estimate
the unknown parameters of interest, say θ0. Moreover, this is feasible using
market price data alone, even though the risk factors Y may be latent (unob-
served) variables. This is a major strength of this modeling approach since,
in terms of data requirements, one is constrained only by the availability of
financial market data.

Key to this strategy for pricing is the presumption that the burden of
computing πt (qs) = Ps(Yt ) is low. For many specifications of the distribution
of the state Yt , the pricing relation Ps(Yt )must be determined by numerical
methods. In this case, the computational burden of solving for Ps while
simultaneously estimating θ0 can be formidable, especially as the dimension
of Y gets large. Have these considerations steered modelers to simpler data-
generating processes (DGPs) for Yt than theymight otherwise have studied?
Surely the answer is yes and one might reasonably be concerned that such
compromises in the interest of computational tractability have introduced
model misspecification.

We will see that, fortunately, in many cases there are alternative esti-
mation strategies for studying arbitrage-free pricing relations that lessen
the need for such compromises. In particular, one can often compute the
moments of prices or returns implied by a pricing model, even though
the model-implied likelihood function is unknown. In such cases, method-
of-moments estimation is feasible. Early implementations of method-of-
moments estimators typically sacrificed some econometric efficiency com-
pared to the maximum likelihood estimator in order to achieve substantial
computational simplification. More recently, however, various approximate
maximum likelihood estimators have been developed that involve little or
no loss in econometric efficiency, while preserving computational tract-
ability.

1.1.3. Beta Representations of Excess Returns

One of the most celebrated and widely applied asset pricing models is the
static capital-asset pricing model (CAPM), which expresses expected excess
returns in terms of a security’s beta with a benchmark portfolio (Sharpe,
1964; Mossin, 1968). The traditional CAPM is static in the sense that agents
are assumed to solve one-period optimization problems instead of multi-
period utility maximization problems. Additionally, the CAPM beta pricing
relation holds only under special assumptions about either the distributions
of asset returns or agents’ preferences.

Nevertheless, the key insights of the CAPM carry over to richer stochas-
tic environments in which agents optimize over multiple periods. There is
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an analogous “single-beta” representation of expected returns based on the
representation (1.1) of prices in terms of a pricing kernel q∗, what we refer
to as an intertemporal CAPM or ICAPM.5 Specifically, setting s = t + 1, the
benchmark return r ∗

t+1 = q∗
t+1/πt (q∗

t+1) satisfies6

E
[
r ∗
t+1(rt+1 − r ∗

t+1) | It
] = 0, rt+1 ∈ Rt+1. (1.5)

Equation (1.5) has several important implications for the role of r ∗
t+1 in asset

return relations, one of which is that r ∗
t+1 is a benchmark return for a single-

beta representation of excess returns (see Chapter 11):

E
[
rj,t+1 | It

]− r f
t = βj t

(
E
[
r ∗
t+1 | It

]− r f
t

)
, (1.6)

where

βj t = Cov
[
rj,t+1, r ∗

t+1 | It
]

Var
[
r ∗
t+1 | It

] , (1.7)

and r f
t is the interest rate on one-period riskless loans issued at date t . In

words, the excess return on a security is proportional to the excess return
on the benchmark portfolio, E[r ∗

t+1− r f
t | It], with factor of proportionality

βj t , for all securities j with returns in Rt+1.
It turns out that the beta representation (1.6), together with the rep-

resentation of r f in terms of q∗
t+1,7 constitute exactly the same information

as the basic pricing relation (1.1). Given one, we can derive the other, and
vice versa. At first glance, this may seem surprising given that econometric
tests of beta representations of asset returns are often not linked to pricing
kernels. The reason for this is that most econometric tests of expressions
like (1.6) are in fact not tests of the joint restriction that r f

t = 1/E[q∗
t+1|It]

and r ∗
t+1 satisfies (1.6). Rather tests of the ICAPM are tests of whether a

proposed candidate benchmark return r βt+1 satisfies (1.6) alone, for a given
information set It . There are an infinite number of returns r

β
t that satisfy

(1.6) (see Chapter 11). The return r∗
t+1, on the other hand, is the unique

5 By defining a benchmark return that is explicitly linked to the marginal rate of substitu-
tion, Breeden (1979) has shown how to obtain a single-beta representation of security returns
that holds in continuous time. The following discussion is based on the analysis in Hansen and
Richard (1987).

6 Hansen and Richard (1987) show that when the pricing function πt is nontrivial,
Pr{πt (q∗

t+1) = 0} = 0, so that r ∗
t+1 is a well-defined return. Substituting r ∗ into (1.1) gives

E[r ∗
t+1rt+1 | It ] = {E[q∗2

t+1 | It ]}−1, for all rt+1 ∈ Rt+1. Since r ∗
t+1 is one such return, (1.5)

follows.
7 The interest rate r f

t can be expressed as 1/E[q∗
t+1|It ] by substituting the payoff qt+1 = 1

into (1.1) with s = t + 1.
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return (within a set that is formally defined) satisfying (1.5). Thus, tests of
single-beta ICAPMs are in fact tests of weaker restrictions on return distri-
butions than tests of the pricing relation (1.1).

Focusing on a candidate benchmark return r βt+1 and relation (1.6) (with
r βt+1 in place of r

∗
t+1), once again the choices made regarding estimation and

testing strategies typically involve trade-offs between the assumptions about
return distributions and the robustness of the empirical analysis. Taken by
itself, (1.6) is a restriction on the conditional first and second moments of
returns. If one specifies a parametric family for the joint conditional distri-
bution of the returns r j,t+1 and r βt+1 and the state Yt , then estimation can
proceed imposing the restriction (1.6). However, such tests may be com-
promised by misspecification of the higher moments of returns, even if the
first two moments are correctly specified. There are alternative estimation
strategies that exploit less information about the conditional distribution
of returns and, in particular, that are based on the first two conditional mo-
ments for a given information set It , of returns.

1.1.4. Linear Pricing Relations

Historically, much of the econometric analysis of DAPMs has focused on
linear pricing relations. One important example of a linear DAPM is the
version of the ICAPM obtained by assuming that βj t in (1.6) is constant
(not state dependent), say βj . Under this additional assumption, βj is the
familiar “beta” of the j th common stock from the CAPM, extended to allow
both expected returns on stocks and the riskless interest rate to change over
time. The mean of

uj,t+1 ≡
(
rj,t+1 − r f

t

)
− βj

(
r βt+1 − r f

t

)
(1.8)

conditioned on It is zero for all admissible rj . Therefore, the expression in
(1.8) is uncorrelated with any variable in the information set It ; E[uj,t+1xt]
= 0, xt ∈ It . Estimators of the βj and tests of (1.6) can be constructed based
on these moment restrictions.

This example illustrates how additional assumptions about one feature
of a model can make an analysis more robust to misspecification of other
features. In this case, the assumption that βj is constant permits estimation
of βj and testing of the null hypothesis (1.6) without having to fully specify
the information set It or the functional form of the conditional means of
r j,t+1 and r βt+1. All that is necessary is that the candidate elements xt of It
used to construct moment restrictions are indeed in It .8

8 We will see that this simplification does not obtain when the βj t are state dependent.
Indeed, in the latter case, we might not even have readily identifiable benchmark returns r βt+1.
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Another widely studied linear pricing relation was derived under the
presumption that in a well-functioning—some say informationally efficient—
market, holding-period returns on assets must be unpredictable (see, e.g.,
Fama, 1970). It is now well understood that, in fact, the optimal process-
ing of information by market participants is not sufficient to ensure un-
predictable returns. Rather, we should expect returns to evidence some
predictability, either because agents are risk averse or as a result of the pres-
ence of a wide variety of market frictions.

Absent market frictions, then, one sufficient condition for returns to
be unpredictable is that agents are risk neutral in the sense of having linear
utility functions, U (ct ) = u0 + uc ct . Then the MRS is ms−t

s = βs , where β is
the subjective discount factor, and it follows immediately from (1.3) that

E[rs |It] = 1/βs , (1.9)

for an admissible return rs . This, in turn, implies that rs is unpredictable
in the sense of having a constant conditional mean. The restrictions on
returns implied by (1.9) are, in principle, easily tested under only minimal
additional auxiliary assumptions about the distributions of returns. One
simply checks to see whether rs − 1/βs is uncorrelated with variables dated
t or earlier that might be useful for forecasting future returns. However, as
we discuss in depth in Chapter 9, there is an enormous literature examining
this hypothesis. In spite of the simplicity of the restriction (1.9), whether or
not it is true in financial markets remains an often debated question.

1.2. Econometric Estimation Strategies

While the specification of a DAPM logically precedes the selection of an esti-
mation strategy for an empirical analysis, we begin Part I with an overview of
econometric methods for analyzing DAPMs. Applications of these methods
are then taken up in the context of the discussions of specific DAPMs. To
set the stage for Part I, we start by viewing the model construction stage as
leading to a family of models or pricing relations describing features of the
distribution of an observed vector of variables zt . This vector may include
asset prices or returns, possibly other economic variables, as well as lagged
values of these variables. Each model is indexed by a K -dimensional vector
of parameters θ in an admissible parameter space  ∈ RK . We introduce 

For instance, if It is taken to be agents’ information set At , then the contents of It may not
be known to the econometrician. In this case the set of returns that satisfy (1.6) may also be
unknown. It is of interest to ask then whether or not there are similar risk-return relations with
moments conditioned on an observable subset of At , say It , for which benchmark returns
satisfying an analogue to (1.6) are observable. This is among the questions addressed in
Chapter 11.
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because, for each of the DAPMs indexed by θ to be well defined, it may be
necessary to constrain certain parameters to be larger than some minimum
value (e.g., variances or risk aversion parameters), or DAPMs may imply
that certain parameters are functionally related. The basic premise of an
econometric analysis of a DAPM is that there is a unique θ0 ∈  (a unique
pricing relation) consistent with the population distribution of z. A primary
objective of the econometric analysis is to construct an estimator of θ0.

More precisely, we view the selection of an estimation strategy for θ0 as the
choice of:

• A sample of size T on a vector z t of observed variables, �zT ≡ (zT , zT−1,
. . . , z1)′.

• An admissible parameter space  ⊆ RK that includes θ0.
• AK -vector of functionsD(z t ; θ)with the property that θ0 is the unique
element of  satisfying

E[D(z t ; θ0)] = 0. (1.10)

What ties an estimation strategy to the particular DAPM of interest is the
requirement that θ0 be the unique element of  that satisfies (1.10) for the
chosen function D. Thus, we view (1.10) as summarizing the implications
of the DAPM that are being used directly in estimation. Note that, while the
estimation strategy is premised on the economic theory of interest implying
that (1.10) is satisfied, there is no presumption that this theory implies a
unique D that has mean zero at θ0. In fact, usually, there is an uncountable
infinity of admissible choices of D.

For many of the estimation strategies considered, D can be reinter-
preted as the first-order condition formaximizing a nonstochastic population
estimation objective or criterion function Q 0(θ) :  → R. That is, at θ0,

∂Q 0

∂θ
(θ0) = E[D(z t ; θ0)] = 0. (1.11)

Thus, we often view a choice of estimation strategy as a choice of criterion
function Q 0. For well-behaved Q 0, there is always a θ∗ that is the global max-
imum (or minimum, depending on the estimation strategy) of the criterion
functionQ 0. Therefore, forQ 0 to be a sensible choice for themodel at hand
we require that θ∗ be unique and equal to the population parameter vector
of interest, θ0. A necessary step in verifying that θ∗ = θ0 is verifying that D
satisfies (1.10) at θ0.

So far we have focused on constraints on the population moments of z
derived from aDAPM. To construct an estimator of θ0, we work with the sam-
ple counterpart of Q 0(θ), QT (θ), which is a known function of �zT . (The sub-
script T is henceforth used to indicate dependence on the entire sample.)
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The sample-dependent θT that minimizes QT (θ) over  is the extremum es-
timator of θ0. When the first-order condition to the population optimum
problem takes the form (1.11), the corresponding first-order condition for
the sample estimation problem is9

∂QT

∂θ
(θT ) = 1

T

T∑
t=1
D(z t ; θT ) = 0. (1.12)

The sample relation (1.12) is obtained by replacing the populationmoment
in (1.11) by its sample counterpart and choosing θT to satisfy these sample
moment equations. Since, under regularity, samplemeans converge to their
population counterparts [in particular,QT (·) converges toQ 0(·)], we expect
θT to converge to θ0 (the parameter vector of interest and the unique min-
imizer of Q 0) as T → ∞.

As noted previously, DAPMs often give rise to moment restrictions of
the form (1.10) for more than one D, in which case there are multiple
feasible estimation strategies. Under regularity, all of these choices of D
have the property that the associated θT converge to θ0 (they are consistent
estimators of θ0). Where they differ is in the variance-covariance matrices
of the implied large-sample distributions of θT . One paradigm, then, for
selecting among the feasible estimation strategies is to choose the D that
gives the most econometrically efficient estimator in the sense of having
the smallest asymptotic variance matrix. Intuitively, the later estimator is
the one that exploits the most information about the distribution of �zT in
estimating θ0.

Once a DAPM has been selected for study and an estimation strategy
has been chosen, one is ready to proceed with an empirical study. At this
stage, the econometrician/modeler is faced with several new challenges,
including:

1. The choice of computational method to find a global optimum to
QT (θ).

2. The choice of statistics and derivation of their large-sample proper-
ties for testing hypotheses of interest.

3. An assessment of the actual small-sample distributions of the
test statistics and, thus, of the reliability of the chosen inference
procedures.

The computational demands of maximizing QT can be formidable. When
the methods used by a particular empirical study are known, we occasion-
ally comment on the approach taken. However, an in-depth exploration of

9 In subsequent chapters we often find it convenient to define QT more generally as
1/T

∑T
t=1 DT (z t ; θT ) = 0, where DT (z t ; θ) is chosen so that it converges (almost surely) to

D(z t ; θ), as T → ∞, for all θ ∈ .
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alternative algorithms for finding the optimum of QT is beyond the scope
of this book.

With regard to points (2) and (3), there are many approaches to testing
hypotheses about the goodness-of-fit of a DAPM or the values of the pa-
rameters θ0. The criteria for selecting a test procedure (within the classical
statistical paradigm) are virtually all based on large-sample considerations.
In practice, however, the actual distributions of estimators in finite samples
may be quite different than their large-sample counterparts. To a limited
degree, Monte Carlo methods have been used to assess the small-sample
properties of estimators θT . We often draw upon this literature, when avail-
able, in discussing the empirical evidence.



Page 14 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[14], (14)

Lines: 228 to 229

———
0.0pt PgVar
———
Normal Page
PgEnds: TEX

[14], (14)



Page 15 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[First Page]

[15], (1)

Lines: 0 to 18

———
* 335.52399pt PgVar
———
Normal Page

* PgEnds: PageBreak

[15], (1)

Part I

Econometric Methods
for Analyzing DAPMs



Page 16 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[16], (2)

Lines: 18 to 19

———
0.0pt PgVar
———
Normal Page
PgEnds: TEX

[16], (2)



Page 17 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[17], (3)

Lines: 19 to 38

———
4.0pt PgVar
———
Normal Page
PgEnds: TEX

[17], (3)

2
Model Specification and

Estimation Strategies

A dapm may: (1) provide a complete characterization of the joint distribu-
tion of all of the variables being studied; or (2) imply restrictions on some
moments of these variables, but not reveal the form of their joint distri-
bution. A third possibility is that there is not a well-developed theory for
the joint distribution of the variables being studied. Which of these cases
obtains for the particular DAPM being studied determines the feasible es-
timation strategies; that is, the feasible choices of D in the definition of an
estimation strategy. This chapter introduces the maximum likelihood (ML),
generalized method of moments (GMM), and linear least-squares projec-
tion (LLP) estimators and begins our development of the interplay between
model formulation and the choice of an estimation strategy discussed in
Chapter 1.

2.1. Full Information about Distributions

Suppose that a DAPM yields a complete characterization of the joint distri-
bution of a sample of size T on a vector of variables yt , �yT ≡ {y1, . . . , yT }.
Let LT (β) = L( �yT ;β) denote the family of joint density functions of �yT
implied by the DAPM and indexed by the K -dimensional parameter vector
β. Suppose further that the admissible parameter space associated with this
DAPM is � ⊆ RK and that there is a unique β0 ∈ � that describes the true
probability model generating the asset price data.

In this case, we can take LT (β) to be our sample criterion function—
called the likelihood function of the data—and obtain the maximum likelihood
(ML) estimator b ML

T by maximizing LT (β). In ML estimation, we start with
the joint density function of �yT , evaluate the random variable �yT at the real-
ization comprising the observed historical sample, and then maximize the
value of this density over the choice of β ∈ �. This amounts to maximizing,

17
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over all admissible β, the “likelihood” that the realized sample was drawn
from the density LT (β). ML estimation, when feasible, is the most econo-
metrically efficient estimator within a large class of consistent estimators
(Chapter 3).

In practice, it turns out that studying LT is less convenient than working
with a closely related objective function based on the conditional density
function of yt . Many of the DAPMs that we examine in later chapters, for
which ML estimation is feasible, lead directly to knowledge of the density
function of yt conditioned on �yt−1, ft (yt |�yt−1;β) and imply that

ft (yt |�yt−1;β) = f
(
yt
∣∣�y Jt−1;β

)
, (2.1)

where �y Jt ≡ (yt , yt−1, . . . , yt−J+1), a J -history of yt . The right-hand side of
(2.1) is not indexed by t , implying that the conditional density function does
not change with time.1 In such cases, the likelihood function LT becomes

LT (β) =
T∏

t=J+1

f
(
yt
∣∣�y Jt−1;β

)× fm( �yJ ;β), (2.2)

where fm( �yJ ) is the marginal, joint density function of �yJ . Taking logarithms
gives the log-likelihood function l T ≡ T−1 log LT ,

l T (β) = 1
T

T∑
t=J+1

log f
(
yt
∣∣�y Jt−1;β

)+ 1
T

log fm( �yJ ;β). (2.3)

Since the logarithm is a monotonic transformation, maximizing l T gives the
same ML estimator b ML

T as maximizing LT .
The first-order conditions for the sample criterion function (2.3) are

∂ l T
∂β

(
b ML
T

) = 1
T

T∑
t=J+1

∂ log f
∂β

(
yt |�y Jt−1; b ML

T

)+ 1
T
∂ log fm
∂β

( �yJ ; b ML
T

) = 0, (2.4)

where it is presumed that, among all estimators satisfying (2.4), b ML
T is the

one that maximizes l T .2 Choosing z ′
t = (y′

t , �y Jt−1
′) and

1 A sufficient condition for this to be true is that the time series {yt } is a strictly stationary
process. Stationarity does not preclude time-varying conditional densities, but rather just that
the functional form of these densities does not change over time.

2 It turns out that b ML
T need not be unique for fixed T , even though β0 is the unique

minimizer of the population objective function Q 0. However, this technical complication need
not concern us in this introductory discussion.
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D(z t ;β) ≡ ∂ log f
∂β

(
yt
∣∣�y Jt−1;β

)
(2.5)

as the function defining the moment conditions to be used in estimation,
it is seen that (2.4) gives first-order conditions of the form (1.12), except
for the last term in (2.4).3 For the purposes of large-sample arguments
developed more formally in Chapter 3, we can safely ignore the last term
in (2.3) since this term converges to zero as T →∞.4 When the last term is
omitted from (2.3), this objective function is referred to as the approximate
log-likelihood function, whereas (2.3) is the exact log-likelihood function.
Typically, there is no ambiguity as to which likelihood is being discussed
and we refer simply to the log-likelihood function l .

Focusing on the approximate log-likelihood function, fixing β∈�, and
taking the limit asT →∞ gives, under the assumption that samplemoments
converge to their population counterparts, the associated population crite-
rion function

Q 0(β) = E
[
log f

(
yt
∣∣�y Jt−1;β

)]
. (2.6)

To see that the β0 generating the observed data is a maximizer of (2.6),
and hence that this choice of Q 0 underlies a sensible estimation strategy, we
observe that since the conditional density integrates to 1,

0 = ∂

∂β

∫ ∞

−∞
f
(
yt
∣∣�y Jt−1;β0

)
dyt

=
∫ ∞

−∞
∂ log f
∂β

(
yt
∣∣�y Jt−1;β0

)
f
(
yt
∣∣�y Jt−1;β0

)
dyt

= E

[
∂ log f
∂β

(yt
∣∣�y Jt−1;β0)

∣∣∣∣ �y Jt−1

]
, (2.7)

which, by the law of iterated expectations, implies that

∂Q 0

∂β
(β0) = E

[
∂ log f
∂β

(yt
∣∣�y Jt−1;β0)

]
= E [D(z t ;β0)] = 0. (2.8)

Thus, for ML estimation, (2.8) is the set of constraints on the joint distri-
bution of �yT used in estimation, the ML version of (1.10). Critical to (2.8)

3 The fact that the sum in (2.4) begins at J+1 is inconsequential, because we are focusing
on the properties of b ML

T (or θT ) for large T , and J is fixed a priori by the asset pricing theory.
4 There are circumstances where the small-sample properties of b ML

T may be substantially
affected by inclusion or omission of the term log fm (�yJ ;β) from the likelihood function. Some
of these are explored in later chapters.
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being satisfied by β0 is the assumption that the conditional density f implied
by the DAPM is in fact the density from which the data are drawn.

An important special case of this estimation problem is where {yt } is
an independently and identically distributed (i.i.d.) process. In this case, if
fm(yt ;β) denotes the density function of the vector yt evaluated at β, then
the log-likelihood function takes the simple form

l T (β) ≡ T−1 log LT (β) = 1
T

T∑
t=1

log fm(yt ;β). (2.9)

This is an immediate implication of the independence assumption, since
the joint density function of �yT factors into the product of the marginal
densities of the yt . The ML estimator of β0 is obtained by maximizing (2.9)
over β ∈ �. The corresponding population criterion function is Q 0(β) =
E[log fm(yt ;β)].

Though the simplicity of (2.9) is convenient, most dynamic asset pricing
theories imply that at least some of the observed variables y are not indepen-
dently distributed over time. Dependencemight arise, for example, because
of mean reversion in an asset return or persistence in the volatility of one or
more variables (see the next example). Such time variation in conditional
moments is accommodated in the formulation (2.1) of the conditional den-
sity of yt , but not by (2.9).

Example 2.1. Cox, Ingersoll, and Ross [Cox et al., 1985b] (CIR) developed a
theory of the term structure of interest rates in which the instantaneous short-term
rate of interest, r , follows the mean reverting diffusion

dr = κ(r̄ − r ) dt + σ
√
r dB . (2.10)

An implication of (2.10) is that the conditional density of rt+1 given rt is

f (rt+1|rt ;β0) = ce−ut−vt+1

(
vt+1

ut

)q
2

Iq
(
2(utvt+1)

1
2
)
, (2.11)

where

c = 2κ
σ 2(1 − e−κ)

, (2.12)

ut = 2κ
σ 2(1 − e−κ)

e−κ rt , (2.13)

vt+1 = 2κ
σ 2(1 − e−κ)

rt+1, (2.14)
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q = 2κ r̄/σ 2 − 1, and Iq is the modified Bessel function of the first kind of order
q. This is the density function of a noncentral χ2 with 2q + 2 degrees of freedom
and noncentrality parameter 2ut . For this example, ML estimation would proceed
by substituting (1.11) into (2.4) and solving for b ML

T . The short-rate process (2.10)
is the continuous time version of an interest-rate process that is mean reverting to
a long-run mean of r̄ and that has a conditional volatility of σ

√
r . This process is

Markovian and, therefore, �y Jt = yt , which explains the single lag in the conditioning
information in (1.11).

Though desirable for its efficiency, ML may not be, and indeed typi-
cally is not, a feasible estimation strategy for DAPMs, as often they do not
provide us with complete knowledge of the relevant conditional distribu-
tions. Moreover, in some cases, even when these distributions are known,
the computational burdens may be so great that one may want to choose
an estimation strategy that uses only a portion of the available information.
This is a consideration in the preceding example given the presence of the
modified Bessel function in the conditional density of r . Later in this chap-
ter we consider the case where only limited information about the condi-
tional distribution is known or, for computational or other reasons, is used
in estimation.

2.2. No Information about the Distribution

At the opposite end of the knowledge spectrum about the distribution of �yT
is the case where we do not have a well-developedDAPM to describe the rela-
tionships among the variables of interest. In such circumstances, we may be
interested in learning something about the joint distribution of the vector
of variables z t (which is presumed to include some asset prices or returns).
For instance, we are often in a situation of wondering whether certain vari-
ables are correlated with each other or if one variable can predict another.
Without knowledge of the joint distribution of the variables of interest, re-
searchers typically proceed by projecting one variable onto another to see if
they are related. The properties of the estimators in such projections are
examined under this case of no information.5 Additionally, there are occa-
sions when we reject a theory and a replacement theory that explains the
rejection has yet to be developed. On such occasions, many have resorted
to projections of one variable onto others with the hope of learning more
about the source of the initial rejection. Following is an example of this
second situation.

5 Projections, and in particular linear projections, are a simple and often informative
first approach to examining statistical dependencies among variables. More complex, non-
linear relations can be explored with nonparametric statistical methods. The applications of
nonparametric methods to asset pricing problems are explored in subsequent chapters.
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Example 2.2. Several scholars writing in the 1970s argued that, if foreign cur-
rency markets are informationally efficient, then the forward price for delivery of for-
eign exchange one period hence (F 1

t ) should equal the market’s best forecast of the spot
exchange rate next period (St+1):

F 1
t = E[St+1|It], (2.15)

where It denotes the market’s information at date t . This theory of exchange rate
determination was often evaluated by projecting St+1 − F 1

t onto a vector xt and
testing whether the coefficients on xt are zero (e.g., Hansen and Hodrick, 1980).
The evidence suggested that these coefficients are not zero, which was interpreted as
evidence of a time-varying market risk premium λt ≡ E[St+1|It] − F 1

t (see, e.g.,
Grauer et al., 1976, and Stockman, 1978). Theory has provided limited guidance as
to which variables determine the risk premiums or the functional forms of premiums.
Therefore, researchers have projected the spread St+1 − F 1

t onto a variety of variables
known at date t and thought to potentially explain variation in the risk premium.
The objective of the latter studies was to test for dependence of λt on the explanatory
variables, say xt .

To bemore precise about what is meant by a projection, let L2 denote the
set of (scalar) random variables that have finite second moments:

L2 = {
random variables x such that Ex2 < ∞}

. (2.16)

We define an inner product on L2 by

〈 x | y 〉 ≡ E(xy), x, y ∈ L2, (2.17)

and a norm by

‖ x ‖ = [〈 x | x 〉] 1
2 =

√
E(x2). (2.18)

We say that two random variables x and y in L2 are orthogonal to each
other if E(xy) = 0. Note that being orthogonal is not equivalent to being
uncorrelated as the means of the random variables may be nonzero.

Let A be the closed linear subspace of L2 generated by all linear combi-
nations of the K random variables {x1, x2, . . . , xK }. Suppose that we want to
project the random variable y ∈ L2 onto A in order to obtain its best linear
predictor. Letting δ′ ≡ (δ1, . . . , δK ), the best linear predictor is that element
of A that minimizes the distance between y and the linear space A:

min
z∈A

‖ y − z ‖ ⇔ min
δ∈RK

‖ y − δ1x1 − . . .− δK xK ‖ . (2.19)
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The orthogonal projection theorem6 tells us that the unique solution to (2.19) is
given by the δ0 ∈ RK satisfying

E
[
(y − x ′δ0)x

] = 0, x ′ = (x1, . . . , xK ); (2.20)

that is, the forecast error u ≡ (y − x ′δ0) is orthogonal to all linear combina-
tions of x . The solution to the first-order condition (2.20) is

δ0 = E[xx ′]−1E[xy]. (2.21)

In terms of our notation for criterion functions, the population crite-
rion function associated with least-squares projection is

Q 0(δ) = E
[
(yt − x ′

t δ)
2], (2.22)

and this choice is equivalent to choosing z ′
t = (yt , x ′

t ) and the function D as

D(z t ; δ) = (yt − x ′
t δ)xt . (2.23)

The interpretation of this choice is a bit different than in most estimation
problems, because our presumption is that one is proceeding with estima-
tion in the absence of a DAPM from which restrictions on the distribution
of (yt , xt ) can be deduced. In the case of a least-squares projection, we view
the moment equation

E
[
D(yt , xt ; δ0)

] = E
[
(yt − x ′

t δ0)xt
] = 0 (2.24)

as the moment restriction that defines δ0.
The sample least-squares objective function is

QT (δ) = 1
T

T∑
t=1

(yt − x ′
t δ)

2, (2.25)

with minimizer

δT =
[
1
T

T∑
t=1

xt x ′
t

]−1
1
T

T∑
t=1

xt yt . (2.26)

6 The orthogonal projection theorem says that if L is an inner product space, M is a
closed linear subspace of L, and y is an element of L, then z∗ ∈M is the unique solution to

min
z ∈M ‖ y − z ‖

if and only if y − z∗ is orthogonal to all elements of M . See, e.g., Luenberger (1969).
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The estimator δT is also obtained directly by replacing the population mo-
ments in (2.21) by their sample counterparts.

In the context of the pricing model for foreign currency prices, re-
searchers have projected (St+1 − F 1

t ) onto a vector of explanatory variables
xt . The variable being predicted in such analyses, (St+1 − F 1

t ), is not the
risk premium, λt = E[(St+1 − F 1

t )|It]. Nevertheless, the resulting predictor
in the population, x ′

t δ0, is the same regardless of whether λt or (St+1 − F 1
t )

is the variable being forecast. To see this, we digress briefly to discuss the
difference between best linear and best prediction.

The predictor x ′
t δ0 is the best linear predictor, which is defined by the

condition that the projection error ut = yt − x ′
t δ0 is orthogonal to all linear

combinations of xt . Predicting yt using linear combinations of xt is only
one of many possible approaches to prediction. In particular, we could also
consider prediction based on both linear and nonlinear functions of the
elements of xt . Pursuing this idea, let V denote the closed linear subspace
of L2 generated by all random variables g (xt ) with finite second moments:

V = {
g (xt ) : g : RK → R, and g (xt ) ∈ L2}. (2.27)

Consider the new minimization problem minz∈V ‖ yt − z t ‖. By the orthog-
onal projection theorem, the unique solution z∗

t to this problem has the
property that (yt − z∗

t ) is orthogonal to all z t ∈ V . One representation of z∗
is the conditional expectation E[yt |xt]. This follows immediately from the
properties of conditional expectations: the error εt = yt − E[yt |xt] satisfies

E[εt g (xt )] = E
[
(yt − E[yt |xt])g (xt )

] = 0, (2.28)

for all g (xt ) ∈ V . Clearly, A ⊆ V so the best predictor is at least as good
as the best linear predictor. The precise sense in which best prediction is
better is that, whereas εt is orthogonal to all functions of the conditioning
information xt , ut is orthogonal to only linear combinations of xt .

There are circumstances where best and best linear predictors coincide.
This is true whenever the conditional expectation E[yt |xt] is linear in xt .
One well-known case where this holds is when (yt , x ′

t ) is distributed as a
multivariate normal random vector. However, normality is not necessary
for best and best linear predictors to coincide. For instance, consider again
Example 2.1. The conditional mean E[rt+�|rt] for positive time interval �
is given by (Cox et al., 1985b)

µrt (�) ≡ E[rt+�|rt] = rt e−�κ + r̄ (1 − e−�κ), (2.29)

which is linear in rt , yet neither the joint distribution of (rt , rt−�) nor the
distribution of rt conditioned on rt−� is normal. (The latter is noncentral
chi-square.)
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With these observations in mind, we can now complete our argument
that the properties of risk premiums can be studied by linearly projecting
(St+1 − F 1

t ) onto xt . Letting Proj[·|xt] denote linear least-squares projection
onto xt , we get

Proj[λt |xt] = Proj
[(
St+1 − F 1

t

)− εt+1
∣∣xt]

= Proj
[(
St+1 − F 1

t

)∣∣xt ], (2.30)

where εt+1 ≡ (St+1 − F 1
t )− λt . The first equality follows from the definition

of the risk premium as E[St+1 − F 1
t |It] and the second follows from the fact

that εt+1 is orthogonal to all functions of xt including linear functions.

2.3. Limited Information: GMM Estimators

In between the cases of full information and no information about the joint
distribution of �yT are all of the intermediate cases of limited information. Sup-
pose that estimation of a parameter vector θ0 in the admissible parameter
space �⊂RK is to be based on a sample �zT , where z t is a subvector of the
complete set of variables yt appearing in a DAPM.7 The restrictions on the
distribution of �zT to be used in estimating θ0 are summarized as a set of
restrictions on the moments of functions of z t . These moment restrictions
may be either conditional or unconditional.

2.3.1. Unconditional Moment Restrictions

Consider first the case where a DAPM implies that the unconditional mo-
ment restriction

E[h(z t ; θ0)] = 0 (2.31)

is satisfied uniquely by θ0, where h is anM -dimensional vector withM ≥ K .
The function h may define standard central or noncentral moments of asset
returns, the orthogonality of forecast errors to variables in agents’ informa-
tion sets, and so on. Illustrations based on Example 2.1 are presented later
in this section.

To develop an estimator of θ0 based on (2.31), consider first the case
of K =M ; the number of moment restrictions equals the number of para-
meters to be estimated. The function H0 : � → RM defined by H0(θ) =

7 There is no requirement that the dimension of � be as large as the dimension of the
parameter space � considered in full information estimation; often � is a lower-dimensional
subspace of �, just as z t may be a subvector of yt . However, for notational convenience, we
always set the dimension of the parameter vector of interest to K , whether it is θ0 or β0.
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E[h(zt ; θ)] satisfies H0(θ0) = 0. Therefore, a natural estimation strategy for
θ0 is to replace H0 by its sample counterpart,

HT (θ) = 1
T

T∑
t=1

h(zt ; θ), (2.32)

and choose the estimator θT to set (2.32) to zero. If HT converges to its
population counterpart as T gets large, HT (θ) → H0(θ), for all θ ∈ �, then
under regularity conditions we should expect that θT → θ0. The estimator
θT is an example of what Hansen (1982b) refers to as a generalized method-
of-moments, or GMM, estimator of θ0.

Next suppose that M > K . Then there is not in general a unique way
of solving for the K unknowns using the M equations HT (θ) = 0, and our
strategy for choosing θT must be modified. We proceed to form K linear
combinations of the M moment equations to end up with K equations in
the K unknown parameters. That is, letting Ā denote the set of K ×M
(constant) matrices of rank K , we select an A ∈ Ā and set

DA(z t ; θ) = Ah(z t ; θ), (2.33)

with this choice ofDA determining the estimation strategy. Different choices
ofA∈Ā index (lead to) different estimation strategies. To arrive at a sample
counterpart to (2.33), we select a possibly sample-dependent matrix AT

with the property that AT → A (almost surely) as sample size gets large.
Then the K ×1 vector θAT (the superscript A indicating that the estimator is
A-dependent) is chosen to satisfy the K equations

∑
t DT (z t , θAT ) = 0, where

DT (z t , θAT ) = ATh(z t ; θAT ). Note that we are now allowing DT to be sample
dependent directly, and not only through its dependence on θAT . This will
frequently be the case in subsequent applications.

The construction of GMM estimators using this choice of DT can be re-
lated to the approach to estimation involving a criterion function as follows:
Let {aT : T ≥ 1} be a sequence of s × M matrices of rank s, K ≤ s≤M , and
consider the function

QT (θ) = |aTHT (θ)|, (2.34)

where | · | denotes the Euclidean norm. Then

argmin
θ

|aTHT (θ)| = argmin
θ

|aTHT (θ)|2= argmin
θ

HT (θ)
′a ′
T aTHT (θ), (2.35)

and we can think of our criterion function QT as being the quadratic form

QT (θ) = H ′
T (θ)WTHT (θ), (2.36)
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whereWT ≡ a ′
T aT is often referred to as the distance matrix. This is the GMM

criterion function studied byHansen (1982b). The first-order conditions for
this minimization problem are

∂HT

∂θ
(θT )

′WTHT (θT ) = 0. (2.37)

By setting

AT = [∂HT (θT )
′/∂θ]WT , (2.38)

we obtain the DT (z t ; θ) associated with Hansen’s GMM estimator.
The population counterpart to QT in (2.36) is

Q 0(θ) = E[h(zt ; θ)]′W0E[h(zt ; θ)]. (2.39)

The corresponding population D0(z t , θ) is given by

D0(z t , θ) = E
[
∂h
∂θ
(z t ; θ0)′

]
W0h(z t ; θ) ≡ A0h(z t ; θ), (2.40)

where W0 is the (almost sure) limit of WT as T gets large. Here D0 is not
sample dependent, possibly in contrast to DT .

Whereas the first-order conditions to (2.36) give an estimator in the
class Ā [withA defined by (2.40)], not all GMMestimators in Ā are the first-
order conditions fromminimizing an objective function of the form (2.36).
Nevertheless, it turns out that the optimalGMMestimators in Ā , in the sense
of being asymptotically most efficient (see Chapter 3), can be represented
as the solution to (2.36) for appropriate choice ofWT . Therefore, the large-
sample properties of GMM estimators are henceforth discussed relative to
the sequence of objective functions {QT (·) : T ≥ 1} in (2.36).

2.3.2. Conditional Moment Restrictions

In some cases, a DAPM implies the stronger, conditional moment restric-
tions

E[h(zt+n; θ0)|It] = 0, for given n ≥ 1, (2.41)

where the possibility of n>1 is introduced to allow the conditional moment
restrictions to apply to asset prices or other variables more than one period
in the future. Again, the dimension of h is M , and the information set It
may be generated by variables other than the history of z t .

To construct an estimator of θ0 based on (2.41), we proceed as in the
case of unconditional moment restrictions and choose K sample moment
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equations in the K unknowns θ . However, because h(zt+n; θ0) is orthogo-
nal to any random variable in the information set It , we have much more
flexibility in choosing these moment equations than in the preceding case.
Specifically, we introduce a class ofK ×M full-rank “instrument”matricesAt

with each At ∈ At having elements in It . For any At ∈ At , (2.41) implies that

E[Ath(zt+n; θ0)] = 0 (2.42)

at θ = θ0. Therefore, we can define a family of GMM estimators indexed by
A∈A, θAT , as the solutions to the corresponding sample moment equations,

1
T

∑
t

At h
(
zt+n; θAT

) = 0. (2.43)

If the sample mean of Ath(zt+n; θ) in (2.43) converges to its population
counterpart in (2.42), for all θ ∈ �, and At and h are chosen so that θ0 is
the unique element of� satisfying (2.42), then we might reasonably expect
θAT to converge to θ0 as T gets large. The large-sample distribution of θAT
depends, in general, on the choice of At .8

The GMM estimator, as just defined, is not the extreme value of a
specific criterion function. Rather, (2.42) defines θ0 as the solution to K
moment equations in K unknowns, and θT solves the sample counterpart
of these equations. In this case, D0 is chosen directly as

D0(zt+n,At ; θ) = DT (zt+n,At ; θ) = Ath(zt+n; θ). (2.44)

Once we have chosen an At in At , we can view a GMM estimator con-
structed from (2.41) as, trivially, a special case of an estimator based on
unconditional moment restrictions. Expression (2.42) is taken to be the
basic K moment equations that we start with. However, the important dis-
tinguishing feature of the class of estimators At , compared to the class Ā, is
that the former class offers much more flexibility in choosing the weights
on h. We will see in Chapter 3 that the most efficient estimator in the class
A is often more efficient than its counterpart in Ā. That is, (2.41) allows
one to exploit more information about the distribution of z t than (2.31) in
the estimation of θ0.

8 As is discussed more extensively in the context of subsequent applications, this GMM es-
timation strategy is a generalization of the instrumental variables estimators proposed for clas-
sical simultaneous equations models by Amemiya (1974) and Jorgenson and Laffont (1974),
among others.
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2.3.3. Linear Projection as a GMM Estimator

Perhaps the simplest example of a GMM estimator based on the moment
restriction (2.31) is linear least-squares projection. Suppose that we project
yt onto xt . Then the best linear predictor is defined by themoment equation
(2.20). Thus, if we define

h
(
yt , xt ; δ

) = (
yt − x ′

t δ
)
xt , (2.45)

then by construction δ0 satisfies E[h(yt , xt ; δ0)] = 0.
One might be tempted to view linear projection as special case of a

GMM estimator in At by choosing n = 0,

At = xt and h
(
yt , xt ; δ

) = (
yt − x ′

t δ
)
. (2.46)

However, importantly, we are not free to select among other choices of
At ∈ At in constructing a GMMestimator of the linear predictor x ′

t δ0. There-
fore, least-squares projection is appropriately viewed as a GMM estimator
in Ā.

Circumstances change if a DAPM implies the stronger moment
restriction

E
[(
yt − x ′

t δ0
)∣∣xt ] = 0. (2.47)

Now we are no longer in an environment of complete ignorance about the
distribution of (yt , xt ), as it is being assumed that x ′

t δ0 is the best, not just the
best linear, predictor of yt . In this case, we are free to choose

At = g (xt ) and h
(
yt , xt ; δ

) = (
yt − x ′

t δ
)
, (2.48)

for any g : RK →RK . Thus, the assumption that the best predictor is linear
puts us in the case of conditional moment restrictions and opens up the
possibility of selecting estimators in A defined by the functions g .

2.3.4. Quasi-Maximum Likelihood Estimation

Another important example of a limited information estimator that is a
special case of a GMM estimator is the quasi-maximum likelihood (QML)
estimator. Suppose that n = 1 and that It is generated by the J -history �y Jt
of a vector of observed variables yt .9 Further, suppose that the functional

9 We employ the usual, informal notation of letting It or �y Jt denote the σ -algebra (infor-
mation set) used to construct conditional moments and distributions.
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forms of the population mean and variance of yt+1, conditioned on It , are
known and let θ denote the vector of parameters governing these first two
conditional moments. Then ML estimation of θ0 based on the classical
normal conditional likelihood function gives an estimator that converges
to θ0 and is normally distributed in large samples (see, e.g., Bollerslev and
Wooldridge, 1992).

Referring back to the introductory remarks in Chapter 1, we see that
the function D (= D0 = DT ) determining the moments used in estimation
in this case is

D(z t ; θ) = ∂ log fN
∂θ

(
yt
∣∣�y Jt−1; θ

)
, (2.49)

where z ′
t = (y′

t , �y Jt−1
′) and fN is the normal density function conditioned on

�y Jt−1. Thus, for QML to be an admissible estimation strategy for this DAPM
it must be the case that θ0 satisfies

E
[
∂ log fN
∂θ

(
yt
∣∣�y Jt−1; θ0

)] = 0. (2.50)

The reason that θ0 does in fact satisfy (2.50) is that the first two conditional
moments of yt are correctly specified and the normal distribution is fully
characterized by its first two moments. This intuition is formalized in Chap-
ter 3. The moment equation (2.50) defines a GMM estimator.

2.3.5. Illustrations Based on Interest Rate Models

Consider again the one-factor interest ratemodel presented in Example 2.1.
Equation (2.29) implies that we can choose

h
( �z1t+1; θ0

) = [
rt+1 − r̄ (1 − e−κ)− e−κ rt

]
, (2.51)

where �z2t+1 = (rt+1, rt )′. Furthermore, for any 2 × 1 vector function g (rt ) :
R→ R2, we can set At = g (rt ) and

E
[
(rt+1 − r̄ (1 − e−κ)− e−κ rt )g (rt )

] = 0. (2.52)

Therefore, a GMM estimator θA
′

T =(r̄T , κT ) of θ ′
0=(r̄ , κ) can be constructed

from the sample moment equations

1
T

∑
t

[
rt+1 − r̄T (1 − e−κT )− e−κT rt

]
g (rt ) = 0. (2.53)
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Each choice of g (rt ) ∈ At gives rise to a different GMM estimator that in
general has a different large-sample distribution. Linear projection of rt
onto rt−1 is obtained as the special case with g (rt−1)

′ = (1, rt−1),M = K = 2,
and θ ′ = (κ, r̄ ).

Turning to the implementation of QML estimation in this example,
the mean of rt+� conditioned on rt is given by (2.29) and the conditional
variance is given by (Cox et al., 1985b)

σ 2
rt (�) ≡ Var [rt+�|rt] = rt

σ 2

κ
(e−�κ − e−2�κ)+ r̄

σ 2

2κ
(1 − e−�κ)2. (2.54)

If we set� = 1, it follows that discretely sampled returns (rt , rt−1, . . .) follow
the model

rt+1 = r̄ (1 − e−κ)+ e−κ rt +
√
σ 2
rtεt+1, (2.55)

where the error term εt+1 in (2.55) has (conditional) mean zero and vari-
ance one. For this model, θ0 = (r̄ , κ, σ 2)′ = β0 (the parameter vector that
describes the entire distribution of rt), though this is often not true in other
applications of QML.

The conditional distribution of rt is a noncentral χ2. However, suppose
we ignore this fact and proceed to construct a likelihood function based
on our knowledge of (2.29) and (2.54), assuming that the return rt is dis-
tributed as a normal conditional on rt−1. Then the log-likelihood function
is (l q to indicate that this is QML)

l qT (θ) ≡ 1
T

T∑
t=2

(
−1
2
log(2π)− 1

2
log
(
σ 2
rt−1

)− 1
2
(rt − µrt−1)

2

σ 2
rt−1

)
. (2.56)

Computing first-order conditions gives

∂ l qT
∂θj

(
θ
q
T

) = 1
T

T∑
t=2

− 1

2σ̂ 2
rt−1

∂σ̂ 2
rt−1

∂θj
+ 1

2
(rt − µ̂rt−1)

2

σ̂ 4
rt−1

∂σ̂ 2
rt−1

∂θj

+ (rt − µ̂rt−1)

σ̂ 2
rt−1

∂µ̂rt−1

∂θj
= 0, j = 1, 2, 3, (2.57)

where θ qT denotes the QML estimator and µ̂rt−1 and σ̂ 2
rt−1 are µrt−1 and σ 2

rt−1
evaluated at θ qT . As suggested in the preceding section, this estimation strat-
egy is admissible because the first two conditional moments are correctly
specified.

Though one might want to pursue GMM or QML estimation for this
interest rate example because of their computational simplicity, this is not
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the best illustration of a limited information problem because the true
likelihood function is known. However, a slight modification of the interest
rate process places us in an environment where GMM is a natural estimation
strategy.

Example 2.3. Suppose we extend the one-factor model introduced in Example 2.1
to the following two-factor model:

dr = κ(r̄ − r ) dt + σr
√
v dBr ,

dv = ν(v̄ − v) dt + σv
√
v dBv . (2.58)

In this two-factor model of the short rate, v plays the role of a stochastic volatility
for r . Similar models have been studied by Anderson and Lund (1997a) and Dai
and Singleton (2000). The volatility shock in this model is unobserved, so estimation
and inference must be based on the sample �rT and rt is no longer a Markov process
conditioned on its own past history.

An implication of the assumptions that r mean reverts to the long-run
value of r̄ and that the conditional mean of r does not depend on v is that
(2.29) is still satisfied in this two-factor model. However, the variance of rt
conditioned on rt−1 is not known in closed form, nor is the form of the
density of rt conditioned on �r Jt−1. Thus, neither ML nor QML estimation
strategies are easily pursued.10 Faced with this limited information, one con-
venient strategy for estimating θ ′

0 ≡ (r̄ , κ) is to use the moment equations
(2.52) implied by (2.29).

This GMM estimator of θ0 ignores entirely the known structure of the
volatility process and, indeed, σ 2

r is not an element of θ0. Thus, not only
are we unable to recover any information about the parameters of the vola-
tility equation using (2.52), but knowledge of the functional form of the
volatility equation is ignored. It turns out that substantially more informa-
tion about f (rt |rt−1; θ0) can be used in estimation, but to accomplish this we
have to extend the GMM estimation strategy to allow for unobserved state
variables. This extension is explored in depth in Chapter 6.

2.3.6. GMM Estimation of Pricing Kernels

As a final illustration, suppose that the pricing kernel in a DAPM is a
function of a state vector xt and parameter vector θ0. In preference-based
DAPMs, the pricing kernel can be interpreted as an agent’s intertemporal

10 Asymptotically efficient estimation strategies based on approximations to the true con-
ditional density function of r have been developed for this model. These are described in
Chapter 7.



Page 33 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[33], (19)

Lines: 708 to 743

———
* 40.81999pt PgVar
———
Normal Page

* PgEnds: PageBreak

[33], (19)

Ta
bl
e
2.
1.

Su
m
m
ar
y
of
Po

pu
la
tio

n
an
d
Sa
m
pl
e
O
bj
ec
tiv

e
Fu

nc
tio

ns
fo
r
Va
ri
ou
s
E
st
im

at
or
s

M
ax
im

um
lik

el
ih
oo

d
G
M
M

L
ea
st
-s
qu

ar
es

pr
oj
ec
ti
on

Po
pu

la
ti
on

ob
je
ct
iv
e

fu
n
ct
io
n

m
ax

β
∈�

E
[ lo

g
f( y t

∣ ∣ ∣�yJ t−
1
;β
)]

m
in

θ
∈�

E
[h
(z

t;θ
)]

′ W
0
E
[h
(z

t;θ
)]

m
in

δ
∈R

K
E
[ ( y t

−
x′ tδ
) 2]

Sa
m
pl
e

ob
je
ct
iv
e

fu
n
ct
io
n

m
ax

β
∈�

1 T

∑ T t=
J
+1

lo
g
f
( y t

∣ ∣ ∣�yJ t−
1
;β
)

m
in

θ
∈�

H
T
(θ
)′ W

T
H

T
(θ
)

m
in

δ
∈R

K

1 T

∑ T t=
1

( y t
−

x′ tδ
) 2

H
T
(θ
)
=

1 T

∑ T t=
1
h(
z t

;θ
)

Po
pu

la
ti
on

F.
O
.C
.

E
[ ∂lo

g
∂
β
f( y t

∣ ∣ ∣�yJ t−
1
;β

0

)] =
0

A
0
E
[h
(z

t;θ
0
)]

=
0

E
[( y t

−
x′ tδ

0
) x t
] =

0

Sa
m
pl
e

F.
O
.C
.

1 T

∑ T t=
J
+1

∂
lo
g

∂
β
f( y t

∣ ∣ ∣�yJ t−
1
;b

M
L

T

) =
0

A
T

1 T

∑ T t=
1
h(
z t

;θ
T
)
=

0
1 T

∑ T t=
1

( y t
−

x′ tδ
T
) x t

=
0



Page 34 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

34 2. Model Specification and Estimation Strategies

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[Last Page]

[34], (20)

Lines: 743 to 770

———
205.28pt PgVar
———
Normal Page
PgEnds: TEX

[34], (20)

marginal rate of substitution of consumption, in which case xt might involve
consumptions of goods and θ0 is the vector of parameters describing the
agent’s preferences. Alternatively, q∗ might simply be parameterized directly
as a function of financial variables. In Chapter 1 it was noted that

E
[(
q∗
t+n(xt+n; θ0)rt+n − 1

)∣∣It ] = 0, (2.59)

for investment horizon n and the appropriate information set It . If rt+n

is chosen to be a vector of returns on M securities, M ≥ K , then (2.59)
representsM conditional moment restrictions that can be used to construct
a GMM estimator of θ (Hansen and Singleton, 1982).

Typically, there are more than K securities at one’s disposal for empir-
ical work, in which case one may wish to select M > K . A K × M matrix
At ∈ At can then be used to construct K unconditional moment equations
to be used in estimation:

E
[
At
(
q∗
t+n(xt+n; θ0)rt+n − 1

)] = 0. (2.60)

Any At ∈ It is an admissible choice for constructing a GMM estimator (sub-
ject to minimal regularity conditions).

2.4. Summary of Estimators

The estimators introduced in this chapter are summarized in Table 2.1,
along with their respective first-order conditions. The large-sample prop-
erties of ML, GMM, and LLP estimators are explored in Chapter 3.
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3
Large-Sample Properties
of Extremum Estimators

Extremum estimators are estimators obtained by either maximizing or
minimizing a criterion function over the admissible parameter space. In this
chapter we introduce more formally the concept of an extremum estimator
and discuss the large-sample properties of these estimators.1 After briefly set-
ting up notation and describing the probability environment within which
we discuss estimation, we describe regularity conditions under which an es-
timator converges almost surely to its population counterpart.

We then turn to the large-sample distributions of extremum estimators.
Throughout this discussion we maintain the assumption that θT is a consis-
tent estimator of θ0 and focus on properties of the distribution of θT as T
gets large. Whereas discussions of consistency are often criterion-function
specific, the large-sample analyses of most of the extremum estimators we
will use subsequently can be treated concurrently. We formally define a fam-
ily of estimators that encompasses the first-order conditions of the ML, stan-
dard GMM, and LLS estimators as special cases. Then, after we present a
quite general central limit theorem, we establish the asymptotic normality
of these estimators. Finally, we examine the relative asymptotic efficiencies
of theGMM, LSS, andML estimators and interpret their asymptotic efficien-
cies in terms of the restrictions on the joint distribution of the data used in
estimation.

3.1. Basic Probability Model

Notationally, we let � denote the sample space, F the set of events about
which we want to make probability statements (a “σ -algebra” of events), and

1 The perspective on the large-sample properties of extremum estimators taken in this
chapter has been shaped by my discussions and collaborations with Lars Hansen over the past
25 years. In particular, the approach to establishing consistency and asymptotic normality in
Sections 3.2–3.4 follows that of Hansen (1982b, 2005).

35
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Pr the probability measure.2 Thus, we denote the probability space by (�,
F , Pr). Similarly, we let BK denote the Borel algebra of events in RK , which
is the smallest σ -algebra containing all open and closed rectangles in RK .
A K -dimensional vector random variable X is a function from the sample
space � to RK with the property that for each B ∈ BK , {ω : X (ω) ∈ B} ∈F.
Each random variable X induces a probability space (RK, BK, µX) by the
correspondence µX (B) = Pr{ω : X (ω) ∈ B}, for all B ∈ BK .

Two notions of convergence of sequences of random variables that we
use extensively are as follows.

Definition 3.1. The sequence of random variables {XT } is said to converge almost
surely (a.s.) to the random variable X if and only if there exists a null set3 N such
that

∀ω ∈ � \N : lim
T→∞XT (ω) = X (ω). (3.1)

Definition 3.2. The sequence of random variables {XT } is said to converge in
probability to X if and only if, for every ε>0, we have

lim
T→∞Pr {|XT − X | > ε} = 0. (3.2)

When the T th element of the sequence is the estimator θT for sample
size T and the limit is the population parameter vector of interest θ0, then
we call the estimator θT consistent for θ0.

Definition 3.3. A sequence of estimators {θT } is said to be strongly (weakly) con-
sistent for a constant parameter vector θ0 if and only if θT converges almost surely
(in probability) to θ0 as T →∞.

There are many different sets of sufficient conditions on the structure
of asset pricing models and the probability models generating uncertainty
for extremum estimators to be consistent. In this chapter we follow closely
the approach in Hansen (1982b), which assumes that the underlying ran-
dom vector of interest, z t , is a stationary and ergodic time series. Chapters 9
and 10 discuss how stochastic trends have been accommodated in DAPMs.

We let R∞ denote the space consisting of all infinite sequences x =
(x1, x2, . . .) of real numbers (lower case x indicates x ∈ R). A T -dimensional
rectangle is of the form {x ∈ R∞ : x1 ∈ I1, x2 ∈ I2, . . . , xT ∈ IT }, where
I1, . . . , IT are finite or infinite intervals in R. If B∞ denotes the smallest

2 The topics discussed in this section are covered in more depth in most intermediate
statistics books. See Chung (1974) and Billingsley (1979).

3 A null set N for P is a set with the property that Pr{N } = 0.
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σ -algebra of subsets ofR∞ containing all finite dimensional rectangles, then
X = (X1,X2, . . .) is a measurable mapping from � to (R∞,B∞) (here the
X ’s are random variables).

Definition 3.4. A process {Xt } is called stationary if, for every k, the process
{Xt }∞t=k has the same distribution as {Xt }∞t=1; that is,

P {(X1,X2, . . .) ∈ B∞} = P {(Xk+1,Xk+2 . . .) ∈ B∞}. (3.3)

In practical terms, a stationary process is one such that the functional
forms of the joint distributions of collections (Xk ,Xk−1, . . . ,Xk−) do not
change over time. An important property of a stationary process is that the
process {Yk} defined by Yk = f (Xk ,Xk+1, . . . , ) is also stationary for any f
that is measurable relative to B∞.

The assumption that {Xt } is stationary is not sufficient to ensure that
sample averages of the process converge to EX1, a requirement that under-
lies our large-sample analysis of estimators. (Here we use EX1, because all Xt

have the same mean.) The reason is that the sample we observe is the real-
ization (X1(ω0),X2(ω0), . . .) associated with a single ω0 in the sample space
�. If we are to learn about the distribution of the time series {Xt } from this
realization, then, as we move along the series {Xt (ω0)}, it must be as if we
are observing realizations of Xt (ω) for fixed t as ω ranges over �.

To make this idea more precise,4 suppose there is an event A ∈ F
with the property that one can find a B ∈ B∞ such that for every t > 1,
A = {ω : (Xt (ω),Xt+1(ω), . . .) ∈ B}. Such an event A is called invariant
because, for ω0 ∈ A, the information provided by {Xt (ω0),Xt+1(ω0), . . .} as
t increases is essentially unchanged with t . On the other hand, if such a B
does not exist, then

A = {ω : (X1(ω),X2(ω), . . .) ∈ B} �= {ω : (Xt (ω),Xt+1(ω), . . .) ∈ B}, (3.4)

for some t>1, and {Xt (ω),Xt+1(ω), . . .} conveys information about a differ-
ent event in F (different part of �).

Definition 3.5. A stationary process is ergodic if every invariant event has prob-
ability zero or one.

If the process is ergodic, then a single realization conveys sufficient
information about � for a strong law of large numbers (SLLN) to hold.

4 For further discussion of stationary and ergodic stochastic processes see, e.g., Breiman
(1968).
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Theorem 3.1. If X1X2, . . . , is a stationary and ergodic process and E |X1|<∞,
then

1
T

T∑
t=1

Xt → EX1 a.s. (3.5)

One can relax the assumption of stationarity, thereby allowing the
marginal distributions of z t to change over time, and still obtain a SLLN.
However, this is typically accomplished by replacing the relatively weak re-
quirements implicit in the assumption of stationarity on the dependence
between z t and z t−s , for s �= 0, with stronger assumptions (see, e.g., Gallant
and White, 1988).

Two considerations motivate our focus on the case of stationary and
ergodic time series. First, in dynamic asset pricing models, the pricing re-
lations are typically the solutions to a dynamic optimization problem by in-
vestors or a replication argument based on no-arbitrage opportunities. As
we will see more formally in later chapters, both of these arguments involve
optimal forecasts of future variables, and these optimal forecasting prob-
lems are typically solved under the assumption of stationary time series.5

Indeed, these forecasting problems will generally not lend themselves to
tractable solutions in the absence of stationarity. Second, the assumption
that a time series is stationary does not preclude variation over time in the
conditional distributions of z t conditioned on its own history. In particular,
the time variation in conditional means and variances that is often the fo-
cus of financial econometric modeling is easily accommodated within the
framework of stationary and ergodic time series.

Of course, neither of these considerations rules out the possibility that
the real world is one in which time series are in fact nonstationary. At a
conceptual level, the economic argument for nonstationarity often comes
down to the need to include additional conditioning variables. For exam-
ple, the case of a change in operating procedures by a monetary authority,
as we experienced in the United States in the early 1980s, could be handled
by conditioning on variables that determine a monetary authority’s oper-
ating procedures. However, many of the changes in a pricing environment
that would lead us to be concerned about stationarity happen infrequently.
Therefore, we do not have repeated observations on the changes that con-
cern us the most. The pragmatic solution to this problem has often been to
judiciously choose the sample period so that the state vector z t in an asset
pricing model can reasonably be assumed to be stationary. With these con-
siderations in mind, we proceed under the formal assumption of stationary
time series.

5 An important exception is the case of nonstationarity induced by stochastic trends.
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3.2. Consistency: General Considerations

Let QT ( zT , θ) denote the function to be minimized by choice of the K -
vector θ of unknown parameters within an admissible parameter space �⊂
RK , and let Q 0(θ) be its population counterpart. Throughout this chapter,
it will be assumed that Q 0(θ) is uniquely minimized at θ0, the model param-
eters that generate the data.

We begin by presenting a set of quite general sufficient conditions for
θT to be a consistent estimator of θ0. The discussion of these conditions is
intended to illustrate the essential features of a probability model that lead
to strong consistency (θT converges almost surely to θ0). Without further
assumptions, however, the general conditions proposed are not easily veri-
fied in practice. Therefore, we proceed to examine a more primitive set of
conditions that imply the conditions of our initial consistency theorem.

One critical assumption underlying consistency is the uniform conver-
gence of sample criterion functions to their population counterparts as T
gets large. Following are definitions of two notions of uniform convergence.

Definition 3.6. Let gT (θ) be a nonnegative sequence of random variables depend-
ing on the parameter θ . Consider the two modes of uniform convergence of gT (θ) to 0:

P
[
lim
T→∞ sup

θ∈�
gT (θ) = 0

]
= 1, (3.6)

lim
T→∞P

[
sup
θ∈�

gT (θ) < ε

]
= 1 for any ε>0. (3.7)

If (3.6) holds, then gT (θ) is said to converge to 0 almost surely uniformly in θ ∈ �.
If (3.7) holds, then gT (θ) is said to converge to 0 in probability uniformly in θ ∈ �.

The following theorem presents a useful set of sufficient conditions for
θT to converge almost surely to θ0.

Theorem 3.2. Suppose

(i) � is compact.
(ii) The nonnegative sample criterion function QT (zT , θ) is continuous in

θ ∈ � and is a measurable function of zT for all θ .
(iii) QT (zT , θ) converges to a non-stochastic function Q 0(θ) almost surely uni-

formly in θ ∈� as T →∞; and Q 0(θ) attains a unique minimum at θ0.

Define θT as a value of θ that satisfies

QT (zT , θT ) = min
θ∈� QT (zT , θ). (3.8)

Then θT converges almost surely to θ0.6

6 In situations where θT is not unique, if we let �T denote the set of minimizers, we can
show that δT (ω) = sup{|θT − θ0| : θT ∈ �T } converges almost surely to 0 as T →∞.



Page 40 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

40 3. Large-Sample Properties of Extremum Estimators

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[40], (6)

Lines: 170 to 215

———
1.28111pt PgVar
———
Normal Page
PgEnds: TEX

[40], (6)

Proof (Theorem 3.2). Define the function

ρ(ε) = inf {Q 0(θ)− Q 0(θ0), for |θ − θ0| ≥ ε}. (3.9)

As long as ε>0, Assumptions (i)–(iii) guarantee that ρ(ε) > 0. (Continuity of Q 0

follows from our assumptions.) Assumption (iii) implies that there exists a set� with
P (�) = 1 and a positive, finite function T (ω, ε), such that

ρT (ω) ≡ sup
θ∈�

|QT (ω, θ)− Q 0(θ)| < ρ(ε)/2, (3.10)

for all ω ∈ �, ε > 0, and T ≥ T (ω, ε). This inequality guarantees that for all
ω ∈ �, ε > 0, and T ≥ T (ω, ε),

Q 0(θT )− Q 0(θ0) = Q 0(θT )− QT (ω, θT )+ QT (ω, θT )

− QT (ω, θ0)+ QT (ω, θ0)− Q 0(θ0)

≤ Q 0(θT )− QT (ω, θT )+ QT (ω, θ0)− Q 0(θ0)

≤ |Q 0(θT )− QT (ω, θT )| + |QT (ω, θ0)− Q 0(θ0)|
≤ 2ρT (ω) < ρ(ε), (3.11)

which implies that |θT − θ0| < ε for all ω ∈ �, ε > 0, and T ≥ T (ω, ε).

The assumptions of Theorem 3.2 are quite general. In particular, the
z t ’s need not be identically distributed or independent. However, this gen-
erality is of little practical value unless the assumptions of the theorem can
be verified in actual applications. In practice, this amounts to verifying As-
sumption (iii). The regularity conditions imposed in the econometrics lit-
erature to assure that (iii) holds typically depend on the specification of QT

and Q 0 and, thus, are often criterion function specific. We present a set of
sufficient conditions to establish the almost sure uniform convergence of
the sample mean

GT ( zT , θ) = 1
T

T∑
t=1

g (z t , θ) (3.12)

to its population counterpart G 0(θ) = E[g (z t , θ)]. This result then is used
to establish the uniform convergence of QT to Q 0 for the cases of ML and
GMM estimators for stationary processes.

To motivate the regularity conditions we impose on the time series {z t }
and the function g , it is instructive to examine how far the assumption that
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{z t } is stationary and ergodic takes us toward fulfilling the assumptions of
Theorem 3.2. Therefore, we begin by assuming:

Assumption 3.1. {z t : t ≥ 1} is a stationary and ergodic stochastic process.

As discussed in Chapter 2, the sample and population criterion func-
tions for LLP are

Q 0(δ) = E
[(
yt − x ′

t δ
)2]
, QT (δ) = 1

T

T∑
t=1

(
yt − x ′

t δ
)2
, δ ∈ RK . (3.13)

For the LLP problem, Q 0(δ) is assured of having a unique minimizer δ0 if
the second-moment matrix E[xt x ′

t] has full rank. Thus, with this additional
assumption, the second part of Condition (iii) of Theorem 3.2 is satisfied.
Furthermore, under the assumption of ergodicity,

1
T

T∑
t=1

xt x ′
t → E

[
xt x ′

t

]
and

1
T

T∑
t=1

xt yt → E[xt yt] a.s. (3.14)

It follows immediately that δT → δ0 a.s.
Though unnecessary in this case, we can also establish the strong con-

sistency of δT for δ0 from the observation that QT (δ)→ Q 0(δ) a.s., for all
δ ∈ RK . From Figure 3.1 it is seen that the criterion functions are quadratic
and eventually overlap (for large T ), so the minimizers of QT (δ) and Q 0(δ)

must eventually coincide. We conclude that the strong consistency of esti-
mators in LLP problems is essentially implied by the assumption that {z t } is
stationary and ergodic (and the rank condition on E[xt x ′

t]).
More generally, the assumptions of ergodicity of {z t } and the continuity

of QT (zT , θ) in its second argument do not imply the strong consistency of
the minimizer θT of the criterion function QT (θ). The reason is that ergo-
dicity guarantees only pointwise convergence, and the behavior in the “tails”
of some nonlinear criterion functions may be problematic. To illustrate this

Q0 QT

δ0 δT

Figure 3.1. Sample and population criterion functions for a least-squares projection.



Page 42 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

42 3. Large-Sample Properties of Extremum Estimators

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[42], (8)

Lines: 256 to 281

———
-2.08pt PgVar
———
Long Page
PgEnds: TEX

[42], (8)

Q0

QT

θT θ0

Figure 3.2. Well-behaved Q0 ,QT .

point, Figure 3.2 depicts a relatively well-behaved function QT that implies
the convergence of θT to θ0. In contrast, although the function QT (θ) in
Figure 3.3 can be constructed to converge pointwise to Q 0(θ), θ0 and θT
may grow increasingly far apart asT increases if the dipmoves further out to
the right as T grows. This potential problem is ruled out by the assumptions
that {QT : T ≥ 1} converges almost surely uniformly in θ to a function Q 0

and that θ0 is the unique minimizer of Q 0.
Even uniform convergence of QT to Q 0 combined with stationarity and

ergodicity are not sufficient to ensure that θT converges to θ0, however. To
see why, consider the situation in Figure 3.4. If Q 0(θ) asymptotes to the
minimum of Q 0(θ) over R (but does not achieve this minimum) in the left
tail, then QT (θT ) can get arbitrarily close to Q 0(θ0), even though θT and θ0
are growing infinitely far apart. To rule this case out, we need to impose a
restriction on the behavior of Q 0 in the “tails.” This can be accomplished
either by imposing restrictions on the admissible parameter space � or by
restricting Q 0 directly. For example, if it is required that

inf {Q 0(θ)− Q 0(θ0) : θ ∈ �, |θ − θ0| > ρ} > 0, (3.15)

then Q 0(θ) cannot asymptote to Q 0(θ0), for θ far away from θ0, and conver-
gence of θT to θ0 is ensured. This condition is satisfied by the least-squares

Q0

QT

θTθ0

Figure 3.3. Poorly behaved QT .
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QT

θT

Q0

θ0

Figure 3.4. QT converging to asymptoting Q0 .

criterion function for linear models. For nonlinear models, potentially un-
desirable behavior in the tails is typically ruled out by assuming that � is
compact (the tails are “chopped off”).

With these observations as background, we next provide a primitive set
of assumptions that assure the strong consistency of θT for θ0. As noted in
Chapter 1, most of the criterion functions we will examine can be expressed
as sample means of functions g (z t , θ), or are simple functions of such sam-
ple means (e.g., a quadratic form). Accordingly, we first present sufficient
conditions (beyond Assumption 3.1) for the convergence of

GT (θ) = 1
T

T∑
t=1

g (z t , θ) (3.16)

to E[g (z t , θ)] almost surely, uniformly in θ ∈ �. Our first assumption rules
out bad behavior in the tails and the second states that the function g (zt , θ)
has a finite mean for all θ :

Assumption 3.2. � is a compact metric space.

Assumption 3.3. The function g (·, θ) is Borel measurable for each θ in �;
Eg (zt , θ) exists and is finite for all θ in �.

We will also need a stronger notion of continuity of g (z t , θ). Let7

εt (θ, δ) = sup{|g (z t , θ)− g (z t , α)| for all α in � with |α − θ | < δ}. (3.17)

Definition 3.7. The random function g (z t , θ) is first-moment continuous at θ if
limδ↓0 E[εt (θ, δ)] = 0.

7 Assumption 3.2 guarantees that� has a countable dense subset. Hence, under Assump-
tions 3.2 and 3.3, the function εt (θ, δ) is Borel measurable (it can be represented as the almost
sure supremum of a countable collection of Borel measurable functions).
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First-moment continuity of g (z t , θ) is a joint property of the function
g and the random vector z t . Under Assumptions 3.1–3.3, if g (z t , θ) is first-
moment continuous at θ , then g (z t , θ) is first-moment continuous for every
t ≥1.

Assumption 3.4. The random function g (z t , θ) is first-moment continuous at all
θ ∈ �.

The measure of distance between GT and E[g (z t , ·)] we are concerned
with is

ρT = sup
θ∈�

∣∣GT (θ)− Eg (z t , θ)
∣∣. (3.18)

Using the compactness of � and the continuity of gt ( · ), it can be shown
that {ρT : T ≥ 1} converges almost surely to zero. The proof proceeds as
follows: Let {θi : i ≥ 1} be a countable dense subset of �. The distance
between GT (θ) and Eg (z t , θ) satisfies the following inequality:∣∣GT (θ)− Eg (z t , θ)

∣∣ ≤ ∣∣GT (θ)− GT (θi)
∣∣

+ ∣∣GT (θi)− Eg (z t , θi)
∣∣+ ∣∣Eg (z t , θi)− Eg (z t , θ)

∣∣. (3.19)

For all θ ∈ �, the first term on the right-hand side of (3.19) can be made
arbitrarily small by choosing θi such that |θi − θ | is small (because the θi are
a dense subset of �) and then using ergodicity and the uniform continuity
of g (z t , θ) (uniform continuity follows from Assumptions 3.2 and 3.4). The
second term can be made arbitrarily small for large enough T by ergodicity.
Finally, the last term can bemade small by exploiting the uniform continuity
of g . The following theorem summarizes this result, a formal proof of which
is provided in Hansen (2005).

Theorem 3.3 (Hansen, 1982b). Suppose Assumptions 3.1–3.4 are satisfied.
Then {ρT : T ≥ 1} in (3.18) converges almost surely to zero.

3.3. Consistency of Extremum Estimators

Equipped with Theorem 3.3, the strong consistency of the extremum esti-
mators discussed in Chapter 2 can be established.

3.3.1. Maximum Likelihood Estimators

Suppose that the functional form of the density function of yt conditioned
on yt−1, f (yt |y Jt−1;β), is known for all t . Let Q 0(β) = E[log f (yt |y Jt−1;β)]
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denote the population criterion function and suppose that β0, the parame-
ter vector of the data-generating process for yt , is a maximizer of Q 0(β).

To show the uniqueness of β0 as a maximizer of Q 0(β), required by
Condition (iii) of Theorem 3.2, we use Jensen’s inequality to obtain

E

[
log

f
(
yt
∣∣y Jt−1;β

)
f
(
yt
∣∣y Jt−1;β0

)
]
< log E

[
f
(
yt
∣∣y Jt−1;β

)
f
(
yt
∣∣y Jt−1;β0

)
]
, β �= β0. (3.20)

The right-hand side of (3.20) is zero (by the law of iterated expectations)
because

∫ ∞

−∞

f
(
yt
∣∣y Jt−1;β

)
f
(
yt
∣∣y Jt−1;β0

) f (yt ∣∣y Jt−1;β0
)
dy = 1. (3.21)

Therefore,

E
[
log f

(
yt
∣∣y Jt−1;β

)]
< E

[
log f

(
yt
∣∣y Jt−1;β0

)]
, if β �= β0 (3.22)

and β0 is the unique solution to (2.6).
The approximate sample log-likelihood function is

lT (β) = 1
T

T∑
t=J+1

log f
(
yt
∣∣y Jt−1;β

)
. (3.23)

Thus, setting z ′
t ≡ (y′

t , y Jt−1
′) and

g (z t , β) = log f
(
yt
∣∣y Jt−1;β

)
, (3.24)

GT in the preceding section becomes the log-likelihood function. If As-
sumptions 3.1–3.4 are satisfied, then Theorem 3.3 implies the almost sure,
uniform convergence of the sample log-likelihood function to Q 0(β).8

3.3.2. Generalized Method of Moment Estimators

The GMM criterion function is based on the model-implied M -vector of
moment conditions E[h(zt , θ0)] = 0. With use of the sample counterpart
to this expectation, the sample and population criterion functions are con-
structed as quadratic forms with distance matricesWT andW0, respectively:

8 See DeGroot (1970) for a discussion of the use of first-moment continuity of log f (yt |
y Jt−1;β) in proving the strong consistency of ML estimators. DeGroot refers to first-moment
continuity as “supercontinuity.”
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QT (θ) = HT (zT , θ)′WTHT (zT , θ), (3.25)

Q 0(θ) = H0(θ)
′W0H0(θ), (3.26)

where HT (zT , θ) = T−1∑T
t=1 h(z t , θ) and H0(θ) = E[h(z t , θ)]. Since H0(θ)

is zero at θ0, the function Q 0(·) achieves its minimum (zero) at θ0.
To apply Theorem 3.3 to these criterion functions we impose an addi-

tional assumption.

Assumption 3.5. {WT : T ≥ 1} is a sequence of M ×M positive semidefinite
matrices of random variables with elements that converge almost surely to the cor-
responding elements of the M ×M constant, positive semidefinite matrix W0 with
rank(W0) ≥ K .

In addition, we let

ρ∗
T = sup{|QT (θ)− Q 0(θ)| : θ ∈ �} (3.27)

denote the maximum error in approximating Q 0 by its sample counterpart
QT . The following lemma shows that Assumptions 3.1–3.5 are sufficient for
this approximation error to converge almost surely to zero.

Lemma 3.1. Suppose Assumptions 3.1–3.5 are satisfied. Then {ρ∗
T : T ≥ 1}

converges almost surely to zero.

Proof (Lemma 3.1). Repeated application of the Triangle and Cauchy-Schwartz
Inequalities gives

|QT (θ)− Q 0(θ)| ≤ |HT (θ)−H0(θ)| |WT | |HT (θ)|
+ |H0(θ)| |WT −W0| |HT (θ)|
+ |H0(θ)| |W0| |HT (θ)−H0(θ)|, (3.28)

where |W | = [
TrWW ′] 1

2 . Therefore, letting φ0 = max{|H0(θ)| : θ ∈ �} and
ρT ≡ sup{|HT (θ)− H0(θ)| : θ ∈ �},

0 ≤ ρ∗
T ≤ ρT |WT |[φ0 + ρT ] + φ0|WT − W0|[φ0 + ρT ] + φ0|W0|ρT . (3.29)

Since h(z t , θ) is first-moment continuous, H0(θ) is a continuous function of θ .
Therefore, φ0 is finite because a continuous function on a compact set achieves its
maximum. Theorem 3.3 implies that ρT converges almost surely to zero. Since each
of the three terms on the right-hand side of (3.29) converges almost surely to zero, it
follows that {ρ∗

T : T ≥ 1} converges almost surely to zero.
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When this result is combined with Theorems 3.2 and 3.3, it follows that
the GMM estimator {θT : T ≥ 1} converges almost surely to θ0.

3.3.3. QML Estimators

Key to consistency of QML estimators is verifying that the population mo-
ment equation (2.50) based on the normal likelihood function is satisfied
at θ0. As noted in Chapter 2, this is generally true if the functional forms
of the conditional mean and variance of yt are correctly specified (the mo-
ments implied by a DAPM are those in the probability model generating
yt). It is informative to verify that (2.50) is satisfied at θ0 for the interest rate
Example 2.1. This discussion is, in fact, generic to any one-dimensional state
process yt , since it does not depend on the functional forms of the condi-
tional mean µrt−1 or variance σ 2

rt−1. Extensions to the multivariate case, with
some increase in notational complexity, are immediate (see, e.g., Bollerslev
and Wooldridge, 1992).

Recalling the first-order conditions (2.57) shows the limit of the middle
term on the right-hand-side to be

1
T

T∑
t=2

(
(rt − µ̂rt−1)

2

σ̂ 4
rt−1

∂σ̂ 2
rt−1

∂θj

)
→ E

[
(rt − µrt−1)

2

σ 4
rt−1

∂σ 2
rt−1

∂θj

]
. (3.30)

Using the law of iterated expectations, we find that this expectation simpli-
fies as

E

[
(rt − µrt−1)

2

σ 4
rt−1

∂σ 2
rt−1

∂θj

]
= E

[
E

(
(rt − µrt−1)

2

σ 4
rt−1

∣∣∣∣ rt−1

)
∂σ 2

rt−1

∂θj

]

= E

[
1

σ 2
rt−1

∂σ 2
rt−1

∂θj

]
. (3.31)

The expectation (3.31) is seen to be minus the limit of the first term in
(2.57), so the first and second terms cancel.

Thus, for the population first-order conditions associated with (2.57) to
have a zero at θ0, it remains to show that the limit of the last term in (2.57),
evaluated at θ0, is zero. This limit is

1
T

T∑
t=2

{
(rt − µ̂rt−1)

σ̂ 2
rt−1

∂µ̂rt−1

∂θj

}
→ E

[
(rt − µrt−1)

σ 2
rt−1

∂µrt−1

∂θj

]
, (3.32)

which is indeed zero, because E[rt −µrt−1|rt−1] = 0 by construction and all
of the other terms are constant conditional on rt−1.
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Consistency of the QML estimator then follows under the regularity
conditions of Theorem 3.3.

3.4. Asymptotic Normality of Extremum Estimators

The consistency of θT for θ0 implies that the limiting distribution of θT
is degenerate at θ0. For the purpose of conducting inference about the
population value θ0 of θ , we would like to know the distribution of θT for
finite T . This distribution is generally not known, but often it can be reliably
approximated using the limiting distribution of

√
T (θT − θ0) obtained by a

central limit theorem. Applicable central limit theorems have been proven
under a wide variety of regularity conditions. We continue our focus on
stationary and ergodic economic environments.

Suppose that θT is strongly consistent for θ0. To show the asymptotic
normality of θT , we focus on the first-order conditions for the maximization
or minimization of QT , the sample mean of the function D0(z t ; θ) first
introduced in Chapter 1. More precisely, we let

h(z t , θ) =




∂ log f
∂θ

(
yt
∣∣y Jt−1; θ

)
for the ML estimator,

h(z t , θ) for the GMM estimator,(
yt − x ′

tθ
)
xt for the LLP estimator.

(3.33)

In each case, by appropriate choice of z t and θ,E[h(zt , θ0)] = 0. Thus, the
function D0(z t ; θ), representing the first-order conditions for Q 0, is

D0(z t ; θ) = A0h(z t ; θ), (3.34)

where the K × M matrix A0 is

A0 =




IK for the ML estimator,

E[∂h(z t , θ0)′/∂θ]W0 for the GMM estimator,

IK for the LLP estimator,

(3.35)

where IK denotes the K ×K identity matrix. The choice of A0 for the GMM
estimator is motivated subsequently as part of the proof of Theorem 3.5.

Using this notation and letting

HT (θ) = 1
T

T∑
t=1

h(zt , θ), (3.36)
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we can view all of these estimators as special cases of the following definition
of a GMM estimator (Hansen, 1982b).

Definition 3.8. The GMM estimator {θT : T ≥ 1} is a sequence of random vec-
tors that converges in probability to θ0 for which {√TATHT (θT ) : T ≥ 1} converges
in probability to zero, where {AT } is a sequence of K × M matrices converging in
probability to the full-rank matrix A0.

For a sequence of random variables {XT }, convergence in distribution
is defined as follows.

Definition 3.9. Let F1, F2, . . . , be distribution functions of the random variables
X1,X2, . . . . Then the sequence {XT } converges in distribution to X (denoted XT ⇒
X ) if and only if FT (b) → FX (b) for all b at which FX is continuous.

The classical central limit theorem examines the partial sums
√
TST =

(1/
√
T )

∑
t Xt of an independently and identically distributed process {Xt }

with mean µ and finite variance. Under these assumptions, the distribution
of

√
TST converges to that of normal with mean µ and covariance matrix

Var[Xt]. However, for the study of asset pricing models, the assumption of
independence is typically too strong. It rules out, in particular, persistence
in the state variables and time-varying conditional volatilities.

The assumption that {Xt } is a stationary and ergodic time series, which
is much weaker than the i.i.d. assumption in the classical model, is not suf-
ficient to establish a central limit theorem. Essentially, the problem is that
an ergodic time series can be highly persistent, so that the Xt and Xs , for
s �= t , are too highly correlated for

√
TST to converge to a normal ran-

dom vector. The assumption of independence in the classical central limit
theorem avoids this problem by assuming away any temporal dependence.
Instead, we will work with the much weaker assumption that {Xt } is a Mar-
tingale Difference Sequence (MDS), meaning that

E[Xt |Xt−1,Xt−2, . . .] = 0 (3.37)

with probability one. The assumption thatXt is mean-independent of its past
imposes sufficient structure on the dependence of {Xt } for the following
central limit theorem to be true.

Theorem 3.4 (Billingsley, 1968). Let {Xt }∞t=−∞ be a stationary and ergodic MDS
such that E

[
X 2
1

]
is finite. Then the distribution of (1/

√
T )

∑T
t=1 Xt approaches the

normal distribution with mean zero and variance E
[
X 2
1

]
.
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Though many financial time series are not MDSs, it will turn out that
they can be expressed as moving averages of MDS, and this will be shown to
be sufficient for our purposes.

Equipped with Billingsley’s theorem, under the following conditions,
we can prove that the GMM estimator is asymptotically normal.

Theorem 3.5 (Hansen, 1982b). Suppose that

(i) {z t } is stationary and ergodic.
(ii) � is an open subset of RK.
(iii) h is a measurable function of z t for all θ,

d 0 ≡ E
[
∂h
∂θ
(z t , θ0)

]

is finite and has full rank, and ∂h/∂θ is first moment continuous at all
θ ∈ �.

(iv) θT is a GMM estimator of θ0.
(v)

√
THT (zT , θ0)⇒N (0,  0),where 0= limT→∞TE[HT (θ0)HT (θ0)

′].
(vi) AT converges in probability to A0, a constant matrix of full rank, and A0d 0

has full rank.

Then
√
T (θT − θ0) ⇒ N (0, �0), where

�0 = (A0d 0)
−1A0 0A′

0(d
′
0A

′
0)

−1. (3.38)

In proving Theorem 3.5, we will need the following very useful lemma.

Lemma 3.2. Suppose that {z t } is stationary and ergodic and the function g (zt , θ)
satisfies: (a) E[g (zt , θ0)] exists and is finite, (b) g is first-moment continuous at
θ0, and suppose that θT converges to θ0 in probability. Then (1/T )

∑T
t=1 g (z t , θT )

converges to E[g (zt , θ0)] in probability.

Proof (Theorem 3.5). When we apply Taylor’s theorem on a coordinate by coordi-
nate basis,

HT (θT ) = HT (θ0)+ GT
(
θ∗
T

)
(θT − θ0), (3.39)

where θ∗
T is a K ×M matrix with the mth column, θ∗

mT , satisfying |θ∗
mT −θ0| ≤ |θT −

θ0|, for m = 1, . . . ,M, and the ijth element of the M × K matrix GT (θ
∗
T ) is the jth
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element of the 1×K vector ∂H i
T (θ

∗
iT )/∂θ . The matrix GT (θ

∗
T ) converges in probability

to the matrix d 0 by Lemma 3.2. Furthermore, since
√
TATHT (θT ) converges in

probability to zero,
√
T (θT − θ0) and [−(A0d 0)

−1A0
√
THT (θ0)] have the same

limiting distribution. Finally, from (v) it follows that
√
T (θT − θ0) is asymptotically

normal with mean zero and covariance matrix (A0d 0)
−1A0 0A′

0(d
′
0A

′
0)

−1.

A key assumption of Theorem 3.5 is Condition (v), as it takes us a long
way toward the desired result. Prior to discussing applications of this theo-
rem, it will be instructive to discuss more primitive conditions for Condition
(v) to hold and to characterize  0. Letting It denote the information set
generated by {z t , zt−1, . . .}, and ht ≡ h(z t ; θ0), we begin with the special case
(where ACh is shorthand for autocorrelation in h):

Case ACh(0). E[ht |It−1] = 0.

Since It−1 includes hs , for s ≤ t − 1, {ht } is an MDS. Thus, Theorem 3.4,
the central limit theorem (CLT), applies directly and implies Condition (v)
with

 0 = E
[
hth ′

t

]
. (3.40)

Case ACh(n − 1). E[ht+n |It] = 0, for some n ≥ 1.When n > 1, this case allows
for serial correlation in the process ht up to order n − 1.

We cannot apply Theorem 3.4 directly in this case because it presumes
that ht is an MDS. However, it turns out that we can decompose ht into a
finite sum of terms that do follow an MDS and then Billingsley’s CLT can
be applied. Toward this end, ht is written as

ht =
n−1∑
j=0

ut , j , (3.41)

where ut , j ∈ It−j and satisfies the property that E[ut , j |It−j−1] = 0. This
representation follows from the observation that

ht = E[ht |It−1] + ut ,0

= E[ht |It−2] + ut ,0 + ut ,1 = . . . =
n−1∑
j=0

ut , j , (3.42)

where the law of iterated expectations has been used repeatedly. Thus,
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1√
T

T∑
t=1

ht = 1√
T

T∑
t=1

n−1∑
j=0

ut , j . (3.43)

Combining terms for which t−j is the same (and, hence, that reside in
the same information set) and defining

u∗
t =

n−1∑
j=0

ut+j, j , (3.44)

gives

1√
T

T∑
t=1

ht = 1√
T

T−n+1∑
t=0

u∗
t + V n

T , (3.45)

where V n
T involves a fixed number of ut , j depending only on n, for all T .

Since V n
T converges to zero in probability as T → ∞, we can focus on the

sample mean of u∗
t in deriving the limiting distribution of the sample mean

of ht .
The series {u∗

t } is an MDS. Thus, Billingsley’s theorem implies that

1√
T

T−n+1∑
t=1

u∗
t ⇒ N(0,  0),  0 = E

[
u∗
t u

∗
t
′]
. (3.46)

Moreover, substituting the left-hand side of (3.45) for the scaled average of
the u∗

t
′s in (3.46), gives

 0 = lim
T→∞E

[
1
T

(
T∑

t=1

ht

)(
T∑

t=1

h ′
t

)]

= lim
T→∞

n−1∑
j=−n+1

(
T − | j |

T

)
E
[
hth ′

t−j
] =

n−1∑
j=−n+1

E
[
hth ′

t−j
]
. (3.47)

In words, the asymptotic covariance matrix of the scaled sample mean of ht

is the sum of the autocovariances of ht out to order n − 1.

Case ACh(∞). E[hth ′
t−s] �= 0, for all s.

Since, in case ACh(n − 1), n − 1 is the number of nonzero autocovari-
ances of ht , (3.47) can be rewritten equivalently as



Page 53 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

3.5. Distributions of Specific Estimators 53

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[53], (19)

Lines: 752 to 800

———
-3.10301pt PgVar
———
Normal Page

* PgEnds: PageBreak

[53], (19)

 0 =
∞∑

j=−∞
E
[
h(z t , θ0)h(zt−j , θ0)′

]
. (3.48)

This suggests that, for the case where E[hth ′
t−s] �= 0, for all s (i.e., n = ∞),

(3.48) holds as well. Hansen (1982b) shows that this is indeed the case
under the additional assumption that the autocovariance matrices of ht are
absolutely summable.

3.5. Distributions of Specific Estimators

In applying Theorem 3.5, it must be verified that the problem of interest
satisfies Conditions (iii), (iv), and (v). We next discuss some of the implica-
tions of these conditions for the cases of the ML, GMM, and LLP criterion
functions. In addition, we examine the form of the asymptotic covariance
matrix  0 implied by these criterion functions, and discuss consistent esti-
mators of  0.

3.5.1. Maximum Likelihood Estimation

In the case of ML estimation, we proved in Chapter 2 that

E
[
D0
(
yt , y Jt−1, β0

)∣∣y Jt−1

] = 0,

where9

D0
(
yt , y Jt−1, β

) = ∂ log f
∂β

(
yt
∣∣y Jt−1;β

)
. (3.49)

Since the density of yt conditioned on y Jt−1 is the same as the density con-
ditioned on yt−1 by assumption, (2.7) implies that the “score” (3.49) is an
MDS. Therefore, Theorem 3.4 and Case ACh(0) apply and

√
THT (z t , θ0) = √

T

(
1
T

T∑
t=1

∂ log f
∂β

(
yt
∣∣y Jt−1;β0

))
(3.50)

9 In deriving this result, we implicitly assumed that we could reverse the order of integra-
tion and differentiation. Formally, this is justified by the assumption that the partial derivative
of log f (yt |y Jt−1;β) is first-moment continuous at β0. More precisely, consider a function h(z, θ).
Suppose that for some δ > 0, the partial derivative ∂h(z, θ)/∂θ exists for all values of z and all
θ such that |θ − θ0| < δ, and suppose that this derivative is first-moment continuous at θ0. If
E[h(z, θ)] exists for all |θ − θ0|< δ and if E[|∂h(z, θ)/∂θ |]<∞, then

E
[
∂h(z, θ)
∂θ

∣∣∣
θ=θ0

]
= ∂E[h(z, θ)]

∂θ

∣∣∣
θ=θ0

.
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converges in distribution to a normal random vector with asymptotic co-
variance matrix

 0 = E
[
∂ log f
∂β

(
yt
∣∣y Jt−1;β0

)∂ log f
∂β

(
yt
∣∣y Jt−1;β0

)′]
. (3.51)

Furthermore, the first-order conditions to the log-likelihood function give
K equations in the K unknowns (β), so AT is IK in this case and �ML

0 =
d−1
0  0(d ′

0)
−1.

Thus, it remains to determine d 0. Since E[D0(z t , β0)] = 0, differentiat-
ing both sides of this expression with respect to β gives10

d ML
0 = E

[
∂2 log f
∂β∂β ′

(
yt
∣∣y Jt−1;β0

)]

= −E
[
∂ log f
∂β

(
yt
∣∣y Jt−1;β0

)∂ log f
∂β

(
yt
∣∣y Jt−1;β0

)′]
. (3.52)

When we combine (3.38), (3.51), and (3.52) and use the fact that if X ∼
N (0,  X ), then AX ∼ N (0,A X A′), it follows that

√
T (b ML

T − β0) ⇒ N

(
0,−E

[
∂2 log f
∂β∂β ′

(
yt
∣∣y Jt−1;β0

)]−1
)
. (3.53)

In actual implementations of ML estimation, the asymptotic covariance
in (3.53) is replaced by its sample counterpart. From (3.52) it follows that
this matrix can be estimated either as the inverse of the sample mean of
the “outer product” of the likelihood scores or as minus the inverse of the
sample mean of the second-derivative matrix evaluated at b ML

T ,

(
− 1

T

T∑
t=1

∂2 log f
∂β∂β ′

(
yt
∣∣y Jt−1; b ML

T

))−1

. (3.54)

10 The second equality in (3.52) is an important property of conditional density functions
that follows from (3.49). By definition, (3.49) can be rewritten as

0 =
∫
∂ log f
∂β

(
yt
∣∣∣y Jt−1;β0

)
f
(
yt
∣∣∣y Jt−1;β0

)
dyt .

Differentiating under the integral sign and using the chain rule gives

0 = E
[
∂2 log f
∂β∂β ′

(
yt
∣∣∣y Jt−1;β0

)]
+ E

[
∂ log f
∂β

(
yt
∣∣∣y Jt−1;β0

) ∂ log f
∂β

(
yt
∣∣∣y Jt−1;β0

)′]
.
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Assuming that the regularity conditions for Lemma 3.2 are satisfied by the
likelihood score, we see that (3.54) converges to the covariance matrix of
b ML
T as T →∞.

The asymptotic covariance matrix of b ML
T is the Cramer-Rao lower

bound, the inverse of the so-called Hessian matrix. This suggests that, even
though the ML estimator may be biased in small samples, as T gets large,
the ML estimator is the most efficient estimator in the sense of having the
smallest asymptotic covariance matrix among all consistent estimators of
β0. This is indeed the case and we present a partial proof of this result in
Section 3.6.

3.5.2. GMM Estimation

Theorem 3.5 applies directly to the case of GMM estimators. The GMM
estimator minimizes (3.25) so the regularity conditions for Theorem 3.5
require that h(z t , θ) be differentiable, ∂h(z t , θ)/∂θ be first-moment con-
tinuous at θ0, and that WT converge in probability to a constant, positive-
semidefinite matrix W0.

The first-order conditions to the minimization problem (3.25) are

∂HT (θT )
′

∂θ
WTHT (θT ) = 0. (3.55)

Therefore, the AT implied by the GMM criterion function (3.25) is

AT = ∂HT (θT )
′

∂θ
WT . (3.56)

By Lemma 3.2 and the assumption that WT converges to W0, it follows that
AT converges in probability to A0 = d ′

0W0. Substituting this expression into
(3.38), we conclude that

√
T (θT − θ0) converges in distribution to a normal

with mean zero and covariance matrix

�GMM
0 = (

d ′
0W0d 0

)−1d ′
0W0 0W ′

0d 0
(
d ′
0W

′
0d 0

)−1
. (3.57)

If the probability limit of the distance matrix defining the GMM criterion
function is chosen to be W0 =  −1

0 , then (3.57) simplifies to

�GMM
0 = (

d ′
0 

−1
0 d 0

)−1
. (3.58)

We show in Section 3.6 that this choice of distance matrix is the optimal
choice among GMM estimators constructed from linear combinations of
the moment equation E[h(z t , θ0)] = 0.

A consistent estimator of �GMM
0 is constructed by replacing all of the

matrices in (3.57) or (3.58) by their sample counterparts. The matrix W0
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is estimated by WT , the matrix used to construct the GMM criterion func-
tion, and d 0 is replaced by ∂HT (θT )/∂θ . The construction of a consistent
estimator of  0 depends on the degree of autocorrelation in h(z t , θ0). In
Case ACh(n − 1), with finite n, the autocovariances of h comprising  0

are replaced by their sample counterparts using fitted h(z t , θT ) in place of
h(z t , θ0):

1
T

T∑
t=j+1

h(z t , θT )h(zt−j , θT )′. (3.59)

An asymptotically equivalent estimator is obtained by subtracting the sample
mean from h(z t , θT ) before computing the sample autocovariances.

If, on the other hand, n = ∞ or n is very large relative to the sample
size T , then an alternative approach to estimating  0 is required. In Case
ACh(∞),  0 is given by (3.48). Letting �h0( j ) = E[hth ′

t−j], we proceed by
constructing an estimator T as a weighted sum of the autocovariances that
can feasibly be estimated with a finite sample of length T :

 T = T
T − K

T−1∑
j=−T+1

k
(
j

BT

)
�hT

(
j
)
, (3.60)

where the sample autocovariances are given by

�hT
(
j
) =




1
T

T∑
t=j+1

h(z t , θT )h(z t−j , θT )′ for j ≥ 0,

1
T

T∑
t=−j+1

h(z t+j , θT )h(z t , θT )′ for j < 0,

(3.61)

and BT is a “bandwidth” parameter discussed later. The scaling factor T /
(T − K ) is a small-sample adjustment for the estimation of θ .

The function k(·), called a kernel, determines the weight given to past
sample autocovariances in constructing  T . The basic idea of this estima-
tion strategy is that, for fixed j , sample size must increase to infinity for
�hT ( j) to be a consistent estimator of �h0( j). At the same time, the num-
ber of nonzero autocovariances in (3.60) must increase without bound for
 T to be a consistent estimator of  0. The potential problem is that if
terms are added proportionately as T gets large, then the number of prod-
ucts hth ′

t−j in the sample estimate of �hT ( j) stays small regardless of the
size of T . To avoid this problem, the kernel must be chosen so that the
number of autocovariances included grows, but at a slower rate than T ,
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so that the number of terms in each sample estimate �hT ( j) increases to
infinity.

Two popular kernels for estimating  0 are

Truncated k(x) =
{
1 for |x | ≤ 1,

0 otherwise,
(3.62)

Bartlett k(x) =
{
1 − |x | for |x | ≤ 1,

0 otherwise.
(3.63)

For both of these kernels, the bandwidth BT determines the number of
autocovariances included in the estimation of  T . In the case of the trun-
cated kernel, all lags out to order BT are included with equal weight. This
is the kernel studied by White (1984). In the case of the Bartlett kernel, the
autocovariances are given declining weights out to order j ≤ BT . Newey and
West (1987b) show that, by using declining weights, the Bartlett kernel guar-
antees that  T is positive-semidefinite. This need not be the case in finite
samples for the truncated kernel. The choice of the bandwidth parameter
BT is discussed in Andrews (1991).

3.5.3. Quasi-Maximum Likelihood Estimation

The QML estimator is a special case of the GMM estimator. Specifically,
continuing our discussion of the scalar process rt with conditional mean
µrt−1 and variance σ 2

rt−1 that depend on the parameter vector θ , let the j th
component of h(z t , θ) be the score associated with θj :

hj (z t , θ) ≡ − 1

2σ 2
rt−1(θ)

∂σ 2
rt−1(θ)

∂θj
+ 1

2
(rt − µrt−1(θ))

2

σ 4
rt−1(θ)

∂σ 2
rt−1(θ)

∂θj

+ (rt − µrt−1(θ))

σ 2
rt−1(θ)

∂µrt−1(θ)

∂θj
, j = 1, . . . ,K . (3.64)

The asymptotic distribution of the QML estimator is thus determined by
the properties of h(z t , θ0). From (3.64) it is seen that E[hj (z t , θ0)|It−1] = 0;
that is, {h(z t , θ0)} is an MDS. This follows from the observations that, after
taking conditional expectations, the first and second terms cancel and the
third term has a conditional mean of zero.

Therefore, the QML estimator θ QML
T falls under Case ACh(0) withM =

K (the number of moment equations equals the number of parameters)
and

√
T
(
θ
QML
T − θ0

) ⇒ N
(
0,
(
d QML
0

)−1
 0
(
d QML
0

)−1
)
, (3.65)



Page 58 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

58 3. Large-Sample Properties of Extremum Estimators

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[58], (24)

Lines: 986 to 1041

———
0.72998pt PgVar
———
Normal Page

* PgEnds: Eject

[58], (24)

where  0 = E[h(z t , θ0)h(z t , θ0)′], with h given by (3.64), and

d QML
0 = E

[
∂2 log fN
∂θ∂θ ′ (rt |It−1; θ0)

]
. (3.66)

Though these components are exactly the same as in the case of full-
informationML estimation, d QML

0 and 0 are not related by (3.52), so (3.65)
does not simplify further.

3.5.4. Linear Least-Squares Projection

The LLP estimator is the special case of the GMMestimator with z ′
t = (yt , x ′

t ),
h(z t , δ) = (yt − x ′

t δ)xt , A0 = IK . Also,

d LLP
0 = −E

[
xt x ′

t

]
(3.67)

and with ut ≡ (yt −x ′
t δ0), where δ0 is the probability limit of the least-squares

estimator δT ,

 0 =
∞∑

j=−∞
E
[
xtutut−jx ′

t−j
]
. (3.68)

It follows that

�LLP
0 = E

[
xt x ′

t

]−1
∞∑

j=−∞
E
[
xtutut−jx ′

t−j
]
E
[
xt x ′

t

]−1
. (3.69)

In order to examine several special cases of LLP for forecasting the
future, we assume that the variable being forecasted is dated t + n, n ≥ 1,
and let xt denote the vector of forecast variables observed at date t :

yt+n = x ′
t δ0 + ut+n . (3.70)

We consider several different assumptions about the projection error ut+n .
Unless otherwise noted, throughout the following discussion, the informa-
tion set It denotes the information generated by current and past xt and ut .

Consider first Case ACh(0) with n = 1 and E[ut+1|It] = 0. One circum-
stance where this case arises is when a researcher is interested in testing
whether yt+1 is unforecastable given information in It (see Chapter 1). For
instance, if we assume that xt includes the constant 1 as the first component,
and partitioning xt as x ′

t = (1, x̃ ′
t ) and δ0 conformably as δ′0 = (δc , δ

′̃
x), then

this case implies that E[yt+1|It] = δc , δx̃ = 0, and yt+1 is unforecastable given
past information about x̃t and yt . The alternative hypothesis is that
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E[yt+1|It] = δc + x ′
t δx̃ , (3.71)

with the (typical) understanding that the projection error under this alter-
native satisfies E[ut+1|It] = 0. Amore general alternative would allow δx̃ �= 0
and the projection error ut+1 to be correlated with other variables in It . We
examine this case later.

Since d 0 = −E[xt x ′
t] and this case fits into Case ACh(0),

√
T (δT − δ0) ⇒ N

(
0, �LLP

0

)
, (3.72)

where

�LLP
0 = E

[
xt x ′

t

]−1E
[
u2
t+1xt x

′
t

]
E
[
xt x ′

t

]−1
. (3.73)

Without further assumptions, �LLP
0 does not simplify. One simplifying as-

sumption that is sometimes made is that the variance of ut+1 conditioned
on It is constant:

E
[
u2
t+1

∣∣It ] = σ 2
u , a constant. (3.74)

Under this assumption,  0 in (3.73) simplifies to σ 2
u E[xt x ′

t] and

�LLP
0 = σ 2

u E
[
xt x ′

t

]−1
. (3.75)

These characterizations of�LLP
0 are not directly applicable because the

asymptotic covariance matrices are unknown (are functions of unknown
populationmoments). Therefore, we replace these unknownmoments with
their sample counterparts. Let ût+1 ≡ (yt+1 − x ′

t δT ). With the homoskedas-
ticity assumption (3.74), the distribution of δT used for inference is

δT ≈ N
(
δ0, �

LLP
T

)
, (3.76)

where

�LLP
T = σ̂ 2

u

(
T∑

t=1

xt x ′
t

)−1

, (3.77)

with σ̂ 2
u = (1/T )

∑T
t=1 û2

t . This is, of course, the usual distribution theory
used in the classical linear least-squares estimation problem. Letting σ̂δi
denote the ith diagonal element of (3.77), we can test the null hypothesis
H0 : δi0 = δi∗0 using the distribution
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δiT − δi∗0
σ̂δi

≈ N (0, 1). (3.78)

Suppose that we relax assumption (3.74) and let the conditional vari-
ance of ut+1 be time varying. Then �LLP

0 is given by (3.73) and now  0 is
estimated by

 T = 1
T

T∑
t=1

û2
t+1xt x

′
t , (3.79)

and

�LLP
T =

(
T∑

t=1

xt x ′
t

)−1

 T

(
T∑

t=1

xt x ′
t

)−1

. (3.80)

Testing proceeds as before, but with a different calculation of σ̂δi .
Next, consider Case ACh(n − 1) which has n > 1 and E[ut+n |It] = 0.

This case would arise, for example, in asking the question whether yt+n is
forecastable given information in It . For this case, d 0 is unchanged, but the
calculation of  0 is modified so that

�LLP
0 = E

[
xt x ′

t

]−1


 n−1∑
j=−n+1

E
[
ut+nut+n−jxt x ′

t−j
]E

[
xt x ′

t

]−1
. (3.81)

Analogously to the case ACh(0), this expression simplifies further if the
conditional variances and autocorrelations of ut are constants.

To estimate the asymptotic covariance matrix for this case, we replace
E[xt x ′

t] by (1/T )
∑T

t=1 xt x
′
t and  0 by

 T =
n−1∑

j=−n+1

1
T

T∑
t=1

ût+n ût+n−jxt x ′
t−j . (3.82)

Testing proceeds in exactly the same way as before.

3.6. Relative Efficiency of Estimators

The efficiency of an estimator can only be judged relative to an a priori
set of restrictions on the joint distribution of the z t that are to be used in
estimation. These restrictions enter the formulation of a GMM estimator
in two ways: through the choices of the h function and the A0. The form
of the asymptotic covariance matrix �0 in (3.38) shows the dependence of
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the limiting distribution on both of these choices. In many circumstances, a
researcher will have considerable latitude in choosing either A0 or h(z t , θ)
or both. Therefore, a natural question is: Which is themost efficient GMMes-
timator among all admissible estimators? In this section, we characterize the
optimal GMMestimator, in the sense of beingmost efficient or, equivalently,
having the smallest asymptotic covariance matrix among all estimators that
exploit the same information about the distribution of zT .

3.6.1. GMM Estimators

To highlight the dependence of the distributions of GMM estimators on
the information used in specifying the moment equations, it is instructive
to start with the conditional version of the moment equations underlying
the GMM estimation,

1
T

T∑
t=1

Ath(z t , θT ) = 0, (3.83)

where At is a (possibly random) K ×M matrix in the information set It , and
h(z t , θ) is an M × 1 vector, with K ≤ M , satisfying

E
[
h(z t ; θ0)

∣∣It ] = 0. (3.84)

In this section, we will treat z t as a generic random vector that is not pre-
sumed to be in It and, indeed, in all of the examples considered subse-
quently z t �∈ It .

Initially, we treat h(z t ; θ) as given by the asset pricing theory and, as
such, not subject to the choice of the researcher. We also let

A =
{
At ∈ It , such that E

[
At
∂h(z t ; θ0)
∂θ

]
has full rank

}
(3.85)

denote the class of admissible GMM estimators, where each estimator is
indexed by the (possibly random) weights At . The efficiency question at
hand is: In estimating θ0, what is the optimal choice of At ? (Which choice
of At gives the smallest asymptotic covariance matrix for θT among all esti-
mators based on matrices in A?) The following lemma, based on the anal-
ysis in Hansen (1985), provides a general characterization of the optimal
A∗ ∈ A.

Lemma 3.3. Suppose that the assumptions of Theorem 3.5 are satisfied and {At }
∈ A is a stationary and ergodic process ( jointly with z t ). Then the optimal choice
A∗ ∈ A satisfies
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lim
T→∞T E



(
1
T

T∑
t=1

Ath(z t , θ0)

)(
1
T

T∑
t=1

A∗
t h(z t , θ0)

)′

= E
[
At
∂h(z t ; θ0)
∂θ

]
≡ dA. (3.86)

Proof (Lemma 3.3). Using arguments analogous to those in Theorem 3.5, one can
show the asymptotic covariance matrix of any estimator A ∈ A to be

�A
0 = E

[
At
∂h(z t ; θ0)
∂θ

]−1

 A
0 E

[
∂h(z t ; θ0)′

∂θ
A′

t

]−1

, (3.87)

where

 A
0 =

∞∑
j=−∞

E
[
Ath(z t ; θ0)h(zt−j ; θ0)′A′

t−j
]
. (3.88)

Define

DA
T ≡ E

[
At
∂h(z t ; θ0)
∂θ

]−1 1√
T

∑
Ath(z t ; θ0)

− E
[
A∗

t
∂h(z t ; θ0)
∂θ

]−1 1√
T

∑
A∗

t h(z t ; θ0), (3.89)

and note that under assumption (3.86),

lim
T→∞E

[
DA

T

(
1√
T

∑
h(z t ; θ0)′A∗

t
′
)]

= 0. (3.90)

It follows immediately that

�A
0 = lim

T→∞E
[
DA

TD
A
T

′]+�A∗
0 . (3.91)

Since E
[
DA

TD
A
T

′] is positive-semidefinite for all T , the lemma follows.

In applying Lemma 3.3 to our various estimation environments, con-
sider first our basic GMM problem, where an asset pricing theory implies
that E[h(z t , θ0)] = 0. In this case, all we know about the distribution of z t
is that the unconditional mean of h is zero. Therefore, in examining the
optimality question we must restrict attention to constant At = A0, for all
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t . In other words, the optimality question in this case is simply the optimal
choice of the K ×M matrix of constants A0. Optimality condition (3.86) in
this case is

A0 0A∗
0
′ = A0d 0, (3.92)

and substitution verifies that A∗ ≡ d ′
0 

−1
0 . This is the “optimal” GMM esti-

mator proposed by Hansen (1982b), which gives the asymptotic covariance
matrix

� FGMM
0 = (

d ′
0 

−1
0 d 0

)−1
. (3.93)

The superscript FGMM indicates that this is the asymptotic covariance ma-
trix for the optimal GMM estimator based on the fixed set of moment con-
ditions E[h(z t , θ0)] = 0.

To relate this observation back to the standard GMM criterion function,
expressed as a quadratic form in HT (θ), recall that A0 = d ′

0W0, where W0 is
the distance matrix in the GMM criterion function. It follows immediately
that the optimal GMM estimator is obtained by settingW0= −1

0 . Intuitively,
since  0 is the asymptotic covariance matrix of the sample moment HT (θ0),
this choice ofW0 gives the most weight to those moment conditions that are
most precisely estimated in the sense of having a small (asymptotic) variance.

Next, suppose that the asset pricing theory under investigation provides
the stronger restriction that

E[h(z t ; θ0)|It−1] = 0, (3.94)

where It−1 includes current and past values of zt−1. Here we have changed
notation to make precise the model’s implication that z t ∈ It and, given the
conditioning in (3.94) on It−1, the admissible weight matrices At−1 must be
in It−1. Once again, we presume that the function h is fixed by the theory.
However, in contrast to the previous case, since any At−1 ∈ It−1 satisfies
E[At−1h(z t ; θ0)] = 0, we have considerable latitude in choosing {At }. At−1

can be an essentially arbitrary function of zt−1 and its history, and possibly
the history of other variables in It−1. In spite of this latitude, there is a
solution to the problem of choosing the optimal At−1. Direct substitution
into (3.86) shows that

A∗
t−1 = E

[
∂h(z t ; θ0)′

∂θ

∣∣∣∣ It−1

]
× E

[
h(z t ; θ0)h(z t ; θ0)′

∣∣It−1
]−1
. (3.95)

Substituting A∗
t−1 into (3.87), using the simplified notation ht ≡ h(z t , θ0),

gives the asymptotic covariance matrix
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�OGMM
0 = E

(
E
[
∂h ′

t

∂θ

∣∣∣∣ It−1

]
E
[
hth ′

t

∣∣It−1
]−1E

[
∂ht

∂θ

∣∣∣∣ It−1

])−1

. (3.96)

See Hansen (1985) and Hansen et al. (1988) for further discussions of this
case.

3.6.2. LLP Estimators

When we set out to estimate the coefficients of the optimal linear forecast of
yt+n based on xt , we proceeded using the sample counterpart to themoment
equation

E
[(
yt+n − x ′

t δ0
)
xt
] = 0, (3.97)

which defines the LLP. If all we know about the relation between yt+n and
xt is that (3.97) is satisfied (by construction), then essentially the only es-
timation strategy available to the econometrician is LLP and the sample
counterpart to (3.97) is solved for the least-squares estimator δT .

However linear DAPMs often imply that E[ut+n |It] = 0 and, hence,
that ut+n is orthogonal to any (measurable) function of xt and not just xt .
This leads immediately to the question of whether there is a more efficient
estimator of δ0 that exploits additional orthogonality conditions beyond
(3.97). Hansen (1985) shows that the answer to this question is yes. Using his
results and those in several subsequent papers, we examine this optimality
question for two special cases: (1) n = 1 and ut+1 is (possibly) conditionally
heteroskedastic, and (2) n>1 and ut+n is conditionally homoskedastic.

If n = 1, then we set ut+1 = h(zt+1, δ0) = (yt+1 − δ′0xt ) and construct
the optimal GMM estimator based on the moment equation E[ut+1|It] = 0.
Instead of using the orthogonality of ut+1 and xt to define the LLP estimator,
we consider the larger class of estimators based on the moment equation

1
T

T∑
t=1

Atut+1, (3.98)

where At is a K ×1 vector whose elements are in It . Least squares is the
optimal estimator of δ0 if the optimal choice of At is A∗

t =xt . From (3.95) it
is seen that the A∗

t for the conditional moment restriction E[ut+1|It]= 0 is
constructed from the two components,

E
[
∂h(zt+1, δ0)

∂δ

∣∣∣∣ It
]

= −xt , σ 2
ut ≡ E

[
u2
t+1

∣∣It ], (3.99)

which gives

A∗
t = xt/σ 2

ut . (3.100)
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Thus, instead of ordinary least squares, the optimal estimator is ob-
tained by scaling the regressors by the inverse of the conditional variance of
ut+1. To interpret this result, note that the population orthogonality condi-
tion used in estimation with A∗ can be rewritten as

E
[(

yt+1

σut
− x ′

t

σut
δ0

)
xt
σut

]
= 0. (3.101)

This is the moment equation obtained from the population least-squares
objective function for the projection equation that is scaled by 1/σut :

yt+1

σut
= x ′

t

σut
δ0 + ut+1

σut
, (3.102)

or what is commonly referred to as generalized least squares. In practice, the
optimal estimator is obtained by first scaling each observation by a consis-
tent estimator of σut , σ̂ 2

t constructed using fitted residuals, and then pro-
ceeding with a standard linear projection. The asymptotic covariancematrix
of this estimator is

�∗LLP
0 = E

[
xt x ′

t

σ 2
ut

]−1

. (3.103)

The reason for scaling becomes clear when we recognize that, if n = 1 and
σ 2
ut = σ 2

u , a constant (homoskedasticity), then least squares is the optimal
estimation strategy; A∗

t = xt . Thus, in the presence of heteroskedasticity, we
first scale the regression equation to arrive at a homoskedastic model and
then implement the optimal estimator for this case, least-squares.

From a practical point of view, implementation of the optimal GMM
estimator based on A∗

t requires an estimate of σ 2
ut (i.e., an estimate of how

σ 2
ut depends on It). Our point of departure in constructing the optimal

GMM estimator was that all we know from our DAPM is that ut+1 is mean-
independent of It . Thus this optimality result based on (3.94) alone is a
“limited-information” result in that it holds using any consistent estimator
of σ 2

ut , including a nonparametric estimator (that does not presume knowl-
edge of the functional form of σ 2

ut).
Of course, if it is known that σ 2

ut is given, say, by g (xt , γ0), then this
information can be used in constructing A∗. However, in this case, there
is the additional moment equation

E
[
u2
t+1 − g (xt , γ0)

∣∣It ] = 0, (3.104)

which can be used in estimation. Indeed, the moment equations (3.94)
and (3.104) can be combined and, using similar arguments, the associated
optimal GMM estimator can be derived. In general, this is a more efficient
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estimator than the optimal estimator based on (3.94) alone. The weights for
the optimal estimator based on both (3.94) and (3.104) involve the fourth
conditional moments of ut+1, which are also unknown (without further
assumptions). So, with knowledge of (3.104), the limited information is
pushed back to fourth moments.

These observations suggest an intermediate, suboptimal estimation
strategy that might lead to some efficiency gains over a naive GMM estima-
tor that completely ignores the nature of the A∗. For instance, if the func-
tional form of g in (3.104) is unknown, then reasonable efficiency might be
achieved by projecting u2

t+1 onto variables that are expected to influence σ 2
ut

and then scaling the model by the square root of the fitted values from this
projection. If this strategy is pursued, then the asymptotic covariancematrix
should be constructed without assuming that the conditional variance of the
scaled ut is 1, since knowledge of the correct functional form for σ 2

ut has not
been assumed.

Up to this point, we have been discussing best forecasts that are linear
with forecast errors that are mean-independent of an information set It . So
it is of interest to inquire how the preceding discussion is altered for the
case of LLP of yt onto xt ,

yt = x ′
t δ0 + ut , (3.105)

where x ′
t δ0 is the best linear, not best, predictor. Without further assump-

tions on the properties of ut , the asymptotic covariance matrix of the LLP
estimator θT is given by (3.69). Analogously to the case of heteroskedasticity,
one would expect that a more efficient estimator of δ0 than the least-squares
estimator could be obtained given some knowledge of the form of any se-
rial correlation in ut . To highlight one widely studied example of such an
efficiency gain, we will focus on an example of serial correlation with homo-
skedastic errors.

Consider the case where it is known a priori that ut follows an auto-
regressive process of order p (AR(p)):

ut = ρ1ut−1 + . . .+ ρput−p + εt (3.106)

or, equivalently, ρ(L)ut = εt , where L is the lag operator (Lsxt = xt−s), and
ρ(L) is the polynomial

ρ(L) = 1 − ρ1L − . . .− ρpLp . (3.107)

The roots of the polynomial (3.107) are assumed to lie outside the unit
circle in the complex plane. Consistent with most treatments of serial cor-
relation in the classical setting, it is assumed that
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E
[
ut
∣∣ J ] = 0, J = {xt , xt±1, xt±2, . . .}, (3.108)

and that E[εt | J ] = σ 2
ε , a constant. Finally, the assumption that ut is cor-

rectly specified as an AR(p) process is captured in the assumption that
E[εt | J ∗

t−1] = 0, where J ∗
t−1 = { J, εt−1, εt−2, . . .}.

Under these assumptions, ρ(L)ut = εt is an MDS relative to the infor-
mation set J ∗

t−1. Therefore, finding the optimal set of instruments amounts
to finding the optimal K × 1 vector at ∈ J ∗

t satisfying

E[atεt+1] = E[atρ(L)ut+1] = 0. (3.109)

If we use the same logic as before and assume homoskedasticity, the optimal
instrument vector is given by11

a∗
t = E

[
∂εt+1

∂θ

∣∣∣∣ J ∗
t

]
= −ρ(L)xt . (3.110)

An identical set of moment equations is obtained by first transforming the
linear projection equation by ρ(L),

ρ(L)yt = ρ(L)x ′
t δ0 + εt , (3.111)

and then examining the first-order conditions for least-squares estimation
of this transformed equation. Not surprisingly, the optimal GMM estimator
is the generalized least-squares estimator in the presence of autoregressive
autocorrelation.

This result can be derived directly using Lemma 3.3. According to this
lemma, the optimal weight vector A∗ for weighting ut (not εt) satisfies

E
[
Atx ′

t

] =
∞∑

j=−∞
E
[
Atutut−j

(
A∗

t−j
)′]

= E
[
ρ(L)−1Atρ(L)−1(A∗

t

)′]
= E

[
Atρ

(
L−1)−1

ρ(L)−1(A∗
t

)′]
. (3.112)

The second equality is obtained, under our assumption of homoskedasticity,
by normalizing the variance of εt to be 1 (absorbing the variance into the
definition of ρ) and using stationarity of the series. The last equality is also

11 With constant conditional variance, the scaling constant 1/σε can be ignored in com-
puting the optimal instruments.
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an implication of stationarity. It follows immediately that the optimal GMM
estimator in this case is characterized by the instrument matrix

A∗
t = ρ

(
L−1)ρ(L)xt . (3.113)

This result gives rise to exactly the same moment equation as (3.110) be-
cause

E
[
ρ
(
L−1)ρ(L)xtut

] = E
[
ρ(L)xtρ(L)ut

] = E
[
ρ(L)xtεt

]
, (3.114)

owing to the stationarity of the {xt } process.12
The weight vector A∗

t is a linear function of current, past, and future xt .
It is orthogonal to ut because ut is mean-independent of all elements of the
information set J . Clearly, in this case, it is not enough to assume that ut is
mean-independent of current or current and past xt in order for A∗ to give
a consistent estimator.

An important practical limitation of these results onmodels with serially
correlated errors is that theymaintain the “exogeneity” assumption (3.108).
A more typical situation arising in the context of asset pricing is that of Case
ACh(n − 1) where ut+n is mean-dependent of an information set It that
does not include future values of variables. Moreover, the implied autocor-
relation structure of u is that of an MA(n − 1) and not the autoregressive
structure (3.106).

Hayashi and Sims (1983) and Hansen and Singleton (1990, 1996) pro-
vide an analogous optimality result that applies to this more relevant sit-
uation. To illustrate their results, we focus on the case of a scalar ut [see
Hansen and Singleton (1996) for a treatment of the vector case] and let

ut = α(L)εt , α(L) = 1 + α1L + . . .+ αn−1Ln−1, (3.115)

and proceed assuming the DAPM implies that E[ut+n |It] = 0 and that
E[ε2t+1|It] = σ 2

ε , a constant (conditional homoskedasticity). The reason
that the A∗ given by (3.113) is not optimal for this setting is that ut+n is
orthogonal to xs for s ≤ t , but not for s > t . Therefore, using A∗ in (3.113)
would lead to an inconsistent estimator.

Analogously to the classical treatment of serial correlation in GLS es-
timation, we would like to “filter” the error ut+n to remove its autocorre-
lation, and then apply the known optimal A∗ for this filtered model. The

12 Suppose, e.g., that ρ(L) = 1 + ρ1L and define yt ≡ ρ(L)xt . Then (3.114) states that
E[(yt +ρ1yt+1)ut ] = E[yt (ut +ρ1ut−1)]. This is an immediate implication of the joint stationarity
of yt and ut . A very similar equality plays a central role in generating simplified moment
equations and inference in Chapter 9.
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added complication in this setting is that the filtering must be done in a
manner that preserves the mean-independence of the filtered error from
It . We accomplish this using the “forward filter” λ(L−1) ≡ α(L−1)−1, since
λ(L−1)ut+n is serially uncorrelated and

E
[
λ
(
L−1)ut+n

∣∣It ] = 0. (3.116)

Pursuing the example of linear projection of yt+n onto xt , under homoske-
dasticity, the optimal instruments for estimation based on the conditional
moment restriction (3.116) are given by E[λ(L−1)xt]. As shown in Hansen
and Singleton (1990), this is equivalent to using the instruments

A∗
t = λ(L)E

[
λ
(
L−1)xt ∣∣It ] (3.117)

for the original projection error ut+n .

3.6.3. ML Estimators

Maximum likelihood estimation does not, in general, fit into any of the
optimality results obtained so far because we have taken h to be a given
M × 1 vector. ML estimation can be viewed as the solution to the problem
of finding the optimal h function to use in estimation. To see this, we start
by observing that if we are free to choose the function h, then we might
as well set M = K as this is the number of moment equations needed
in estimation. Second, since the moment restriction E[h(z t , θ0)|It−1] = 0
implies the moment restriction E[h(zt+n, θ0)|It−1]=0, we presume that our
asset pricing theory implies the stronger condition E[h(z t , θ0)|It−1] = 0.
That is, if we are free to choose an h(zt+n; θ0) that is mean-independent
of It−1, for any n ≥ 0, then our search can be restricted to the case of n = 1.
As we proved in Section 3.5.1, one candidate h satisfying this conditional
moment restriction is h∗(z t ;β0) ≡ ∂ log f (yt |y J1t−1;β0)/∂β. This choice is
indeed optimal, as the following argument shows.

Since we have K equations in the K unknowns θ(= β) and our focus is
on the selection of h, we set At = IK , for all t . Given an arbitrary h satisfying
(3.94), the GMM estimator based on the fact that the unconditional mean
of h is zero satisfies

1
T

T∑
t=1

h(z t ; θT ) = 0. (3.118)

Applying Theorem 3.5 and Theorem 3.4 [to establish Condition (v)], we get

√
T (θT − θ0) ⇒ N

(
0, d−1

0  0
(
d ′
0

)−1)
, (3.119)
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where  0 = E[h(z t ; θ0)h(z t ; θ0)′]. Next, define D ≡ d−1
0 h − d∗−1

0 h∗, where
we have suppressed the arguments to conserve on notation and used “∗” to
indicate the terms associated with ML estimation. Consider the expectation

E
[
Dh∗′] = d −1

0 E
[
hh∗′]+ d ∗−1

0 d ∗
0 . (3.120)

The counterpart for h to the optimality condition (3.86) is E[hh∗′] = −d 0,
which can be verified by direct calculation.13 Thus, D is orthogonal to h∗′. It
follows that, taking the expected value of D + d ∗−1

0 h∗ times its transpose,

d −1
0  0d −1

0 = E
[
D(z t )D(z t )′

]− d ∗−1
0 , (3.121)

where the last matrix is the Cramer-Rao lower bound achieved by theML es-
timator. Since E[DD ′] is positive-semidefinite, we conclude that the optimal
choice of h is the score of the log-likelihood, h∗.

13 Using the fact that the mean of h(z t , θ0) is zero, we have

0 =
∫
∂h
∂θ

f dy +
∫

h
∂f
∂θ

dy,

which implies that −d 0 = E[hh∗′].
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4
Goodness-of-Fit and Hypothesis Testing

In this chapter we explore in more depth the testing of hypotheses im-
plied by a DAPM. The types of hypotheses considered are separated into two
categories: (1) overall goodness-of-fit tests of whether a model is consistent
with the data, in a sense that we make precise, and (2) tests of constraints
on the parameters in a DAPM. For the purposes of this chapter we focus on
classical testing in a stationary and ergodic statistical environment. The new
problems induced by time trends and applications of Bayesian methods are
discussed in the context of specific empirical issues.

4.1. GMM Tests of Goodness-of-Fit

In the context of GMM estimation, the sample criterion function is con-
structed from sample counterparts to theM moment conditions E[h(zt , θ0)]
= 0, namely HT (θT ) = (1/T )

∑
t h(zt , θT ) = 0. When M > K , there are

more moment conditions than unknown parameters and, consequently,
estimation proceeds by minimizing the GMM criterion function QT (θ) =
HT (θ)

′�−1
T HT (θ), where the distance matrix has been chosen optimally as

discussed in Chapter 3. In minimizing QT (θ) over the choice of θ ∈�, the
GMM estimator is chosen to set K linear combinations of the M sample
moment conditions HT to zero (the K first-order conditions):

∂HT (θT )
′

∂θ
�−1
T HT (θT ) = 0. (4.1)

Yet, if the model is correctly specified, all M sample moment equations
HT (θT ) should be close to zero. This observation suggests that we can con-
struct a goodness-of-fit test of the model by examining whether linear com-
binations of HT (θT ) that are not set to zero in estimation are in fact close
to zero.

Conveniently, it turns out that the minimized value of the GMM crite-
rion function, scaled by sample size, TQT (θT ) is a goodness-of-fit test based

71
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on this observation. Under the null hypothesis that the model is correctly
specified, TQT (θT ) is asymptotically distributed as a chi-square distribution
with M − K degrees of freedom (Hansen, 1982b). To show this, we let dT
denote the partial derivative of HT (θT ) appearing in (4.1) and a= denote
asymptotic equivalence, and note that, by a standardmean-value expansion,

√
THT (θT )

a= √
THT (θ0)+ dT

√
T (θT − θ0). (4.2)

Furthermore, from the proof of Theorem 3.5, it follows that

√
T (θT − θ0) a= −(

d ′
T�

−1
T dT

)−1d ′
T�

−1
T

√
THT (θ0). (4.3)

Substituting (4.3) into (4.2) gives

√
THT (θT )

a=
(
I − d 0

(
d ′
0�

−1
0 d 0

)−1
d ′
0�

−1
0

)√
THT (θ0), (4.4)

where d 0 is the probability limit of dT .
Next, since �0 is positive-definite, it can be factored as C 0C ′

0, with C 0

satisfying C−1
0 �0C−1′

0 = I . Letting CTC ′
T denote the corresponding factor-

ization of �T , it follows from (4.4) that

√
TC−1

T HT (θT )
a=
(
I − C−1

0 d 0
(
d ′
0�

−1
0 d 0

)−1
d ′
0C

−1′
0

)√
TC−1

0 HT (θ0). (4.5)

By construction, the last term in (4.5),
√
TC−1

0 HT (θ0), converges in dis-
tribution to a N (0, I ). Furthermore, the matrix premultiplying this term,
[I−C−1

0 d 0(d ′
0�

−1
0 d 0)

−1d ′
0C

−1′
0 ], is idempotent with rankM−K .1 Therefore,2

THT (θT )
′�−1

T HT (θT )⇒ χ2
M−K , (4.6)

where χ2
M−K denotes the chi-square distribution with M − K degrees of

freedom.
Thematrix [I−C−1

0 d 0(d ′
0�

−1
0 d 0)

−1d ′
0C

−1′
0 ] premultiplying

√
TC−1

0 HT (θ0)

in (4.5) determines the linear combination of C−1
0 HT (θ0) that is being

1 A matrix A is idempotent if A2 = A. The rank of an idempotent matrix is equal to its
trace. In this case,

Tr
(
IM − C−1

0 d 0
(
d ′
0�

−1
0 d 0

)−1
d ′
0C

−1′
0

)
= M − Tr

[(
d ′
0�

−1
0 d 0

)−1
(
d ′
0C

−1′
0 C−1

0 d 0

)]
= M − K .

2 If the M -dimensional vector x ∼ N (0, I ) and A is an idempotent matrix with rank K ,
then x ′Ax ∼ χ2

K .
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tested. Premultiplying the left-hand side of (4.5) by d ′
TC

′−1
T gives the first-

order conditions for the GMM estimator, while premultiplying the right-
hand side of this expression by plim(d ′

T C
′−1
T ) = d ′

0C
′−1
0 gives zero. Thus,

the matrix determining the linear combination of the moment conditions
being tested is singular with rank equal to (at most)M−K . This is because
K linear combinations of HT (θT ) are set to zero in estimation.

In assessing goodness-of-fit, there is typically no presumption that the
most likely departures from the null hypothesis that the model is true are
in the “direction” captured by the linear combination in (4.5). In partic-
ular, this statistic is not the most natural choice when one believes that a
particular subset of the original M moment equations defined by h(zt , θ)
(or a specific linear combination of these moment equations) is the likely
source of any model misspecification. In such circumstances, a direct test of
thesemoment equations is of interest. There are several convenient test pro-
cedures for hypotheses about specific moment conditions, and the choice
of which to implement often depends on whether the model is estimated
under the null hypothesis, the alternative hypothesis, or both. We discuss
each of these cases in turn.

Suppose we are interested in testing H0 : E[h 2(zt , θ0)] = 0,3 where
h(zt , θ0) factors as

h(zt , θ0) =
[
h 1(zt , θ10)

h 2(zt , θ0)

]
, (4.7)

the subvectors h1 and h 2 of h have dimensionsM1 andM2, and θ ′
0 = (θ ′

10, θ
′
20)

with θ10 and θ20 having dimensions K1 and K2, respectively. We proceed
viewing the null hypothesis as H0 : E[h(zt , θ0)] = 0, and the alternative as
H1 : E[h1(zt , θ10)] = 0; that is, in testing H0, we maintain the assumption
that h1 has mean zero under both the null and alternative hypotheses.

For it to be feasible to estimate the parameters of the model under the
alternative, it must be the case that M1 ≥ K1. We let θ1T denote the GMM
estimator of θ10 based on the minimization of H1T (θ1)

′(�11,T )
−1H1T (θ1),

where H1T (θ1) = (1/T )
∑

t h1(zt , θ1) and �11,T is a consistent estimator of
the asymptotic covariance matrix of

√
TH1T (θ10). Similarly, for the null hy-

pothesis about h 2 to be interesting, it must be the case that M2 > K2. Were
this not true, we would have a situation where the M2 moment equations
represented by h 2 were just sufficient or insufficient to estimate the K2 pa-
rameters that appear in θ0 but are distinct from θ10. In this case, the knowl-
edge that the mean of h 2 is zero does not lead to testable restrictions on

3 This discussion of testing subsets of moment equations is based on Appendix C of
Eichenbaum et al. (1988).
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the data. Finally, we let θT denote the usual GMM estimator that minimizes
HT (θ)

′�−1
T HT (θ).

4.1.1. GMM Tests with Estimates under H0 and H1

A statistic for testing H0, proposed by Eichenbaum et al. (1988), is4

THT (θT )
′�−1

T HT (θT )− TH1T (θ1T )
′�−1

11,TH1T (θ1T ), (4.8)

where

�0 =
[
�11,0 �12,0

�21,0 �22,0

]
(4.9)

is a partition of �0 conformable with the partition of h. The motivation for
this statistic is that it is a measure of how much the GMM criterion function
increases owing to imposition of H0 over and above the assumption that
E[h1(zt , θ10)] = 0. In other words, maintaining the auxiliary assumption
that h1 has mean zero, one estimates the parameters with and without the
moment conditions under H0 imposed, and uses (4.8) as a measure of the
degree to which imposingH0 makes it difficult to get the criterion function
close to zero.

UnderH0 the test statistic (4.8) is asymptotically distributed as χ2
(M2−K2)

.
To see this, factor�−1

0 as C ′
0C 0 and�−1

11,0 as C
′
1C1. Then, using the same logic

as before,

√
TC 0HT (θ0)⇒ N (0, IM );

√
TC1H1T (θ10)⇒ N (0, IM1). (4.10)

Define

√
T

(
IM − C 0 d 0(d ′

0�
−1
0 d 0)

−1d ′
0C

′
0

)
C 0HT (θ0) ≡ √

TS 0C 0HT (θ0), (4.11)

d 0 = E
[
∂h(zt , θ0)
∂θ

]
, (4.12)

√
T
(
IM1 −C1d10

(
d ′
10�

−1
11,0d10

)−1
d ′
10C

′
1

)
C1H1T (θ10) ≡ √

TS1C1H1T (θ10), (4.13)

d10 = E
[
∂h1(zt , θ10)

∂θ1

]
, (4.14)

4 This is a GMM counterpart to a similar test of nonlinear restrictions on parameters
proposed by Gallant and Jorgenson (1979) for instrumental variables estimators.
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and note that the matrices S 0 and S1 are idempotent with ranksM −K and
M1−K1, respectively. When we use these intermediate results, it follows that
(4.8) has the same limiting distribution as

THT (θ0)
′C ′

0

(
S 0 − (C ′

0)
−1

[
IM1

0

]
C ′
1S11,0C1[IM10]C

−1
0

)
C 0HT (θ0), (4.15)

where the center matrix in parentheses is idempotent with rankM2 −K2 =
(M − K ) − (M1 − K1).5 Thus, the proposed test statistic is asymptotically
distributed as a χ2

M2−K2
.

At a practical level, it is important to choose the estimators of the two
distance matrices in (4.8) so that this statistic is guaranteed to be nonneg-
ative. This need not be the case if one proceeds with a standard two-step
GMM procedure of computing consistent estimators of the parameters with
a suboptimal distance matrix in the first step and then reoptimizing with
an estimator of the optimal distance matrix. In this case, the matrices �11,T

and�T are evaluated at different values of θT , and (4.8)may be negative. To
avoid this possibility, one can select �11,T to be the upper-left block of �T .
That is, the estimated distance matrix under the null is used in estimating
the distance matrix under the alternative.

4.1.2. GMM Tests with Estimates under H1

An alternative approach to testing a subset ofmoment restrictions is to intro-
duce a set of auxiliary parameters that define the alternative of nonzeromo-
ments and test whether the values of these parameters are zeros. To illustrate
this approach, suppose that the null hypothesis is that E[h(zt , θ10)] = 0,
where now the entire vector h is assumed to be determined by the parame-
ter vector θ10. Under the alternative hypothesis, the augmented parameter
vector is θ ′

0 = (θ ′
10, λ

′
0), where dim(λ0) = dim(h 2) = M2, and

h(zt , θ0) =
[

h1(zt , θ10)

h 2(zt , θ10)− λ0
]

(4.16)

is assumed to satisfy E[h(zt , θ0)] = 0. With the alternative specified in
terms of (4.16), the null hypothesis can be expressed as H0 : λ0 = 0. In

5 That the rank is M2 − K2 is verified as follows:

Tr(S 0) = M − K ;

Tr

[(
C ′
0

)−1

[
IM1

0

]
C ′
1S1C1[IM1 0]C

−1
0

]
= Tr

[
C ′
1S1C1�11,0

]
= Tr[S1] = M1 −K1
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constructing this test, the moment conditions are ordered in h so that the
last M2 moments comprising h 2 are those whose validity are in doubt.

A test of H0 can be implemented by first computing GMM estimates of
θ0, θT , and then testing whether the subvector λ0 is zero. Using the fact
that

√
T (θT − θ0) ⇒ N (0, �0), we find that the limiting distribution of

λT = [0M2×K IM2]θT is

√
T (λT − λ0)⇒ N

(
0,

[
0 IM2

]
�0

[
0 IM2

]′) ≡ N (0, �λ0). (4.17)

It follows that, under H0,6

T λ′
T�

−1
λTλT ⇒ χ2

M2
. (4.18)

The degrees of freedom in (4.15) and (4.18), M2 − K2 versus M2, are
different because of the way the alternatives have been formulated for these
two testing problems. In the first case, we are testing whether the secondM2

moment equations are satisfied, but we lose K2 degrees of freedom owing
to the need to estimate the K2 parameters θ20. In the second approach, we
presume that all K1 model parameters in θ10 are estimable using the mo-
ment equations defined by h1. This renders the entire set of M2 moment
constraints defined by h 2 testable. In the case of (4.15), if K2 = 0 (equiva-
lently, there are no parameters determining h 2 that do not determine h1),
then the degrees of freedom of these two tests are identical.

4.1.3. GMM Tests with Estimates under H0

Pursuing the testing problem in the preceding subsection, we can also con-
duct a test based on estimates obtained under the null hypothesis. Specifi-
cally, let θT denote the GMM estimator of the K -dimensional vector θ0 ob-
tained based on minimization of the criterion function H1T (θ)

′(�11,T )
−1

H1T (θ), where dim h1(zt , θ)=M1. Suppose we are interested in testing the
null hypothesis H0 : E[h 2(zt , θ0)] = 0, where dim h 2(zt , θ) = M2; that is,
we wish to test whether the M2 moment equations associated with h 2 are
satisfied.

We can construct a test of H0 by examining the distribution of H2T (θT )

= (1/T )∑t h 2(zt , θT ). If we define

d20 = E
[
∂h 2(zt , θ0)

∂θ

]
, (4.19)

6 Here we use the result that, if the �-dimensional vector X ∼ N (0, �), and � is non-
singular, then X ′�−1X ∼ χ2

� .
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a standard mean-value expansion of H2T gives

1√
T

T∑
t=1

h 2(zt , θT )
a= 1√

T

T∑
t=1

h 2(zt , θ0)+ d20
√
T (θT − θ0) (4.20)

a= (
C1, IM2

) 1√
T

T∑
t=1

h(zt , θ0) ≡ A 1√
T

T∑
t=1

h(zt , θ0), (4.21)

where C1 ≡ d20(d ′
10�

−1
11,0d10)

−1d ′
10�

−1
11,0 and h ′ = (h ′

1, h
′
2). It follows that

1√
T

T∑
t=1

h 2(zt , θT )⇒ N (0,A�0A′) (4.22)

under the null hypothesis. This result can be used to construct a chi-square
test of the M2 moment equations defined by h 2 or of any subset of these
moment restrictions.

A related circumstance where this testing problem arises is when a re-
searcher has estimated the K parameters θ0 using M moment equations
defined by a function h and they wish to test, say, whether the mean of the
ith component of h is zero: H0 :E[hi(zt , θ0)]= 0. In general, the first-order
conditions (4.1) to the GMM estimation problem do not set any of the in-
dividual sample moments (1/T )

∑
t hi(zt , θT ) to zero. So a test based on this

sample moment is in fact meaningful. Letting ιi denote the selection vector
with unity in the ith position and zeros elsewhere, we obtain the asymptotic
distribution of this moment equation by premultiplying (4.4) by ι′i and using
the fact that the asymptotic distribution of

√
THT (θ0) is N (0, �0).

4.2. Testing Restrictions on θ0

Having settled on a model, researchers are often interested in testing hy-
potheses about the values of specific parameters. Depending on the criterion
function used in estimation, a variety of procedures for testing hypotheses
about θ0 are available. In discussing these tests, it is again useful to classify
tests according to whether they involve estimation of θ0 under the null, the
alternative, or both. Additional discussion of tests of parameter restrictions
in a GMM setting can be found in Newey andWest (1987a) and Eichenbaum
et al. (1988).

4.2.1. Estimation under H0 and H1: LR-Style Tests

Suppose that the model provides a full characterization of the conditional
density function f (yt |�y Jt−1;β0). Also, let bT and b̃T denote the ML estimates
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of β0 under the alternative and null hypotheses (the unconstrained and
constrained estimates), respectively. Then a convenient statistic for testing
constraints on a model’s parameters is the likelihood ratio or LR statistic

LRT = −2 log

(
L(b̃T )
L(bT )

)
. (4.23)

The motivation for this measure of the fit of the constraints is that if the
constraints are valid, then L(b̃T ) and L(bT ) should be approximately equal,
whereas if the constraints are not valid then L(b̃T ) is significantly smaller
than L(bT ).

For the case of LR tests, we suppose that the constraints can be written
as β0 = R(α0), where R : RK−r → RK and dimα0 = K − r . In other words,
the unconstrained K -vector β0 can be expressed as a function of K − r
parameters α0. The number of constraints is then r .

From the mean-value expansion of the log-likelihood function,

lT (bT ) = lT (β0)+ ∂ lT
∂β
(b0)(bT − β0) (4.24)

+ 1
2
(bT − β0)′ ∂

2lT
∂β∂β ′

(
b#T

)
(bT − β0),

for some intermediate value b#T , it follows that

lT (bT )− lT (β0)
a≈ 1
2
(bT − β0)′�β0 (bT − β0), (4.25)

where

�
β

0 = plimT→∞
∂2lT
∂β∂β ′ (β0).

Similarly, expanding under the constraints gives

lT (αT )− lT (α0)
a≈ 1
2
(αT − α0)′�α0 (αT − α0). (4.26)

The asymptotic distributions of bT − β0 and αT − α0 are derived from the
mean-value expansions of the first-order conditions from maximizing the
associated lT ,

√
T (bT − β0) a≈ (

�
β

0

)−1 1√
T

∑
t

∂ log f
∂β

(
yt
∣∣�y Jt−1, β0

)
, (4.27)

√
T (αT − α0) a≈ (

�α0
)−1 ∂R(α0)′

∂α

1√
T

∑
t

∂ log f
∂θ

(
yt
∣∣�y Jt−1, α0

)
.
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The term ∂R(α0)/∂α comes from substituting R(α) for β and thenmaximiz-
ing lT (R(α)) by choice of α.

Combining these various expansions, and letting� = �1/2�1/2′ denote
the usual factorization of a positive-definite matrix, we can express LRT =
2T [lT (bT )− lT (αT )] as

LRT
a≈ T

∂ lT
∂β
(β0)

′
[(
�
β

0

)−1 − ∂R(α0)′

∂α

(
�α0

)−1 ∂R(α0)′

∂α

]
∂ lT
∂β
(β0) (4.28)

= T
∂ lT
∂β
(β0)

′(�β0 )−1/2S
(
�
β ′
0

)−1/2 ∂ lT
∂β
(β0), (4.29)

where the matrix

S ≡
[
I − (

�
β

0

)1/2 ∂R(α0)
∂α

(
�α0

)−1 ∂R(α0)′

∂α

(
�β

′)1/2] (4.30)

is idempotent with rank r .7 Since
√
T ∂ lT (β0)/∂β ⇒ N (0, �β0 ), it follows that

LRT ⇒ χ2
r .

When the conditional distribution of the variables in the model is not
known, there is an analogous test based on the GMM criterion function
(Eichenbaum et al., 1988). Suppose that the null and alternative hypotheses
are8

H0 : R(θ0) = 0, H1 : R(θ0) �= 0, (4.31)

where R : RK → Rr , r < K . Let θT denote the usual, unconstrained GMM
estimator of θ0 and let θ̃T be the minimizer of

HT (θ)
′�−1

T HT (θ) such that R(θT ) = 0. (4.32)

Then an immediate implication of our discussion of LR-style tests in a GMM
setting is that

T
[
HT (θ̃T )

′�−1
T HT (θ̃T )− HT (θT )

′�−1
T HT (θT )

] ⇒ χ2
r , (4.33)

where r = M − (K − r )− (M − K ).
That this test procedure is a special case of the procedure for testing

the validity of orthogonality conditions follows from the observation that
the orthogonality conditions associated with the constraint R(θ0) = 0 are

7 The rank of
(
(�θ0)

1/2′
S (�α0 )

−1S ′(�θ0)
1/2

)
is K − r .

8 This is a slightly more general formulation of the testing problem than what we consid-
ered in discussing the LR statistic.



Page 80 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

80 4. Goodness-of-Fit and Hypothesis Testing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[80], (10)

Lines: 416 to 475

———
2.21454pt PgVar
———
Long Page
PgEnds: TEX

[80], (10)

not random. Thus, in the notation of (4.9), we can partition a consistent
estimator of the asymptotic covariance matrix of the moment equations as[

�T 0
0 0

]
, (4.34)

where�T is an estimator of the asymptotic covariance matrix of
√
THT (θ0).

Substitution of (4.34) into (4.8) leads to the statistic (4.33). The same prac-
tical considerations with regard to the estimation of the distance matrices
in (4.33) apply as well.

Specializing to the classical linear regression model, yt = x ′
t δ0 + ut , if

ut ∼N (0, σ 2
u ), then the likelihood function to be maximized is

L
(�yT ∣∣�xT ) =

(
1

2πσ 2
u

)T /2

exp

{
− 1
2σ 2

u

∑
t

(
yt − x ′

t δ
)2}
. (4.35)

The first-order condition for σ 2
u is

σ 2
uT = 1

T

∑
t

(
yt − x ′

t δT
)2
. (4.36)

Substituting this expression back into L gives the “concentrated” likelihood
function

L
(�yT ∣∣�xT ) = (

2πσ 2
uT

)−T /2
exp{−T /2}, (4.37)

where σ 2
uT is viewed as a function of δ. Therefore, the ratio of the constrained

and unconstrained maximized likelihood functions is

(
2πσ̃ 2

uT

)−T /2e−T /2(
2πσ 2

uT

)−T /2e−T /2
(4.38)

and the LR statistic is

LRT = T log
(
σ̃ 2
uT /σ

2
uT

)
. (4.39)

4.2.2. Estimation Only under H1: Wald Tests

Suppose a GMM estimator of θ0, say θT , has been computed under the al-
ternative, the unconstrained model, and one is interested in testing the
null hypothesis H0 : R(θ0) = 0, where R : RK → Rr . This can be accom-
plished by deriving the asymptotic distribution of R(θT ) and checking to see
whether R(θT ) is close to zero. This test procedure is called aWald test. As it



Page 81 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

4.2. Testing Restrictions on θ0 81

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[81], (11)

Lines: 475 to 537

———
4.36577pt PgVar
———
Long Page
PgEnds: TEX

[81], (11)

is based on estimates obtained only under the alternative, it is a particularly
convenient test statistic to use in circumstances where estimation under the
null hypothesis is computationally demanding.

More precisely, a mean-value expansion gives

R(θT ) = R(θ0)+ ∂R
∂θ

(
θ#T

)
(θT − θ0) (4.40)

for some intermediate value θ#T . If we assume that
√
T (θT −θ0)⇒ N (0, �0),

it follows that

√
T
[
R(θT )− R(θ0)

] ⇒ N
(
0,
∂R
∂θ
(θ0)�0

∂R
∂θ
(θ0)

′
)

(4.41)

and, hence, that

TR(θT )′
(
∂R
∂θ
(θT )�T

∂R
∂θ
(θT )

′
)−1

R(θT )⇒ χ2
r . (4.42)

An important special case is when the null hypothesis involves linear
constraints on θ0 for r × k matrix C and r × 1 vector c,

R(θ0) = Cθ0 − c . (4.43)

The derivative of R with respect to θ is simply C , and (4.42) specializes to

T (CθT − c)′
[
C�TC ′]−1

(CθT − c)⇒ χ2
r . (4.44)

Specializing further to the classical linear model, the Wald statistic becomes

[
CδT − c

]′ (
σ 2
uTC

[
�xt x ′

t

]−1C ′
)−1 [

CδT − c
] ⇒ χ2

r . (4.45)

If ut ∼ N (0, σ 2
u ), then (4.45) is distributed as an F distribution with

degrees of freedom r and T −K , F (r ,T −K ). As T gets large, this F statistic
converges to a random variable distributed as χ2

r . Our large-sample analysis
provides a justification for using (4.45) even though ut is not normally
distributed. Furthermore, if r = 1, then the Wald statistic becomes

(CδT − c)2

σ 2
uTC

(
�xt x ′

t
)−1 C ′

, (4.46)

which is the squared value of the usual t -statistic, (CδT −c)/
√
σ 2
uTC (�xt x ′

t )
−1C ′.

For large T , a tT−K approaches the standard normal distribution.
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4.2.3. Estimation Only under H0: LM Tests

There are circumstances where it is most convenient to estimate under the
null hypothesis and where one wants to test the null model against an alter-
native model that does not impose the constraints R(θ0) = 0. To derive a
test statistic for this situation, we begin by studying the properties of the sam-
ple Lagrange multiplier associated with minimization of the GMM objective
function under the constraint. The underlying principle of the Lagrange
multiplier (LM) test is that the multiplier should be small if the constraints
are not binding in the sample, and large if they are. Thus, the finding
that the sample multiplier is statistically larger than zero would be evidence
against the null hypothesis that the constraints hold.

Let λ denote the vector of Lagrange multipliers associated with the r
constraints under H0 and consider the GMM criterion function

min
θ,λ

[
HT (θ)

′�−1
T HT (θ)+ λ′R(θ)

]
. (4.47)

If we treat λ as part of the parameter vector to be estimated, the first-order
conditions to (4.47) are

∂HT

∂θ
(θ̃T )

′�−1
T HT (θ̃T )+ ∂R

∂θ
(θ̃T )

′λT = 0, (4.48)

R(θ̃T ) = 0,

where θ̃T denotes the estimator of θ0 under the constraints. In order to solve
this system of equations for λT it suffices, from the perspective of asymptotic
analysis, to work with mean-value expansions of these nonlinear functions.
Specifically, letting θ̃0 = plim θ̃T , we have

HT (θ̃T ) = HT (θ̃0)+ ∂HT

∂θ

(
θ#T

)
(θ̃T − θ̃0), (4.49)

0 = R(θ̃T ) = R(θ̃0)+ ∂R
∂θ

(
θ#T

)
(θ̃T − θ̃0).

This leads to the following, asymptotically equivalent, system of equations:

(
d̃ ′
0�

−1
0 d̃ 0

) ∂R ′

∂θ
(θ̃0)

∂R
∂θ
(θ̃0) 0




[
(θ̃T − θ̃0)
λT

]
=

[
d̃ ′
0�

−1
0 HT (θ̃0)

0

]
, (4.50)

where d̃ 0 = plim ∂HT (θ̃T )/∂θ . If we let D̃R ≡ ∂R(θ̃0)/∂θ , it follows that
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λT
a= −

[
D̃R

(
d̃ ′
0�

−1
0 d̃ 0

)−1
D̃ ′
R

]−1
D̃R

(
d̃ ′
0�

−1
0 d̃ 0

)−1d̃ ′
0�

−1
0 HT (θ̃0). (4.51)

Since, under the null hypothesis, the asymptotic distribution of
√
THT (θ̃0)

is N (0, �0), the limiting distribution of
√
TλT is N (0, [D̃R (d̃ ′

0�
−1
0 d̃ 0)

−1

D̃′
R]

−1). Therefore,

LMT = Tλ′
T D̃R (d̃ ′

0�
−1
0 d̃ 0)

−1D̃ ′
RλT ⇒ χ2

r . (4.52)

To express this statistic in terms of the sample moment conditions, evalu-
ated at θ̃T , we substitute (4.48) into (4.52) to obtain

LMT = THT (θ̃T )
′�−1

T d̃T
[
d̃ ′
T�

−1
T d̃T

]−1
d̃ ′
T�

−1
T HT (θ̃T )⇒ χ2

r . (4.53)

Note that all of the components of this test statistic, including �0, are esti-
mated under H0.

For the case of the classical linear regression model (possibly with non-
normal disturbances)

HT (δ) = 1
T

∑
t

xtut (δ); �T = σ 2
uT

(
1
T

∑
xt x ′

t

)−1

; dT = 1
T

∑
xt x ′

t . (4.54)

Therefore, for the constraint R(δ0) = 0, the LM statistic (4.53) simplifies to
HT (θ̃T )

′�−1
T H (θ̃T ) or, equivalently, to

LMT = T
(
1
T

∑
xtut (δ̃T )

)′ 1

σ̃ 2
uT

[(
1
T

∑
xt x ′

t

)−1
](

1
T

∑
xtut (δ̃T )

)
.(4.55)

An interesting and informative interpretation of this statistic comes
from further inspection of its components. Let ẽt ≡ut (δ̃T ) (the fitted resid-
ual under the constraint), and consider

(
1
T

∑
t

xt ẽt

)′ (
1
T

∑
t

xt x ′
t

)−1 (
1
T

∑
t

xt ẽt

)
. (4.56)

A regression of ẽt on xt gives the fitted values

x ′
t

(
1
T

∑
t

xt x ′
t

)−1
1
T

∑
t

xt ẽt . (4.57)

It follows that the numerator of LMT is the sum of squared fitted values
from this regression,
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(
1
T

∑
t

xt ẽt

)′ (
1
T

∑
t

xt x ′
t

)−1 (
1
T

∑
t

xt ẽt

)
. (4.58)

The denominator, σ̃ 2
uT , of LMT is the sample variance of ẽt . Combining these

observations, we see that LMT is T times the R 2 from regression of ẽt on xt .9

4.3. Comparing LR, Wald, and LM Tests

Consider the linear regression model with the linear constraints R(δ) =
Cθ − c , H0 : Cδ0 = c . In this section we compare the LR, LM, and
Wald statistics given by (4.39), (4.55), and (4.45), respectively, for this null
hypothesis.

The LM statistic is

LMT = T

(
1
T

∑
t

xt ẽt

)′ (
1
T

∑
t

xt x ′
t

)−1 (
1
T

∑
t

xt ẽt

)/
σ̃ 2
uT . (4.59)

Using the definition of ẽt , we set

1
T

∑
t

xt ẽt = −
(
1
T

∑
t

xt x ′
t

) (
δ̃T − δT

)
, (4.60)

and, therefore,

LMT = T
(
δ̃T − δT

)′ ( 1
T

∑
t

xt x ′
t

) (
δ̃T − δT

)/
σ̃ 2
uT . (4.61)

If we use the fact that

ẽt = yt − x ′
t δ̃T = et − x ′

t

(
δ̃T − δT

)
, (4.62)

it follows that

∑
t

ẽ 2t −
∑
t

e 2t = (
δ̃T − δT

)′ (∑
t

xt x ′
t

) (
δ̃T − δT

)
. (4.63)

Substituting (4.63) into (4.61) gives

LMT = T
(
σ̃ 2
uT − σ 2

uT

)/
σ̃ 2
uT . (4.64)

9 These observations about the classical linear model, as well as those in the next section,
date back to Savin (1976), Berndt and Savin (1977), and Breusch and Pagan (1980). A useful
review is presented in Engle (1984).
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Thus, the LM statistic measures the increase in the sum of squared residuals
that arises from imposing the constraints, expressed as a percentage of the
constrained sum of squared residuals. (Of course, this statistic still has an
interpretation as an R 2 as well.)

Turning to the Wald test, note that (d̃ ′
T�T d̃T ) in (4.50) simplifies to

σ 2
uTT

−1 ∑
t xt x

′
t and d̃ ′

T�
−1
T HT (δ̃T ) simplifies to σ 2

uTT
−1 ∑

t xt ẽt . Therefore,
10

δ̃T = δT −
(
1
T

∑
t

xt x ′
t

)−1

C ′

C

(
1
T

∑
t

xt x ′
t

)−1

C ′



−1 [
CδT − c

]
. (4.65)

The numerator of the Wald statistic can thus be rewritten as

(
δ̃T − δT

)′(∑
t

xt x ′
t

)(
δ̃T − δT

)=(
CδT − c

)′[C (∑
t

xt x ′
t

)−1C ′
]−1 (

CδT − c
)
.

(4.66)

This leads directly to

WT = T
(
σ̃ 2
uT − σ 2

uT

)/
σ 2
uT . (4.67)

The Wald statistic measures the increase in the sum of squared residuals
owing to imposition of the constraints, expressed as a percentage of the
unconstrained sum of squared residuals.

For this special case of linear constraints on the coefficients of linear
projections, we can rank these three test statistics. Since σ̃ 2

T ≥ σ 2
T , it follows

from (4.64) and (4.67) that WT ≥ LMT . Moreover, algebraic manipulation
shows that

LRT = T log
(
σ̃ 2
T /σ

2
T

) = T log(1 + WT /T ), (4.68)

LMT = WT /(1 + WT /T ). (4.69)

Therefore, these tests can be ordered as

WT ≥ LRT ≥ LMT . (4.70)

10 The constrained estimator is obtained by minimizing (1/T )
∑

t u
2
t + 2λ′(Cδ − c), and

the associated first-order conditions are (1/T )
∑

t xt (yt − x ′
t δ̃T ) + C ′λT = 0 and C δ̃T − c = 0.

For this case, it follows that[
(1/T )

∑
t xt x

′
t C ′

C 0

] [
δ̃T

λT

]
=

[
(1/T )

∑
t xt yt

c

]
.

Solving for δ̃T − δT gives (4.65).
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Under the null hypothesis H0, the Wald, LM, and LR tests all have the
same asymptotic χ2 distribution. However, under this asymptotic paradigm,
(4.70) implies that they have different sizes.

4.4. Inference for Sequential Estimators

A situation that commonly arises in practice is that the parameter vector
of interest, β ′

0 = (θ ′
0, λ

′
0), is estimated in two stages. First, the subvector θ0

is estimated using a subset of the available moment equations, and then
the subvector λ0 is estimated in a second stage using additional moment
conditions that also depend on θ0. An important issue with such sequential
estimation is whether the asymptotic distribution of λT is affected by the
first-stage estimation of θ0. The answer is generally “yes.” However, it is not
always yes and, fortunately, there is a simple way to check whether two-stage
estimation affects the asymptotic distribution of λT .

A representative setup where these issues arise involves the moment
equation E[h(zt , β0)] = 0, where

h(zt , β0) =

 h1(zt , θ0)

h 2(zt , θ0, λ0)


, (4.71)

the subvector hi has dimension Mi , θ0 has dimension K1 (M1 ≥ K1), and λ0
has dimension K2 (M2 ≥ K2). A first-stage estimator θT of θ0 is obtained by
solving the moment equation

A1T
1
T

∑
t

h1(zt , θT ) = 0, (4.72)

for someK1×M1 matrix A1T with probability limit A10. Similarly, the second-
stage estimator λT of λ0 is obtained as the solution to

A2T
1
T

∑
t

h 2(zt , θT , λT ) = 0, (4.73)

for some K2 × M2 matrix A2T with probability limit A20. What makes this a
two-stage process is that λT is obtained by solving (4.73) with θT fixed at the
solution to (4.72).

In determining the asymptotic distribution of λT we must account for
the dependence of (4.73) on θT , a random variable. Specifically, taking
mean-value expansions of (4.72) and (4.73) and solving for (θT − θ0) and
(λT − λ0) gives
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√
T

[
(θT − θ0)
(λT − λ0)

]
=




A1T
1
T

∑
t

∂h1
(
zt , θ∗

T

)
∂θ

0

A2T
1
T

∑
t

∂h 2
(
zt , θ∗

T , λ
∗
T

)
∂θ

A2T
1
T

∑
t

∂h 2
(
zt , θ∗

T , λ
∗
T

)
∂λ




−1

×




1√
T

∑
t

h1(zt , θ0)

1√
T

∑
t

h 2(zt , θ0, λ0)


, (4.74)

where the θ∗
T and λ∗

T are suitably chosen intermediate vectors. The asymp-
totic distribution of λT is then obtained, jointly with the asymptotic dis-
tribution of θT , by determining the limiting distribution of the last vector
in (4.74).

An interesting special case obtains when

plimT→∞A2T
1
T

∑
t

∂h 2
(
zt , θ∗

T , λ
∗
T

)
∂θ

= A20E
[
∂h 2(zt , θ0, λ0)

∂θ

]
= 0. (4.75)

As observed by Newey (1984), in this case the asymptotic distribution of λT
that solves (4.73) is the same as that of the distribution of the λT that solves

A2T
1
T

∑
t

h 2(zt , θ0, λT ) = 0. (4.76)

In other words, the correct limiting distribution of λT is obtained by treating
θ0 as if it were known; there is no effect on the (limiting) distribution of λT
of pre-estimation of θ0 in a first stage.

The condition (4.75) is a very useful “test” for whether sequential esti-
mation affects the inference in the second stage. To illustrate its application,
consider the case of a regression model in which the conditional variance
of the error ut is given by

E
[
u2
t

∣∣xt ] = g (xt , λ0). (4.77)

Common practice is to estimate the parameters of the underlying regres-
sion model (say θ0), compute fitted residuals ut (θT ), and then to use these
fitted residuals to estimate the parameters λ0 governing the conditional
heteroskedasticity. This second stage estimation is typically based on the
moment equation (nonlinear least squares)
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E
[[
u2
t − g (xt , λ0)

]∂g (xt , λ0)
∂λ

]
= 0. (4.78)

Thus, to check whether the asymptotic distribution of λT so obtained is
affected by the first-stage estimation of θ0, it is sufficient to check whether

E
[
2ut
∂g (xt , λ0)
∂λ

∂u′
t

∂θ

]
= 0. (4.79)

So, for example, if ut is the error term in the linear regression model
yt =θ ′

0xt +ut and E[ut |xt]=0, then ∂ut/∂θ=xt and (4.79) is clearly satisfied.
On the other hand, if

E
[
u2
t

∣∣It−1
] = λ1 + λ2u2

t−1, (4.80)

then the counterpart to (4.78) is

E


 u2t − λ1 − λ2u2t−1(
u2t − λ1 − λ2u2t−1

)
u2t−1


. (4.81)

Differentiating with respect to θ0 shows that whether or not the asymptotic
distribution of λ′

0 = (λ1, λ2) is unaffected by pre-estimation of θ0 depends
on whether third moments of ut (e.g., E[u3

t ]) are zero. That is, on whether
ut has a symmetric distribution.

4.5. Inference with Unequal-Length Samples

Another practical problem that often arises in financial applications is that
the data for the variables of interest are available over sample periods of
different lengths. For example, the development of analytically tractable
derivative pricing models and the increased availability of historical data on
the prices of these derivatives have contributed to a rapid growth in empiri-
cal studies of dynamic option pricing models (see Chapter 15). A common
feature of virtually all of these studies is that the available history of the
relevant security prices in the underlying cash markets is longer, often sub-
stantially so, than that of the prices of the derivative securities being studied.

Faced with such mismatches, researchers often truncate their sample
on the price of the underlying security so that the historical time periods of
all of the security prices of interest are temporally aligned. Though conve-
nient for the application of standard econometric estimation and inference
procedures, by omitting historical information about the probability model
for the underlying, this practice may lead to a substantial loss in economet-
ric efficiency. Within the standard setting of GMM, this section develops
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inference procedures that exploit all of the information in mismatched his-
tories of data.

There are many reasons that the relevant price series may be mis-
matched in the analysis of dynamic asset pricing models, and it is important
at the outset to be precise about the case examined here. One reason is that
the prices of a security of interest have not been collected and/or made
available for academic research over the longer sample period for which
other price series are available. For instance, in the empirical studies of
S&P500 option prices in Bakshi et al. (1997), Chernov and Ghysels (2000),
and Pan (2002), the option data cover only a subperiod of the total period
for which S&P500 options have been trading, and their sample periods are,
in turn, a small portion of the period for which S&P500 price indices have
been compiled. Similarly, in their studies of credit spreads on defaultable
bonds, Duffee (1999) and Duffie et al. (2003b) use data on corporate bond
yield spreads that cover a much shorter period than the available data on
treasury bond yields.

A very different case arises when the availability of data is determined
by, or at least related to, the underlying economic processes being studied.
For instance, if the recording of derivatives prices coincides with the intro-
duction of a new derivative contract, and the introduction of this contract
changes the distribution of the underlying on which the derivative is writ-
ten, then there has effectively been a structural change in the economy.
Another example of the economic environment affecting data availability
is when sovereign entities temporarily suspend currency convertibility or
payments on their debts and certain security prices are not available during
this period. Dealing with these and similar cases is not simply an economet-
ric issue; it seems necessary to model the reasons for the introduction of
new contracts or for the temporary suspension of trading in markets. The
subsequent discussion applies to the former, and not this second, reason for
data sets of different lengths.

Consider the nonlinear model

h1(x1t , β10) = u1t , (4.82)

h 2(xt , β20) = u2t , (4.83)

where, for notational ease, the uit are assumed to be scalars and

xt =
(
x1t

x2t

)
, β10 =

(
γ0

δ10

)
, β20 =

(
γ0

δ20

)
. (4.84)

The dimension of γ0 is L and the dimensions of the δi0 are Ki, i = 1, 2. We
suppose that data are available on the subvector x1t of xt for T periods,
whereas data on x2t are available only for the last T2 observation times.
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The structure of the model presumes that the full sample (T observations)
can be exploited in estimating the parameter vector β10. However, data on
both x1 and x2 are needed to estimate β20 governing h 2. Common practice
in this situation is to omit the first T1 ≡ T − T2 observations on x1t and
estimate the model (4.82) and (4.83) using the last T2 observations. Our
objective is to design an estimator of β ′

0 ≡ (γ ′
0, δ

′
10, δ

′
20) that fully exploits

the available data (T observations on x1 and T2 observations on x2) and, as
such, is econometrically more efficient.

Suppose the asset pricing model implies the conditional moment re-
strictions

E
[
u1t

∣∣It ] = 0 and E
[
u2t

∣∣It ] = 0, (4.85)

for some information set It . An implication of the moment restrictions
(4.85) is that

E [z1t u1t] = 0, (4.86)

E [z2t u2t] = 0, (4.87)

for instrument matrices zitεIt with dim (zit ) = ni × 1, i = 1, 2. We assume
that n1 ≥ L+K1, and that (n1+n2) > (L+K1+K2) so that there is a sufficient
number of moment equations for estimation of the K̃ ≡ L + K1 + K2

parameters.
Let

g 1,T1(b1) = 1
T1

T1∑
t=1

z1t u1t (b 1), (4.88)

g i,T2(bi) = 1
T2

T∑
t=T1+1

zit uit (bi), i = 1, 2, (4.89)

be the sample counterparts of (4.86) and (4.87), where (4.88) is the sam-
ple version of (4.86) over the first sample period and (4.89) represents the
moment conditions (4.87) over the second sample period. Then the GMM
estimator b ′

T = (b ′
1T , b

′
2T ) of (β

′
10, β

′
20) that fully exploits the available infor-

mation is based on the sample moment vector

GT (b 1, b 2)′ = [
g 1,T1(b 1)

′, g 1,T2(b 1)
′, g 2,T2(b 2)

′] (4.90)

and is obtained by minimizing

GT (b 1, b 2)′WGT (b 1, b 2) (4.91)
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by choice of γ, δ1, and δ2, where W is the weighting matrix. As discussed
in Chapter 3, the optimal choice of W is the inverse of the asymptotic
covariance matrix of GT (β10, β20).

To derive the asymptotic distribution of bT we must adopt a convention
regarding the samples of lengths T1 and T2. If we let X denote the vector of
variables in our models, our historical data appear as

X1, X2, . . . , XT1︸ ︷︷ ︸
T1 observations

, XT1+1, XT1+2, . . . , XT︸ ︷︷ ︸
T2 observations

. (4.92)

We assume that T1,T2 → ∞, with

lim
T→∞Ti/T = ci, ci > 0, (4.93)

c 1 + c 2 = 1. Conceptually, we let both T1 and T2 get large as T → ∞.11

Next, under this convention, we prove a lemma that establishes the
asymptotic independence of functions of a stationary and ergodic time
series {Xt } over two nonoverlapping subsamples. Toward this end, let h1t ≡
h1(Xt ) and h 2t ≡ h 2(Xt ) be measurable functions with E[h(Xt )] = 0, h ′

t =
(h ′

1t , h
′
2t ). Introducing the sample means

G 1,T1 = 1
T1

T1∑
t=1

h1t , and G 2,T2 = 1
T2

T∑
t=T1+1

h2t , (4.94)

we prove:

Lemma 4.1. If 12

∞∑
j=0

∣∣E[h ′
t ht−j

]∣∣ <∞, (4.95)

then

lim
T→∞

√
T1T2E

[
G 1,T1G

′
2,T2

] = 0. (4.96)

11 The large-sample problem is uninteresting if, say, T1 is fixed. For in this case the fact
that we have an additional T1 observations on x1 has no effect on the asymptotic distribution
of bT obtained as T2 → ∞.

12 See Hansen (1982b) for a discussion of sufficient conditions for (4.95) to hold; e.g.,
his assumptions 3.1 and 3.5 are sufficient.
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Proof (Lemma 4.1). To simplify notation, we prove this lemma for the special case
where T2 = T1 ≡ T . Then

1
T
E

[
T∑
t=1

h1t
T∑

t=T +1

h ′
2t

]
= 1
T

T∑
m=1

(T − m + 1)E
[
h11h ′

2,T +m

]
. (4.97)

Taking absolute values gives∣∣∣∣∣ 1T
T∑

m=1

(T − m + 1)E
[
h11h ′

2,T +m

] ∣∣∣∣∣≤ 1
T

T∑
m=1

(T − m + 1)
∣∣E[h11h ′

2,T +m

]∣∣. (4.98)
The last term in (4.98) converges to zero as T →∞ by assumption (4.95).

Under the regularity conditions adopted in Hansen (1982b) and Chap-
ter 3, which are used to support use of a central limit theorem in Hannan
(1973),

√
T1G 1,T1 ⇒ N (0,V ), V =

∞∑
j=−∞

E
[
h1t h ′

1,t−j
]
, (4.99)

√
T2G 2,T2 ⇒ N (0, /), / =

∞∑
j=−∞

E
[
h2t h ′

2,t−j
]
. (4.100)

In the light of Lemma 4.1, we conclude that the joint limiting distribution of
(G 1,T1 ,G 2,T2) is normal with a block diagonal covariance matrix and, hence,
there is asymptotic independence between the two sample means.

To apply these observations to the case of unequal sample lengths, we
have, under regularity,

√
T1g 1,T1(β10) ⇒ N (0,V ), (4.101)

√
T2(g 1,T2(β10)

′, g 2,T2(β20)
′)′ ⇒ N (0, /), (4.102)

where the upper-left n1 ×n1 block of / is V owing to stationarity. Moreover,
using the preceding reasoning, these limiting distributions are indepen-
dent. It follows that the optimal distance matrix to use in GMM estimation
is a consistent estimator of the matrix

W =
(V −1 0

0 /−1

)
. (4.103)
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Though W is block diagonal, inclusion of the first T1 observations
improves the efficiency of the estimator of β10. Furthermore, since u1t and
u2t may be correlated and may both depend on γ0, there is in general also a
gain in efficiency in estimating β20 by inclusion of all T observations on x1t .

An interesting special case, with further simplification, is when K2 = n2:
the number of moment conditions associated with the second error u2 is
exactly equal to the number of additional distinct parameters introduced
through h 2 (the dimension of δ20). Intuitively, in this case, the moment
conditions (4.86) are used to estimate all of the components of β10, and
in particular γ0, while the moment conditions (4.87) are used to estimate
the new parameters β20 ≡ δ20 introduced through h 2. The following propo-
sition formalizes this intuition.

Proposition 4.1. If K2 = n2, then the asymptotic distribution of b 1T obtained by
minimization of (4.91) with the optimal distance matrix (4.103) is the same as the
limiting distribution of the estimator b∗

1T that solves

b∗
1T = argminb 1g 1,T (b 1)

′V −1
T g 1,T (b 1). (4.104)

Proof (Proposition 4.1). The first-order conditions for the GMM problem (4.91)
are

∂GT

∂β
(b 1T , b 2T )′WGT (b 1T , b 2T ) = 0. (4.105)

The first matrix in (4.105), ∂GT (b 1T , b 2T )′/∂β, is given by




1
T1

T1∑
t=1

∂u1t
∂β10

(b 1T )z ′
1t

1
T2

T∑
t=T1+1

∂u1t
∂β10

(b 1T )z ′
1t

1
T2

T∑
t=T1+1

∂u2t
∂β10

(b 2T )z ′
2t

0 0
1
T2

T∑
t=T1+1

∂u2t
∂δ20

(b 2T )z ′
2t



.

Let Dδki,T2
≡ (1/T2)

∑T
t=T1+1(∂uit (b iT )/δk0)z ′

it , a Ki × ni matrix, and similarly
define Dδki,T1

as the same expression with the sum going from 1 to T1. Letting /−1
ij

denote the ij block of /−1 and solving the second set of K2 equations gives

Dδ22,T2
/−1
21 g 1,T2(b 1T )+ Dδ22,T2

/−1
22 g 2,T2(b 2T ) = 0. (4.106)

If K2 = n2, then Dδ22,T2
is square and nonsingular. Thus, (4.106) implies that

g 2,T2(b 2T ) = −(
/−1
22

)−1
/−1
21 g 1,T2(b 1T ). (4.107)
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The first L + K1 equations in (4.105) give

Dβ11,T1
V −1g 1,T1(b 1T )+

(
D
β1
1,T2/

−1
11 +Dβ12,T2/−1

21

)
g 1,T2(b 1T )

+ (
Dβ11,T2

/−1
12 + Dβ12,T2

/−1
22

)
g 2,T2(b 2T ) = 0. (4.108)

Substituting (4.107) into (4.108) and collecting terms premultiplied by Dβ11,T2
gives

the expression

Dβ11,T2

[
/−1
11 − /−1

12

(
/−1
22

)−1
/−1
21

]
g 1,T2(b 1T ). (4.109)

Using the formulas for the partitioned inverse of a matrix, the matrix in square
brackets in (4.109) can be shown to be equal to V −1. Thus, (4.109) simplifies to
Dβ11,T2

V −1g 1,T2(b 1T ).

Combining the terms in (4.108) premultiplied by Dβ12,T2
gives

Dβ12,T2

[
/−1
21 − /−1

22

(
/−1
22

)−1
/−1
21

]
g 1,T2(b 2T ) = 0. (4.110)

Substituting (4.109) and (4.110) into (4.108) gives

Dβ11,T1
V −1g 1,T1(b 1T )+ Dβ11,T2

V −1g 1,T2(b 1T ) = 0. (4.111)

Our proof is complete upon noting that

plimT→∞Dβ11,T1
= plimT→∞Dβ11,T2

≡ Dβ110 . (4.112)

Thus, b 1T is asymptotically equivalent to the estimator solving

Dβ110V
−1 1

T

T∑
t=1

z1t u1t
(
b ∗
1T

) = 0. (4.113)

The practical implication of Proposition 4.1 is that, when K2 = n2, we
can proceed to estimate β10 using the full sample and the GMM criterion
function (4.104), and then compute the δ2T that solves the K2 equations
(4.107). This proposition generalizes the analysis in Stambaugh (1997) to a
general GMM setting.

4.6. Underidentified Parameters under H0

There are many important circumstances in the analysis of financial models
where a subset of the parameters is not econometrically identified under the
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null hypothesis. This implies that the likelihood function is flat (with respect
to these parameters) at its optimum. As such, it is not locally quadratic,
contrary to what is typically presumed in standard large-sample asymptotic
theory. Additionally, in some cases the score of the likelihood function with
respect to the unidentified parameters is zero under the null hypothesis.
This implies that the score does not have positive variance as required by
most large-sample analyses. For either of these reasons, tests of the null hy-
pothesis typically cannot proceed using standard large-sample distribution
theory for likelihood estimators.

Solutions to the problem of testing in the presence of unidentified
“nuisance” parameters have been proposed for several important cases.
One such case is Hamilton’s (1989) switching regime model for economic
time series. Suppose that there are two regimes for a process y indexed
by s = 1, 2. The conditional distribution of yt in regime st is given by
fi(yt |�y Jt−1, st = i;βi), i = 1, 2. Further, suppose that the transition between
these two regimes is governed by a Markov process that is independent of y
and has transition probabilities

Pr{st = 1|st−1 = 1} = P , Pr{st = 2|st−1 = 2} = Q . (4.114)

This model captures the idea that, during state st = 1 of the economy,
the evolution of y is governed by the distribution f 1(yt |�y Jt−1, st = 1;β1) with
parameter vector β1. At the same time, owing to cyclical developments or
changes in policy, the distribution of y may change to f 2(yt |�y Jt−1, st = 2;β2)
with probability (1 − P ), where the functional forms of f 1 and f 2 may be
different. As we discuss more extensively in subsequent chapters, introduc-
ing switching of this form induces additional persistence, nonlinearity, and
leptokurtosis (fat tails) into the distribution of y and this has proved useful
for modeling financial time series.

The conditional density function f (yt |�y Jt−1) of the observed data for
Hamilton’s switching model is given by

f
(
yt
∣∣�y Jt−1

) =
2∑

i=1

fi
(
yt
∣∣st = i, �y Jt−1

)
pi,t−1, (4.115)

where pi,t−1 = Pr{st = i|�y Jt−1}.13 Using Bayes’s rule, we can express p1,t−1

recursively as (see Gray, 1996)

13 This follows from the observations that f (yt |�y Jt−1) = ∑2
i=1 f (yt , st = i|�y Jt−1) and f (yt , st =

i|�y Jt−1) = f (yt , |st = i, �y Jt−1)Pr{st = i|�y Jt−1}. We maintain our convention of dating variables by
the information set within which they reside and, hence, depart from Gray’s notation of pit
for Pr{st = i|�y Jt−1}.
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p 1,t−1 = (1 − Q )
[

g 2,t−1(1 − p 1,t−2)

g 1,t−1p 1,t−2 + g 2,t−1(1 − p 1,t−2)

]

+ P
[

g 1,t−1p 1,t−2

g 1,t−1p 1,t−2 + g 2,t−1(1 − p 1,t−2)

]
,

(4.116)

where gi,t is shorthand notation for fi(yt |�y Jt−1, st = i;βi), i = 1, 2. Given
initial values for p 10 and �y J0 , the likelihood function for the data can be
constructed recursively using (4.115) and (4.116).

One potential hypothesis of interest in this setting is that f 1(yt |�y Jt−1, st =
1;β1) equals f 2(yt |�y Jt−1, st = 2;β2); that is, the conditional densities in the
two regimes have the same functional form and β1 = β2. In cases where
the modeler presumes that f 1 = f 2, the null hypothesis is simply β1 = β2.
Under this null, it is easy to see that the density f (yt |�y Jt−1) does not depend
on information about the regimes (since switching has no consequences
for the evolution of yt). Therefore, the parameters P and Q are not identi-
fied. Moreover, the null hypothesis yields a local optimum and higher-order
derivatives may be zero as well. It follows that standard large-sample hypoth-
esis testing does not apply. Hamilton recognized this problem, but did not
address it formally.

Subsequently Hansen (1992) proposed a bound on a normalized like-
lihood ratio statistic that provides a conservative test of the null hypothesis
β1 = β2 for switching regime models. To be consistent with his notation,
we assume that f 1= f 2 and reparameterize the model so that log-likelihood
function depends on (β, γ, θ), the null hypothesis is β = 0 (the alterna-
tive is β �= 0), θ is identified under both the null and alternative hypothe-
ses, and γ is not identified under the null hypothesis. The first step
in constructing Hansen’s test statistic is “concentrating out” the nuisance
parameter θ . Setting α≡ (β ′, γ ′), we define θ̂ (α)=maxθ∈� lT (α, θ), the ML
estimates of θ for fixed α. The concentrated log-likelihood function is then
l̂T (α)= lT (α, θ̂(α)). Next, we define L̂RT (α)≡ l̂T (α)− l̂T (0, γ ), LRT (α) to be
the counterpart without the “hats” and Q̂T (α)≡ L̂RT (α)−E[LRT (α)]. Note
that L̂RT (α) is the likelihood ratio “surface,” with the standard likelihood
ratio statistic L̂RT being the supremumof L̂RT (α) over α. Hansen shows that

Pr
{√

T L̂RT ≥ x
} ≤ Pr

{
sup
α

√
TQ̂T (α) ≥ x

}
, (4.117)

which provides a bound on the likelihood ratio statistic. However, he argues
that tests based on this bound will be overconservative in practice because
the variance of Q̂T depends on the value of α.

To circumvent this problem, Hansen proposes working with a standard-
ized version of Q̂T . Specifically, let



Page 97 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

4.6. Underidentified Parameters under H0 97

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[Last Page]

[97], (27)

Lines: 1317 to 1374

———
9.58301pt PgVar
———
Normal Page
PgEnds: TEX

[97], (27)

VT (α, θ̂(α)) =
T∑
t=1

qt (α, θ̂(α))2, (4.118)

where

qt (α, θ̂(α)) = log ft (α, θ̂(α))− log ft (0, γ, θ̂(0, γ ))− L̂RT (α), (4.119)

with ft denoting the conditional density at date t . Then, defining

Q̂ ∗
T (α) ≡ Q̂T (α)

VT (α)1/2
, and L̂R

∗
T (α) ≡ L̂RT (α)

VT (α)1/2
, (4.120)

he shows that

Pr
{
L̂R

∗
T ≥ x

} ≤ Pr

{
supα

∑
α

Q̂ ∗
T (α) ≥ x

}
→ Pr

{
supαQ

∗(α) ≥ x
}
, (4.121)

where Q ∗(α) is a Gaussian process and, as such, is completely characterized
by its covariance function, the sample counterpart to which is

K̂ ∗
T (α1, α2) =

∑T
t=1 qt (α1, θ̂ (α1))qt (α2, θ̂ (α2))

VT (α1)1/2VT (α2)1/2
. (4.122)

Thus, to approximate the bound in (4.121), one can draw i.i.d. Gaussian
processes with covariance function K̂ ∗

T . Using the empirical distribution of
supQ ∗ one can then test the null hypothesis of interest. Hansen shows that,
for the switching regimemodels examined empirically by Hamilton (1989),
the small-sample reliability of using his bound as a test was high.

An interesting special case of this Markov switching model obtains with
P + Q = 1. In this case there is no persistence in the Markov process (the
probability that st takes on the value 1 or 2 is independent of the previous
state) and the model reduces to the mixture-of-distributions model. In this
setting, the conditional density of the data is given by

f
(
yt
∣∣�y Jt−1

) = Pf 1
(
yt
∣∣�y Jt−1, β1

) + (1 − P )f 2
(
yt
∣∣�y Jt−1, β2

)
, (4.123)

and yt is drawn from f 1 with probability P and from f 2 with probability (1−
P ). Once again we may have a nonstandard testing problem. For instance,
under the null hypothesis that P = 1, not all of the parameters of β2 are
identified if β1 �= β2.

We will see additional examples of this nuisance parameter problem,
particularly in models with “jumps” in asset prices or returns.
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5
Affine Processes

Among the most widely studied time-series processes in the empirical
finance literature is the family of affine processes. Their popularity is attri-
butable to their accommodation of stochastic volatility, jumps, and cor-
relations among the risk factors driving asset returns, while leading to
computationally tractable pricing relations and moment equations that can
be used in estimation. In this chapter we overview some of the key
properties of affine processes, in both their discrete- and continuous-time
formulations.

Intuitively, an affine process Y is one for which the conditional mean
and variance are affine functions of Y. However, following Duffie et al.
(2003a), it is convenient to characterize affine processes more formally in
terms of their exponential-affine Fourier (for continuous-time) andLaplace
(for discrete-time) transforms. We begin with the case of continuous time
and present the family of affine-jump diffusions in their familiar form as a
stochastic differential equation with affine drift and instantaneous condi-
tional variance. This is followed by a discussion of the “admissibility” prob-
lem: the need to impose restrictions on the parameters of an affine process
to ensure that it is well defined.

We then turn to the case of discrete-time affine models. While the
special case of a Gaussian vector autoregression has been widely studied
in the asset pricing literature, discrete-time affine models with stochastic
volatility have received less attention. Drawing upon the work by Darolles et
al. (2001) and Dai et al. (2005), among others, we present the discrete-time
counterparts to a large subfamily of affine diffusions, including virtually all
of the continuous-time models that have been examined in the empirical
literature.

The popularity of affine representations of the state variables in DAPMs
is in large part because they lead to tractable pricing relations. This tractabil-
ity derives from the knowledge of closed-form solutions to several “trans-
forms” of affine processes. Accordingly, we introduce two key transforms for

98
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affine diffusions from Duffie et al. (2000) and Bakshi and Madan (2000),
and their counterparts for discrete-time affine processes, which will be used
heavily in Part II of this book.

Finally, we review some of the more popular approaches to estimation
of affine processes. Though we present this material outside of any pricing
framework, it is instructive to bear in mind the interplay between model
formulation and the choice of estimation strategy emphasized in Chapter 1.
Many of the conceptual frameworks for pricing financial assets have been
developed in continuous time under the assumption that the state variables
(sources of uncertainty) follow diffusion or jump-diffusion models. Eco-
nomically, the “short” decision intervals associated with continuous time
might be justified by the relatively frictionless nature of financial markets
relative to many other markets for goods and services—low transactions
costs, fast communication of information, and trading mechanisms that al-
low frequent rebalancing of positions. However, even for financial markets,
continuous decision making is perhaps better viewed as an approximation.
This approximation brings considerable tractability when combined with
the assumption that the state follows a diffusion process. In particular, the
“change of measure” underlying risk-neutral pricing outlined in Chapter 1
is relatively tractable for diffusion models, typically amounting to a change
in the drifts, but not the volatilities, of the state variables. Additionally, the
distributional assumptions underlying jump-diffusion models often facili-
tate the derivation of moment conditions for use in estimation.

This last point is central to the estimation of continuous-time models
in finance since, given a discretely sampled data set, the estimation prob-
lem for discrete- and continuous-time models is really the same: derive a
model-implied conditional likelihood function or population moment conditions of the
discretely sampled data for use in estimation of the model parameters. This chapter
presents several approaches to the construction of such populationmoment
conditions when {Yt }Tt=1 is an observed, discrete sample of length T . These
approaches prove useful in the analysis of DAPMs where Yt is a (possibly
unobserved) state vector underlying the time-series properties of a vector
of observed asset prices or returns.

Since diffusion models are Markov processes, the relevant conditional
density for use inML estimation is f (Yt |Yt−1; γ0). In rare cases, f (Yt |Yt−1; γ0)
is known in closed form (see later). More generally, it can be shown that
f (Yt |Yt−1; γ0) itself satisfies a partial differential equation (PDE) that could
be solved numerically, much like we solve for asset prices in continuous-
time models. In practice, the strategy of solving for f from its defining
PDE is rarely pursued, however. The reason is the computational burden
of simultaneously solving numerically for the density f and “climbing the
hill” to maximize the likelihood function of {Yt }. In fact, as we will see in
subsequent chapters, in estimating a DAPM, the computational burdenmay
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be even greater because of the need to numerically solve for the model-
implied prices or returns as functions of the state Yt .

With these considerations in mind, most of the estimation strategies
for continuous-time models exploit either approximations that reduce the
computational burden or, for sufficiently specializedmodels, analytic repre-
sentations of the implied conditional densities or moments of these condi-
tional distributions. Rather than attempting a comprehensive review of the
many approaches that have been proposed in the literature, we focus here
on several that have proved to be particularly useful in the estimation of
multivariate affine diffusion models.1 Most of the methods covered in this
chapter presume that Y is observed, and rely on the imposition of sufficient
structure to obtain analytic representations of features of the relevant con-
ditional distributions. In Chapter 6 we discuss alternative simulation-based
methods that are applicable both to more general diffusions and to models
in which some of the variables are latent (unobserved).

Estimation of the discrete-time affine processes presented subsequently
is much more straightforward. By construction, the conditional densities
of these processes are known in closed form. Therefore, the likelihood
function of the data can be maximized directly.

5.1. Affine Processes: Overview

Fix a probability space (�,F ,P ) and an information set Ft . Initially we
examine the case of aMarkov (some say first-orderMarkov) process Y taking
on values in a state space D ⊂ RN:

Definition 5.1. A process is Markov if, for any measurable function g : D → R
and for any fixed times t and s > t ,

Et[g (Ys)] = h(Yt ),

for some function h : D → R.

This means that the conditional distribution at time t of Ys , given all avail-
able information, depends only on the current state Yt . When the condi-
tional distribution of Y depends on additional lags of Y , one can often

1 Two of the approaches that we do not cover are the nonparametric methods proposed
by Ait-Sahalia (1996), Stanton (1997), and Jiang and Knight (1997), applied to univariate
models; and the GMM estimators proposed by Hansen and Scheinkman (1995) and Duffie
and Glynn (2004), which exploit the special structure of diffusion models and certain moment
equations derived from this structure.
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expand the dimension of the state vector to obtain a new, first-order Markov
process Y ∗.2

The conditional characteristic function (CCF) of a Markov process YT ,
conditioned on current and lagged information about Y at date t , is given
by the Fourier transform of its conditional density function:

CCFt (τ,u) ≡ E
(
e iu

′YT
∣∣Yt), u ∈ RN (5.1)

=
∫
RN
fY (YT |Yt ; γ )e iu′YT dYT .

where τ = (T − t), i = √−1, and fY is the conditional density of Y . Simi-
larly, the conditional moment-generating function (CMGF) is given by the
Laplace transform of Y :

CMGFt (τ,u) ≡ E
(
eu

′YT
∣∣Yt), u ∈ RN (5.2)

=
∫
RN
fY (YT |Yt ; γ )eu′YT dYT .

Definition 5.2. AMarkov process Y is said to be an affine process if either its CCF
or CMGF has the exponential affine form

CCFt or CMGFt = eφ0t+φ′
Yt Yt, (5.3)

where φ0t and φYt are complex (real) coefficients in the case of the CCF (CMGF). They
are indexed by t to allow for the possibility of time dependence of the moments of Y .

5.2. Continuous-Time Affine Processes

To relate this definition to standard formulations of affine processes, we
focus first on the case of continuous time since it was in this context that
affine models were popularized. A jump-diffusion process is a Markov pro-
cess solving the stochastic differential equation

dYt = µ(Yt , γ0) dt + σ(Yt , γ0) dWt + dZt , (5.4)

2 For the case of discrete time and dependence on a finite set of lagged Y ’s, the con-
struction of Y ∗ is immediate. Even when, in continuous time, the conditional distribution of
Ys depends on a continuum of lagged values of Yt , it is often possible to define a new state vari-
able that captures this dependence. The expanded state vector Y ∗ that includes this function
of past Y ’s may once again be Markovan.
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where W is an (Ft )-standard Brownian motion in RN ; µ : D → RN , σ :
D → RN×N , Z is a pure-jump process whose jump amplitudes have a fixed
probability distribution ν on RN and arrive with intensity {λ(Yt ) : t ≥ 0},
for some λ : D → [0,∞), and γ ∈ RK is the vector of unknown parameters
governing themodel for Yt . We adopt the Cox process construction of jump
arrivals in which, conditional on the path {Ys : 0 ≤ s ≤ t} to time t , the times
of jumps during the interval [0, t] are assumed to be the jump times of a
Poisson process with time-varying intensity {λ(Ys) : 0 ≤ s ≤ t}, and the size
of the jump distribution ν is assumed to be independent of {Ys : 0 ≤ s < T }.

The special case of an affine-jump diffusion is obtained by requiring
that µ, σσ ′, and λ all be affine functions on D. More precisely, Yt follows an
affine-jump diffusion if

dYt = K (� − Yt ) dt + �
√
St dWt + dZ t , (5.5)

where Wt is an N –dimensional independent standard Brownian motion, K
and� are N ×N matrices, which may be nondiagonal and asymmetric, and
St is a diagonal matrix with the ith diagonal element given by

S ii,t = αi + β ′
iYt . (5.6)

Both the drifts in (5.5) and the instantaneous conditional variances in (5.6)
are affine in Yt . When jumps are present, the jump intensity λ(t) is assumed
to be a positive, affine function of the state Yt , λ(t)= l 0 + l ′Y Y (t), and the
jump-size distribution fJ is assumed to be determined by its characteristic
function J (u) = ∫

exp{ius}fJ (s)ds.
An implication of the transform analysis in Duffie et al. (2000) [see

also Singleton (2001) and Section 5.4] is that, under technical regularity
conditions, CCFt (τ,u) is exponential-affine:

CCFt (τ,u) = eφ0t+φ′
Yt Yt , (5.7)

with φ0 and φY satisfying the complex-valued ordinary differential equations
(ODEs or Riccati equations),3

φ̇Yt = K · φYt − 1
2
φ′
YtH1φYt − lY (J (φYt ) − 1), (5.8)

φ̇0t = −K� · φYt − 1
2
φ′
YtH 0φYt − l 0(J (φYt ) − 1), (5.9)

with H0∈RN×N and H1∈RN×N×N defined by [�St�′]ij = [H0]ij + [H1]ij ·
Yt , and boundary conditions φYT = iu and φ0T = 0. Thus affine diffusions,

3 Here, for any c ∈ CN , c ′H1c denotes the vector in CN with kth element
∑
i, j ci[H1]ijk cj .
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as characterized by (5.5) and (5.6), are special cases of those covered by
Definition 5.2. A complete characterization of the family of affine processes
is given in Duffie et al. (2003a).

Focusing on the case of an affine diffusion (i.e., setting the jump term to
zero), we see that the affine structure of the drift and instantaneous variance
carries over to the conditional moments of {Yt } obtained by sampling Y at a
fixed time interval (e.g., a day, week, and so on). This follows from the fact
that the CCF is an exponential affine function, and φ0t (u) and φYt (u) are
both zero at u = 0. Evaluating the nth derivative of the CCF with respect
to u at zero gives the nth conditional moment of Yt+τ as an affine function
of Yt for all n > 0. For instance, the conditional mean of Yt+τ given Yt (the
optimal τ -period ahead forecast of the discretely sampled Y ) is

E
[
Yt+τ

∣∣Yt ] = e−KτYt + (I − e−Kτ )�. (5.10)

It follows thatK governs the degree of mean reversion in the process toward
its “long-run” or unconditional mean E[Yt] = �.

In the case of univariate affine diffusions, one way of quantifying the
degree of mean reversion of a series is with the “half-life” of the series,
defined to be the number τ that sets e−Kτ = 0.5. Roughly speaking, τ is
the mean time that must elapse before the effect of a current shock to Y of
size 1 has an effect of 0.5 on Yt+τ .

Higher-order moments can also be derived in closed form for the case
of affine diffusions (see Fisher andGilles, 1996, and Liu, 1997). Focusing on
the conditional variances, two special cases warrant particular mention. If
the βi = 0, for all i, then Yt is a Gaussian process. Supposing that there exists
an N × N matrix X such that XK(X ′)−1 is a diagonal matrix with elements
(κ1, κ2, . . . , κN ) along the diagonal, in this case the conditional covariance
matrix is given by

Var(Yt+τ |Yt ) = X −1�(τ)
(
X −1)′, (5.11)

where

�(τ) =
[
Vij

1 − e−(κi+κj )τ

κi + κj

]N
i,j=1

, (5.12)

and V = X�2X ′. Alternatively, if K is diagonal with ith element κi , � is
diagonal with ith element σi , βi is zero except in the ith location (where it
is unity), and αi = 0 for all i, then Y is a vector of N independent square-
root diffusions. The conditional variance of Yi is then given by (2.54) with
κ = κi and � = τ .



Page 104 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

104 5. Affine Processes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[104], (7)

Lines: 192 to 220

———
4.44432pt PgVar
———
Long Page
PgEnds: TEX

[104], (7)

We stress that these moments are the true conditional moments of the
discretely sampled Yt from an affine diffusion. This is to be contrasted with
the conditional moments implied by an Euler discretization of an affine
diffusion,4

�Y nt = 1
n
µ
(
Y nt−h, γ0

)+ σ
(
Y nt−h, γ0

) 1√
n
εnt , (5.13)

where n indexes the number of intervals into which each unit of time is
divided, h = 1/n, and εnt ∼N (0, I ). For large n (small h), under regularity,
the distribution of the Y solving (5.4) and the Y nk following (5.13) are
approximately the same. In particular,

lim
n→∞n

[
E
(
Y nt
∣∣Y nt−h)− Y nt−h

] = µ(Y , γ0), (5.14)

lim
n→∞nVar

[
Y nt
∣∣Y nt−h] = σ(Y , γ0). (5.15)

However, for any fixed n, the distributions of Y nt and Yt are not the same.
This is clearly illustrated by Example 2.1 and its discretized counterpart.5

From (2.54) it follows that the conditional variance of rt+1 is an affine func-
tion of rt and not proportional to rt , as is the case in the Euler approxi-
mation. Additionally, the shock driving r in the true discrete-time model is
noncentral chi-square, not Gaussian.

For the CCFt of an affine diffusion to be well defined, some structure
must be imposed on the functions φ0 and φY . Implicit in the requirements
for well defined CCF and CMGF are conditions that ensure that even-
powered conditional moments of the distribution of Y are nonnegative
(Duffie and Kan, 1996; Dai and Singleton, 2000; Dai et al., 2005). These
functions are potentially also constrained by the supports of the distribu-
tions of the Yi (Gourieroux et al., 2002). For instance if, for given i, Yi ≥ 0,
then the CMGFt is nondecreasing in ui for given values of the other u’s and
Y ’s. This, in turn, may constrain the functional forms of φ0 and φY . Veri-
fying that an affine process, as specified through its CCF or CMGF, is well
defined may involve case-by-case analyses of the properties of the model.
Fortunately, for a large subfamily of affinemodels built up from affine-jump
diffusions, a complete characterization of the admissible parameterizations
is available by inspection of the parameters of the diffusions directly.

Before formally treating the admissibility of affine parameterizations,
it is instructive to develop further intuition for the issues by considering a

4 The addition of jumps allows for the possibility that over the small interval h, with
probability λ(Y nt−h)h, Y

n will experience a jump of amplitude ν.
5 See Sun (1992) and Backus et al. (1998b) for discussions of discrete-time models ob-

tained as discretizations of affine diffusions.
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specific example of a two-factor affine model. Suppose that the state vector
Y ′ = (Y1,Y2) follows the process

d
(
Y1t
Y2t

)
=
(
κ11 0
0 κ22

)((
θ1
θ2

)
−
(
Y1t
Y2t

))
dt

+
(
σ1

√
Y1t 0

0
√
α2 + β21Y1t

)
dWt .

(5.16)

Inspection of (5.16) reveals that, at a minimum, for (Y1,Y2) to be a well-
defined process, the instantaneous conditional variances Y1t and α2+β21Y1t
must be nonnegative. For this case at hand, the constraints that Y2t does
not appear in the drift and volatility of Y1t imply that the first state variable
Y1 is an autonomous square-root diffusion. As such, so long as σ1 > 0
and κ11θ1 > 0, Y1 is guaranteed to be nonnegative. Further, this process is
specified so that the volatility of Y2t depends only on Y1t . Therefore, upon
imposing the additional constraints that α2 > 0 and β21 > 0, we are assured
that α2 + β21Y1t ≥ 0, and this parameterization is admissible. From this
example we see that if the state vector is divided up into the subvector
that drives the volatility of all state variables (in this example Y1t) and the
remaining state variables (Y2t), and sufficient structure is imposed on the
first subvector to ensure that it remains nonnegative, then we are assured
admissibility up to the imposition of some sign restrictions.

This example illustrates the need to constrain the parameters γ 0 in
order to ensure that the conditional variance of Y remains nonnegative.
There is no admissibility problem if βi = 0, for all i, because in this case
the instantaneous conditional volatilities are all constants. However, out-
side of this special case, to ensure admissibility we find it necessary to con-
strain the drift parameters (K and �) and diffusion coefficients [� and
B ≡ (β1, β2, . . . , βN )]. Moreover, our requirements for admissibility be-
come increasingly stringent as the number of state variables determining
S ii,t increases.

To formalize this intuition we consider the case where there areM state
variables (without loss of generality, the first M ) driving the instantaneous
conditional variances of the N -vector Y , so M = rank(B). Then, following
Dai and Singleton (2000), on the state space RM+ × RN−M , we define a set
of N + 1 benchmark models AM (N ) as follows.

Definition 5.3 [Benchmark Model AM (N )]. For each M, we partition Yt as
Y ′ = (Y V ′

,Y D ′
), where Y V is M × 1 and Y D is (N −M ) × 1,6 and define the

benchmark model AM (N ) as the special case of equation (5.5) with

6 The superscripts V and D indicate source of volatility factors and dependent factors,
respectively.
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K =

 KVV

M×M 0M×(N−M )

KDV
(N−M )×M KDD

(N−M )×(N−M )


 (5.17)

for M > 0, and K is unconstrained for M = 0;

� =

 σ IM×M 0M×(N−M )

�DV
(N−M )×M �DD

(N−M )×(N−M )


, (5.18)

where σ I is a diagonal matrix with σi > 0 in the ith diagonal position;

α =

 0M×1

αD
(N−M )×1


 ≥ 0; (5.19)

B =

 IM×M BVD

M×(N−M )

0(N−M )×M 0(N−M )×(N−M )


; (5.20)

with the following parametric restrictions imposed:

Ki� ≡
M∑
j=1

Kij�j > 0, 1 ≤ i ≤ M , (5.21)

Kij ≤ 0, 1 ≤ j ≤ M , j �= i, (5.22)

Bij ≥ 0, 1 ≤ i ≤ M , M + 1 ≤ j ≤ N . (5.23)

We refer to these special cases as benchmark models for two reasons. First,
most of the empirical implementations of affine diffusionmodels are special
cases of one of these benchmark models. By construction, a given model
can be a special case of only one benchmark model because it must satisfy
the defining rank conditionM = rank(B). Moreover, modelAM (N ) satisfies
this rank condition because of the structure of B in (5.20): the upperM×M
block is the identity matrix and the last (N − M ) rows are zero. Second,
in our discussion of dynamic term structure models in Chapter 12, the
models AM (N ) serve as canonical representations of entire equivalence
classes of DAPMs.

The benchmarkmodelAM (N ) has the conditional variances of the state
variables controlled by the firstM state variables7:

7 The notation βjk means the kth element of the column vector βj .
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S ii,t = Yit , 1 ≤ i ≤ M , (5.24)

S jj,t = αj +
M∑
k=1

βjkYkt , M + 1 ≤ j ≤ N , (5.25)

where αj ≥ 0, βj i ≥ 0. Therefore, as long as Y V
t ≡ (Y1,Y2, . . . ,YM )′ is

nonnegative with probability one, the benchmark representation of Yt =
(Y V ′
t ,Y D′

t )′, where Y D
t ≡ (YM+1,YM+2 , . . . ,YN ), is admissible. In general,

Y V follows the diffusion

dY V
t = (

KVV KVD)(� − Yt )dt +
(
�VV �VD)√StdWt . (5.26)

To ensure that Y V
t is bounded at zero from below, the drift of Y V

t must be
nonnegative and its diffusion must vanish at the zero boundary. Necessary
and sufficient conditions for this are: C1: KVD = 0M×(N−M ); C2: �VD =
0M×(N−M ); C3: �ij = 0, 1 ≤ i �= j ≤ M ; C4: Kij ≤ 0, 1 ≤ i �= j ≤ M ;
C5: KVV�V > 0.8

C1 is imposed because otherwise there would be a positive probability
that the drift of Y V at the zero boundary becomes negative since Y D

t is not
bounded from below. (Note that, conditional on the path of Y V

t , Y
D
t follows

a Gaussian diffusion.) C2 and C3 are imposed to prevent Y V
t from diffusing

across zero owing to nonzero correlation between Y V
t and Y D

t . Condition
C4 [same as (5.22)] is imposed because otherwise, with Y V ≥ 0, there is a
positive probability that large values of Yj t induce a negative drift in Yit at
its zero boundary, for 1 ≤ i �= j ≤ M . Together, C4 and C5 ensure that the
drift condition

Kii�i +
M∑

j=1;j �=i
Kij (�j − Yj t ) ≥ 0 (5.27)

holds for all i, 1 ≤ i ≤ M .9

Finally, C5 implies that the zero boundary of Y V is at least reflecting.
This is because, under C1–C3, the subvector Y V

t is an autonomous multi-
variate correlated square-root process governed by

8 Here, following Dai and Singleton (2000), we show sufficiency of these conditions.
Their necessity follows from the analysis in Duffie et al. (2003a).

9 Under C1–C5 the existence of an (almost surely) nonnegative and nonexplosive solu-
tion to our canonical representation in (5.5) is ensured because its drift and diffusion functions
are continuous and satisfy a growth condition (see Ikeda and Watanabe, 1981: ch. IV, th. 2.4).
The uniqueness of the solution is ensured if the drift satisfies a Lipschitz condition and the
diffusion function satisfies the Yamada condition (see Yamada and Watanabe, 1971: th. 1).
Sufficient for the latter condition to be satisfied is that � = I . As we will see in Chapter 12,
setting � = I is a normalization in the context of affine term structure models.
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dY V
t = KVV(�V − Y V

t

)
dt + (σ I )

√
SVVt dW

V
t . (5.28)

If the off-diagonal elements of KVV are zero, then Y V is an M -dimensional
vector of independent square-root processes. That the zero boundary is
reflecting is trivial in this case. Under C4, the drift of the correlated square-
root process dominates that of the independent square-root process. By
appealing to Lemma A.3 of Duffie and Kan (1996), we conclude that the
zero-boundary for the correlated square-root process is at least reflecting.10

Knowing that these N + 1 canonical models are admissible assures
us that any nested special case is also admissible. However, not all affine
models are specials cases of these canonical models. For models outside
these subfamilies, admissibility should be verified, on a case-by-case basis as
necessary.

5.3. Discrete-Time Affine Processes

As noted previously, a discretization of a continuous-time model typically
does not lead to a well-defined discrete-time counterpart of an A1(1)model.
To construct discrete-time affine models with many of the same features
of the AM (N ) families of models we follow Darolles et al. (2001), Gou-
rieroux and Jasiak (2001), and Dai et al. (2005) and develop discrete-time
affine processes from the primitive assumption that the CMGF of Yt+1 is an
exponential-affine function of Yt . Special cases include the (true) discrete-
time models implied by Gaussian and square-root affine diffusions. How-
ever, importantly, starting with the CMGFmay allow for richer formulations
of the dynamics of Y than in standard affine diffusion models.11

A discrete-time affine process is obtained by positing a functional form
for the φ0t and φYt that defines the CMGFt . Perhaps the simplest example
arises under the assumption that Yt+1|Yt∼N (α+βYt , σ 2), the autoregressive
Gaussian model. In this case, CMGFt (u) = eu(α+βYt )+u2σ 2/2, which is clearly
exponential-affine in Yt .

A more complex example arises under the assumption that the CMGF
of a scalar Markov process Y is given by

Et
[
euYt+1

] = e−ν ln(1−uc)−(ρu/1−uc)Yt , (5.29)

10 C5 may be replaced by the stronger condition [KVV�V]i ≥ σ 2
i /2, i = 1, . . . ,M , as in

Duffie and Kan (1996). This stronger condition, under which the zero boundary for Y V is
entrance, is the multivariate generalization of the Feller condition.

11 As discussed in subsequent chapters, whether or not a DAPM constructed from
discrete-time affine process is richer than its counterpart based on an affine diffusion also
depends on how investors’ attitudes toward risk, as captured by the “market prices of risk,” are
parameterized. As shown by Dai et al. (2005), DAPMs based on discrete-time affine processes
also offer more tractability in specifying the market prices of risk.



Page 109 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

5.3. Discrete-Time Affine Processes 109

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[109], (12)

Lines: 388 to 438

———
2.45705pt PgVar
———
Normal Page
PgEnds: TEX

[109], (12)

with ρ > 0, c > 0, and ν > 0. As discussed in Gourieroux and Jasiak (2001),
this is the CMGF of an autoregressive gamma (AG) process obtained by hav-
ing Yt+1|(Z t+1,Yt )∼ c gamma (ν + Z t+1), where Z t+1|Yt ∼ Poisson (ρYt/c).
Equivalently, Yt+1/c follows a noncentral gamma distribution with noncen-
trality parameter ρYt . The conditional density function of an AG(ν, ρYt , c)
process is obtained as a convolution of the standard gamma and Poisson
distributions:

f (Yt+1|Yt ) = 1
c

∞∑
n=0

pn

(
ρYt
c

)
γ

(
Yt+1

c
, ν + n

)
, (5.30)

where

pn(λ) = λn

n!
e−λ and γ (y, a) = ya−1

!(a)
e−y (5.31)

are, respectively, the probability of n jump arrivals from a Poisson process
with parameter λ, and the probability density of a standard gamma distribu-
tion with parameter a. !(·) is the gamma function. The first two conditional
moments of Yt+1 implied by this model are

E
[
Yt+1

∣∣Yt ] = νc + ρYt , (5.32)

Var
[
Yt+1

∣∣Yt ] = νc2 + 2cρYt , (5.33)

both of which are affine in Yt . See Gourieroux and Jasiak (2001) for a more
in-depth treatment of univariate AG processes.

Starting with the specification of the CMGF makes it clear that we can
extend these discrete-time formulations beyond those directly linked to
diffusion models, however. For instance, a higher-order Markov process is
easily accommodated by changing the conditioning information to �Y J

t and
replacing (5.29) with

E
[
euYt+1

∣∣ �Y J
t

]
= e−ν ln(1−uc)−uρ ′ �Y J

t /(1−uc). (5.34)

Note that in this construction the counterparts to both the conditional
mean and variance are again affine in �Y J

t . That the conditional variance
is affine in �Y J

t , and not simply Yt , implies that all of the elements of ρ
must be nonnegative. This, in turn, restricts the nature of the persistence
in Y accommodated by the AG(ν, ρ �Y J

t , c) process. Had we instead started
with the CMGF of a conditional Gaussian process, with constant conditional
variance, then the analogous ρ would be unconstrained.
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All of these Laplace transforms describe well-defined discrete-time
models in their own right. It also turns out that they can be interpreted as
the discrete-time counterparts to continuous-time models in the sense that
as the length of the sampling interval shrinks toward zero, they converge to
affine diffusions. More precisely, in the case of the autoregressive Gaussian
model, we let α = κθ�t , β = 1− κ�t , and σ 2 = σ̃ 2�t . Then, as�t → 0, Yt
converges to the Gaussian process: dYt = κ(θ − Yt )dt + σ̃dWt .

Similarly, for the AG(ν, ρYt , c) process, let ρ = 1 − κ�t , c = (σ 2/2)�t ,
and ν = 2κθ/σ 2. Then, as �t → 0,

Et [Yt+�t] − Yt
�t

→ κ(θ − Yt ), Vart [Yt+�t]
�t

→ σ 2Yt , (5.35)

and Yt converges to the square-root process: dYt = κ(θ − Yt )dt + σ
√
YtdWt .

The difference between the conditional density of the square-root diffu-
sion and the AG process is illustrated in Figure 5.1 for the parameter values

Yt+1

f(
Y t

+1
| Y t

=
θ)

25

15

5

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22

10

20

Discrete
Continuous

Figure 5.1. Conditional density of an autoregressive gamma process: ν = 4. The
other parameter values are: ρ = 0 .917 , c = 0 .00167 , κ = 1, σ = 0 .2, θ =
0 .08, and �t = 1/12.
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Y t
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Figure 5.2. Simulated time path of an autoregressive gamma process: ν = 4.

ν = 4, ρ = 0.917, c = 0.0017, and with �t = 1/12, indicating monthly
data.12 The distribution of the discrete process is somewhat fatter tailed than
its continuous-time counterpart, but the two are very close in shape. An il-
lustrative simulation from the AG process is presented in Figure 5.2. This
simulated path is everywhere positive, fluctuates around the long-run mean
of Yt (θ = 0.08), and never approaches zero.

The parameter ν underlies the so-called Feller condition, named after
W. Feller (1951), who proved that the condition ν > 1 is sufficient to
guarantee that the sample path of a square-root diffusion is strictly positive.
A value of ν between zero and one means that a square-root process hits
zero and is absorbed there with probability one. Nevertheless, assuming
that κ >0, there exists a unique solution for {Yt } that is nonnegative for all
finite t . To illustrate the different behavior of an AG process with ν>1 and
ν<1, we display in Figures 5.3 and 5.4 the density and representative sample
path for an AG process with ν = 0.4. Note that, throughout this simulation,
the process remains nonnegative. Moreover, it spends long periods near
zero, which is well below its long-run mean of 0.08. This average is achieved

12 I am grateful to Qiang Dai for providing these comparisons.



Page 112 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

112 5. Affine Processes

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[112], (15)

Lines: 473 to 485

———
2.05397pt PgVar
———
Normal Page
PgEnds: TEX

[112], (15)

Yt+1

f(
Y t

+1
| Y

t=
θ
)
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Discrete
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Figure 5.3 Conditional density of an autoregressive gamma process: ν = 0 .4. The
other parameter values are: ρ = 0 .992, c = 0 .00167 , κ = 0 .1, σ = 0 .2, θ =
0 .08, and �t = 1/12.

through the relatively pronounced upward moves in Yt , almost as if Y has a
jump component with large positive amplitude.

To construct the discrete-time counterparts to many of the multivariate
affine diffusions that have previously been examined in the literature, we
need to combine multivariate Gaussian and AG processes. Following Dai et
al. (2005), we refer to an N × 1 vector of stochastic processes Xt = (Z ′

t ,Y
′
t )

′
as a DAM (N ) process if: (i) Z t is an autonomous DAM (M ) process; and (ii)
conditional on Yt and Z t ,Yt+1 is normally distributed with a conditional
variance that depends on Z t . Elaborating, for theM ×1 autonomous vector
autoregressive gamma process Z t , f (Z t+1|Z t ) is given by

f (Z t+1|Z t ) =
M∏
i=1

1
ci

∞∑
n=0

[
(ρiZ t/ci)n

n!
e−

ρi Z t
ci ×

(
Z it+1

/
ci
)νi+n−1e−(Z it+1/ci )

!(νi + n)

]
, (5.36)

where ρi is the ith row of anM ×M nonsingular matrix ρ = (IM×M − "), so
that ρiZ t = (1 − "ii)Z it −

∑
j �=i "ijZ

j
t , with 0 < "ii < 1, "ij ≤ 0, 1 ≤ i ≤ M .
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Figure 5.4 Simulated time path of an autoregressive gamma process: ν = 0 .4.

When the off-diagonal elements of the M × M matrix ρ are nonzero, the
autoregressive gamma processes are correlated.

It follows that, for any u such that ui < (1/ci), the conditional Laplace
transform of Z has the exponential-affine form (5.2) with

φZ0(u) = −
N∑
i=1

νi log (1 − uici), φZZ (u) =
N∑
i=1

ui
1 − uici ρ

′
i .

Furthermore, the conditional mean mZ t and the diagonal elements of the
conditional covariance matrix VZ t of Z t+1 given Z t are

mZ t = νi ci + ρiZ t , VZ t (i, i) = νi c2i + 2ciρiZ t .

The off-diagonal elements VZ t (i, j), i �= j , are zero.
Conditional on Xt , Yt+1 is a (N−M )×1 autoregressive Gaussian process

with the conditional density of Yt+1 given Yt and Z t given by

Yt+1 ∼ Normal (µYt , �Yt ) ,
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where µYt = µY 0+µYX Xt and�Yt = �Y St�′
Y , with µY 0 a (N −M )×1 vector,

µYX an (N −M ) × N matrix, �Y an (N −M ) × (N −M ) matrix, and St a
(N −M ) × (N −M ) diagonal matrix with ith diagonal given by αi + β ′

iZ t ,
1 ≤ i ≤ N − M . The conditional Laplace transform of Y takes the form
exp{φY 0(u) + φYX (u)′Xt }, with

φY 0(u) = µ′
Y 0u + 1

2
u′�Ytu, φYX (u) = (µYX )

′u.

It is easy to see that, conditional on Yt , Yt+1 is normally distributed with
conditional mean µY 0 + µYX Xt and conditional covariance matrix �Yt .

To construct a joint density ofXt+1 givenXt based on these observations,
we exploit the fact that (by construction) f (Z t+1|Xt ) = f (Z t+1|Z t ). Addi-
tionally, we assume that, conditional on Xt , Z t+1 and Yt+1 are independent,
so, in particular, f (Yt+1|Z t+1,Xt ) = f (Yt+1|Xt ). This assumption essentially
amounts to assuming that within-period shocks to Z and Y are indepen-
dent. In this regard, our construction of discrete-time affine processes is
more restrictive than for the continuous-timemodels since the lattermodels
allowed for nonzero (instantaneous) correlations across the Y V and Y D [see
equation (5.18)]. While this added structure on the models DAM (N ) may
be restrictive in some settings, it turns out to be without loss of generality in
dynamic term structure models (see Chapter 12).

Under these assumptions, it follows that the conditional Laplace trans-
form of Xt+1 given Xt is exponential-affine as in (5.2). In the continuous-
time limit,Xt becomes the canonicalmodelAM (N ) for the subfamilyAM (N )
of affine diffusions.

5.4. Transforms for Affine Processes

We noted earlier that the Fourier transform of the conditional density (the
CCF) of Yt+1, discretely sampled from an affine diffusion, is known in closed
form as an exponential-affine function of Yt . It turns out that related, more
general transforms of affine processes are also known and these transforms
turn out to play a central role in pricing bonds (Chapter 12) and options
(Chapter 15). In anticipation of these analyses, we summarize the results on
transforms for affine-jump diffusions from Duffie et al. (2000), and present
some analogous results for discrete-time affine processes.

5.4.1. Transforms of Affine-Jump Diffusions

Discounting is an integral part of pricing so we first introduce a discount-
rate function R : D → R that is an affine function of the state

R(Y ) = ρ0 + ρ1 · Y , (5.37)
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for ρ = (ρ0, ρ1) ∈ R×RN . The affine dependence of the drift and diffusion
coefficients of Y and the jump intensity λ are determined by coefficients
(K ,H , l ) defined by13:

• µ(Y ) = K0 + K1Y , for K = (K0,K1) ∈ RN × RN×N .
• (σ (Y )σ (Y )′)ij = (H0)ij + (H1)ij · Y , for H = (H0,H1) ∈ RN×N ×
RN×N×N .

• λ(x) = l 0 + l1 · x , for l = (l 0, l1) ∈ R× RN .
For c ∈ CN , the set of N -tuples of complex numbers, we let θ(c) = ∫

RN exp
(c · z) dν(z) whenever the integral is well defined. This jump transform de-
termines the jump-size distribution. A “characteristic” χ = (K ,H , l , θ, ρ)
captures both the distribution of Y as well as the effects of any discounting.

Using this notation, we define the transform Tχ : CN × D× R+ × R+ →
C of YT conditional on Ft , when well defined at t ≤T , by

Tχ (u,Yt , t ,T ) = Eχ
(
exp

(
−
∫ T

t
R(Ys)ds

)
eu·YT

∣∣∣∣ Ft
)
, (5.38)

where Eχ denotes expectation under the distribution of Y determined
by χ . [Here,Tχ differs from the CCF of the distribution of YT because of the
discounting at rate R(Yt ).] Duffie et al. (2000) show that, under technical
regularity conditions,

Tχ (u, y, t ,T ) = eψ0t+ψYt ·y, (5.39)

where ψ0 and ψY satisfy the complex-valued ODEs

ψ̇Yt = ρ1 − K1 · βt − 1
2
ψ ′
YtH1ψYt − l1 (θ(ψYt ) − 1), (5.40)

ψ̇0t = ρ0 − K 0 · ψYt − 1
2
ψ ′
YtH0ψ0t − l 0 (θ(ψYt ) − 1), (5.41)

with boundary conditions ψYT = u and ψ0T = 0. The ODE (5.40) and
(5.41) is easily conjectured from an application of Ito’s formula to the can-
didate form (5.39) of Tχ . In some applications, explicit solutions for these
ODEs are known (e.g., for square-root diffusions). In other cases, solutions
are found numerically. This suggests a practical advantage to choosing jump
distributions with an explicitly known or easily computed jump transform θ .

As we will see, certain pricing problems call for the calculation of the
expected present value of the product of affine and exponential-affine

13 Here we change notation from the previous section in order to conform with the
notation in Duffie et al. (2000).
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functions of YT . Accordingly, we define the “extended” transform T̃χ :
RN × CN × D × R+ × R+ →C of YT conditional on Ft , when well defined
for t ≤ T by

T̃χ (v,u,Yt , t ,T ) = E
(
exp

(
−
∫ T

t
R(Ys) ds

)
(v · YT )eu·YT

∣∣∣∣ Ft
)
. (5.42)

The extended transform T̃χ can be computed by differentiation of the trans-
form T̃χ , just as moments can be computed from a moment-generating
function (under technical conditions justifying differentiation through the
expectation). Specifically, under technical conditions, including the differ-
entiability of the jump transform θ , Duffie et al. (2000) show that

T̃χ (v,u, y, t ,T ) = T̃χ (u, y, t ,T )(At + Bt · y), (5.43)

where T̃χ is given by (5.39) and B and A satisfy the linear ordinary differen-
tial equations

− Ḃt = K ′
1Bt + β ′

tH1Bt + l1∇θ(βt )Bt , (5.44)

− Ȧt = K 0 · Bt + β ′
tH0Bt + l 0∇θ(βt )Bt , (5.45)

with the boundary conditionsBT =v andAT =0, where∇θ(c) is the gradient
of θ(c) with respect to c ∈ Cn .

5.4.2. Transforms for Discrete-Time Affine Processes

An analogous extended transform that is useful for pricing in discrete-time
models is

Dχ (v,u,Yt ) ≡ E[eu′Yt+1(v ′Yt+1)
∣∣Yt ] = v ′E

[∇ueu′Yt+1
∣∣Yt ], (5.46)

where ∇uf (u) is a N × 1 column vector with ith element ∂f (u)/∂ui . Under
exchange of expectation and differentiation we have

Dχ (v,u,Yt ) = v ′∇uE
[
eu

′Yt+1
∣∣Yt ]

= eφ0(u)+φY (u)′Yt v ′(∇uφ0(u) + ∇uφY (u)′Yt ), (5.47)

where φ0(u) and φY (u) are the coefficients from the conditional Laplace
transform (5.2), ∇uφ0(u) is a N ×1 column vector with ith element ∂φ0(u)/
∂ui and ∇uφY (u) is an N ×N matrix with ij th element ∂φY j (u)/∂ui . Expres-
sion (5.47) simplifies further to
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Dχ (v,u,Yt ) = eφ0(u)+φY (u)′Yt (c(u, v) + d(u, v)′Yt ), (5.48)

where c(u, v) ≡ v ′∇uφ0(u) and d(u, v)′ ≡ v ′∇uφY (u)′, for a scalar function
c(u, v) and an N × 1 vector of functions d(u, v).

5.5. GMM Estimation of Affine Processes

One straightforward, albeit often inefficient, approach to the estimation of
affine processes is to construct GMM estimators based on knowledge of the
conditional moments of Yt+1 given Yt . These moments can be computed
from the derivatives of the CCF (or CMGFwhen it exists) evaluated at u = 0.
Therefore, given a particular conditional moment, say

∂j+kCCFt (u, γ0)
∂u js1uks2

∣∣∣
u=0

= i j+kE[Y js1,t+1Y
k
s2,t+1

∣∣Yt ], (5.49)

for 1 ≤ s1, s2 ≤ N , orthogonality conditions for GMM estimation can be
constructed from the moment restrictions

E

(
Y j

s1,t+1Y
k
s2,t+1 − ∂j+kCCFt (u, γ0)

i j+k∂u js1uks2

∣∣∣∣
u=0

∣∣∣∣∣ Yt
)

= 0. (5.50)

Special cases are the closed-form expressions for the conditional mean
E[Yt+1 |Yt] and conditional variance Var[Yt+1 |Yt] derived in Fisher and
Gilles (1996) for affine diffusions. The correspondingmoments for discrete-
time affine processes can be derived directly off the CMGF.

With the first two conditional moments in hand, a standard QML es-
timator of ψ0 with the normal likelihood function can be computed. This
leads to consistent and asymptotically normal estimators that are generally
less efficient than the density-based estimators discussed later. Indeed, apart
from the case of Gaussian diffusions, the “innovations” in affine models
are nonnormal (e.g., noncentral chi-square in the case of square-root dif-
fusions). In a different, nonaffine setting, Sandmann and Koopman (1998)
found that quasi-ML estimators of stochastic volatility models were relatively
inefficient compared to full-information methods, because of the nonnor-
mal innovations. One might expect that a similar result would emerge in
the case of affine processes.

Additional efficiency may also be achieved by selection of a richer set of
moments and implementing the simulated moments estimator introduced
in Chapter 6. This estimation strategy is applicable to any model (not just
affine models) as long as we can reliably simulate a discretely sampled Yt
from the model, so we defer discussion until the next chapter.
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5.6. ML Estimation of Affine Processes

The special structure of affine models means that it is often possible to cir-
cumvent the use of simulation, while still achieving the efficiency of ML es-
timation. Whether this efficiency is actually or only approximately achieved
depends on the specification of the model.

5.6.1. ML Estimation with Known Conditional Density

If the conditional density of Yt+1 given Yt , f (Yt+1|Yt ; γ0), is known in closed
form, then we can proceed directly to write the conditional log-likelihood
function of the sample {Yt }Tt=1, lT (γ ), as in (2.3) of Chapter 2. Maximization
of (2.3) proceeds in the usual way. Examples of affine diffusions with known
conditional density functions are the cases where Yt is a vector Gaussian
process (M = 0) and Yt is a vector of independent square-root processes
(M = N and K is diagonal). In the Gaussian case, Yt+τ conditional on Yt
is distributed as a normal with mean (5.10) and variance matrix (5.11).
These moments lead immediately to the construction of the likelihood
function for this model. The case of an independent square-root diffusion
was covered in our discussion in Chapter 2, where it was noted that the
distribution of each Yi,t+1 conditional on Yit is a noncentral chi-square.
The relevant density for the multivariate case (under independence) is
obtained by multiplying together the relevant conditional densities for the
N elements of Y .

An example of a jump-diffusion model with a known likelihood func-
tion is the pure-jump diffusion

dY (t) = µY dt + σY dW (t) + J (t) dZ (t), (5.51)

where the jump amplitude J (t) is distributed as N (mJ , δ
2). Focusing first on

the moment of the nonjump component of (5.51), this model implies that
Y (t) follows a Gaussian diffusion model and, hence, that Yt − Yt−n is dis-
tributed as N (nµY ,nσ 2

Y ). This is an immediate consequence of the assump-
tions of constant instantaneous mean and variance and the independence
over time of the increments (shocks) dW (t). To this normal distribution,
we add a Poisson jump process with the probability of a jump over any short
time interval [t , t +dt) of ζdt . Thus, within any discrete interval of length n
there may be multiple jumps, with the number of jumps L being distributed
as a Poisson process with intensity ζn. Combining these observations, we
know that, conditional on the number of jumps L = ( over the sampling
interval of the data (say one period so that n = 1), the distribution of �Yt
is f (�Yt |L = () = N (µY + (ζ, η2 + (δ2). This is an implication of the as-
sumption that the jump amplitudes Jt are normally distributed and that,
conditional on L, �Yt is the sum of L + 1 independent normal random
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variables, N (nµY ,nσ 2
Y )+ J 1 + . . .+ JL . The density of�Yt is then obtained

by “integrating out” over the density of the number of jumps:

f (�Yt ) =
∞∑
(=0

e−λλ(

(!
1√

2π(η2 + (δ2)
e−

1
2 (�Yt−µY−(ψ)2/(η2+(δ2). (5.52)

One of the major advantages of casting an affine model in discrete time
is that the likelihood function of the data is known in closed form for amuch
larger class of models than in the case of continuous time. In particular,
if Z t+1 conditional on Z t follows an autoregressive gamma process with den-
sity function (5.36), Yt+1 conditional on X ′

t = (Z ′
t ,Y

′
t ) is Gaussian with

density f (Yt+1|Xt ), and (conditional on Xt) Z t+1 and Yt+1 are independent,
then the conditional likelihood function for X can be constructed in closed
form from the densities f (Xt+1|Xt ) = f (Z t+1|Z t ) × f (Yt+1|Xt ). Since this
construction encompasses the discrete-time counterparts to a large frac-
tion of the affine diffusions studied in the literature, having a closed-form
likelihood is a very powerful result. Its practical importance becomes fully
apparent upon review of the approximations developed in the literature to
deal with our lack of knowledge of the conditional density functions for
discretely sampled data from diffusion models.

5.6.2. Simulated ML Using Small Time Steps

Simulated ML estimators for diffusions have been proposed for general dif-
fusion models by Pedersen (1995) and Brandt and Santa-Clara (2001), and
for the special case of affine diffusions by Duffie et al. (2003b). This ap-
proach starts by dividing each sampling interval [t , t+1] into n subintervals,
say of equal length h = (1/n), and expressing the density function of the
data as

f
(
Yt+1

∣∣Yt ) =
∫
RN
f
(
Yt+1

∣∣Yt+1−h
)× f (Yt+1−h

∣∣Yt ) dYt+1−h

= E
[
f
(
Yt+1

∣∣Yt+1−h; γ
)∣∣Yt ; γ ]. (5.53)

From (5.53) we see that the density function f (Yt+1|Yt ) can be interpreted
as an expectation of f (Yt+1|Yt+1−h), treated as a function of Yt+1−h , and inte-
grated against the conditional density f (Yt+1−h |Yt ). Therefore, if the density
f (Yt+1|Yt+1−h) can be accurately approximated, and (given Yt) Yt+1−h can
be simulated, then (5.53) can be computed by Monte Carlo integration.

Pedersen (1995) proposes working with the Euler approximation (5.13)
and replacing the density f (Yt+1|Yt+1−h) in (5.53) with fN (Yt+1|Y γ,n

t+1−h), the
density function of a normal distribution with mean (1/n)µ(Y γ,n

t+1−h; γ ) and
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variance σ 2(Y γ,n
t+1−h; γ )/n. Additionally, using the standard factorization of

the conditional density f (Yt+1|Yt ),

f
(
Yt+1

∣∣Yt) =
∫
RN
f
(
Yt+1

∣∣Yt+1−h
)× f (Yt+1−h

∣∣Yt+1−2h)×
. . . × f (Yt+1−(n−1)h

∣∣Yt ),
(5.54)

Pedersen replaces each conditional density f (Yt+1−jh |Yt+1−( j+1)h) by the
normal density fN (Yt+1−jh |Y γ,n

t+1−( j+1)h). Then, fixing a t , to compute an
approximation to the expectation in (5.53), he repeatedly simulates val-
ues of Y γ,n

t+1−h , say [Y
γ,n
t+1−h |Yt]j for the j th simulation, always starting from

the same initial value Yt . This is accomplished by recursively drawing from
the distributions fN (Yt+1−jh |Y γ,n

t+1−( j+1)h), after conditioning on the value of
Y γ,n
t+1−( j+1)h from the previous step, starting with Yt . Finally, Pedersen ap-

proximates the expectation in (5.53) as

f
(
Yt+1

∣∣Yt ) ≈ 1
T

T∑
j=1

f
(
Yt+1

∣∣[Y γ,n
t+1−h

∣∣Yt ] j ; γ ), (5.55)

where T is the simulation size.
This approach relies on the Euler approximation multiple times to sim-

ulate Y γ,n
t+1−h given Yt . Therefore, in establishing the large-sample properties

of the resulting estimator, the nature of the inherent approximation errors
have to be examined simultaneously with limiting distributions of sample
moments. Pedersen (1995) shows, for the special case of a Gaussian diffu-
sion, that there is a rate at which n can grow with T such that consistency
and asymptotic normality are ensured. (Effectively, the approximation er-
rors approach zero at a sufficiently fast rate relative to T that these errors
can be ignored in the computation of the asymptotic distribution of the
ML estimator for γ0.) He does not provide a specific rate, however. Brandt
and Santa-Clara (2001: th. 2) show that, if T → ∞, n → ∞, and T → ∞,
with T 1/2/n → 1 and T /T 1/4 → 0, then their simulated ML estimator is
distributed asymptotically as a normal random vector.

Duffie et al. (2003b) propose a simulated ML estimator that shares cer-
tain features with estimators proposed by Pedersen (1995) and Brandt and
Santa-Clara (2001) for general diffusions. However, importantly, it exploits
the special structure of affine diffusions in order to avoid some of their
approximations. To illustrate the basic idea of their approach, consider the
bivariate affine diffusion

dY1 = (k1 − K11Y1)dt +
√
Y1 dW1, (5.56)

dY2 = (k2 − K21Y1 − K22Y2)dt +
√
1 + βY1 dW2, (5.57)
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and let Y ′
t = (Y1t ,Y2t ). We are interested in computing the transition density

of Yt+1 given Yt implied by (5.56) and (5.57), where time is measured
relative to the sampling interval of the available data.

Consider again the expression (5.53) and, in particular, the first den-
sity f (Yt+1|Yt+1−h). To simplify notation, we consider the generic case of
f (Yt |Yt−h). The particular structure of this model, with no feedback from
Y2 to Y1 as in our benchmark affine model with M = 1 and N = 2, implies
that f (Y1t |Yt−h) = f (Y1t |Y1,t−h) and

f
(
Yt
∣∣Yt−h) = f (Y1t ∣∣Y1,t−h)× f (Y2t ∣∣Y1t ,Yt−h). (5.58)

The structure of (5.57) is such that f (Y1t |Y1,t−h) is known exactly to be a
noncentral chi-square distribution; no approximation for its conditional
density function is necessary (see the discussion of Example 2.1). In partic-
ular, Pedersen’s Euler approximations are unnecessary. Thus, once we have
determined a functional form for f (Y2t |Y1t ,Yt−h) we will have characterized
f (Yt |Yt−h).

Now the conditional density of Y2t given Yt−h and the entire path of Y1
between dates t − h and t is known exactly to be a normal distribution,

f
(
Y2t
∣∣Y1s , s ∈ [t − h, t];Y2,t−h

) ∼ N (µt , σ 2
t

)
, (5.59)

with

µt = e−K 22h
[∫ t

t−h
eK 22s

(
k2 − K11Y1s

)
ds + Y2,t−h

]
, (5.60)

σ 2
t = e−K 22h

[∫ t

t−h
e2K 22s

(
1 + βY1s

)
ds
]
. (5.61)

We are interested in f (Y2t |Y1t ,Yt−h) and not (5.59). For small h, we approx-
imate the former by the latter with Y1 presumed to evolve deterministically
between t − h and t . That is, we assume that

f
(
Y2t
∣∣Y1t ,Yt−h) ∼ N (µ̃t , σ̃ 2

t

)
, (5.62)

with the moments µ̃t and σ̃ 2
t given by

µ̃t = e−K 22h
[∫ t

t−h
eK 22s

(
k2 − K11(

(
Y1t ,Y1,t−h, s

))
ds + Y2,t−h

]
, (5.63)

σ̃ 2
t = e−K 22h

[∫ t

t−h
e2K 22s

(
1 + β(

(
Y1t ,Y1,t−h, s

))
ds
]
, (5.64)
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where ((Y1t ,Y1,t−h, s) is a deterministic scheme for interpolating between
Y1,t−h and Y1t . One simple version of ( is

(
(
Y1t ,Y1,t−h, s

) = Y1,t−h + s(Y1t − Y1,t−h), s ∈ [0, 1]. (5.65)

Combining this approximation with the known density function for Y1 gives
f (Yt |Yt−h). With this approximation in hand, we can compute an approxi-
mate version, f̃ (Yt+1|Yt+1−h; γ ), of the conditional density (5.53).

To compute the expectation in (5.53), Duffie et al. (2003b) also start
with the factorization of f (Yt+1|Yt ) in (5.54). Like Pedersen, they compute
the expectation by Monte Carlo integration, but in a manner that exploits
the affine structure. Specifically, for the τ th draw of Yt+1−h , say Y τ

t+1−h , they
replace each of the densities f (Yt+1−jh |Yt+1−( j+1)h) with their approximate
density f̃ (Yt+1−jh |Yt+1−( j+1)h). Then, starting with the initial value Yt , they
sequentially draw Yt+1−jh , j = (n − 1), . . . , 1, from the approximate densi-
ties with the previous draw used as the conditioning variable in the current
draw, to obtain Y τ

t+1−h . Finally, the desired expectation is computed as

f
(
Yt+1

∣∣Yt ) ≈ 1
T

T∑
τ=1

f̃
(
Yt+1

∣∣Y τ
t+1−h

)
, (5.66)

where T is the number of random draws.
Each draw from a representative conditional density f̃ (Yt+1−jh |Yt+1−( j+1)h)

is computed as follows. Given Yt+1−( j+1)h , Y1,t+1−jh is drawn from the non-
central chi-square distribution with moments and a noncentrality parame-
ter that are known functions of model parameters.14 Then, given Yt+1−( j+1)h

and Y1,t+1−jh , they draw from the normal distribution (5.62), also with mo-
ments that are known functions of the model parameters. Having drawn
Yt+1−jh , they take this value as their initial condition for simulating Yt+1−( j−1)h ,
and so on. These computations are repeated for every observation Yt and
for every trial set of parameters for the model. This approach would appear
to use much more information than the one developed by Pedersen. Cer-
tainly this is true with regard to Y1, since the noncentral chi-square is known
exactly. However, even in the case of Y2, they are exploiting the normality,
conditional on the sample path of Y1, in computing the conditional density.

5.6.3. Approximate Likelihood Functions

An alternative approach to ML estimation, based on polynomial approx-
imations, has been proposed by Ait-Sahala (2001, 2002). To illustrate his

14 Matlab, e.g., has a built-in random number generator for the noncentral chi-square. In
multivariate cases, the square-root diffusions comprising Y1,t+1−jh are assumed to be indepen-
dent. Therefore, drawing from the joint distribution can be accomplished using the marginals.
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approach, suppose that Y follows a univariate diffusion with drift µY (Yt ; γ )
and instantaneous volatility σY (Yt ; γ ). Ait-Sahalia’s approximation begins by
transforming Y to have unit volatility by means of the transformation

Xt ≡ ψ(Yt ; γ ) =
∫ Yt du

σY (u; γ ) . (5.67)

Using Ito’s lemma, it follows that

dX t = µX (Xt ; γ )dt + dWt . (5.68)

The basic idea then is to approximate the logarithm of the conditional
density of X using Hermite polynomials, and then to use standard change-
of-variable arguments to obtain the log-density of Y .

Specifically, letting � denote the time interval between discrete obser-
vations and assuming an expansion out to order K in powers of � gives
Ait-Sahalia’s approximation to ln f (�, x |X 0) as

ln f (�, x |X 0) = − ln(2π�)
2

− 1
2�

(x − X 0)
2 +

K∑
k=0

C (k)
X (x |X 0; γ )�

k

k!
, (5.69)

where the C (k)
X are constructed recursively from integrals of µX and its

derivatives. This form of an approximation is obtained by starting with a
unit-variance Gaussian distribution for�−1/2(X−X 0) scaled by a linear com-
bination of Hermite polynomials in �−1/2(X − X 0). [Note that the leading
two terms in (5.69) are those of the log-density of a Gaussian distribution
with unit variance.]15 The coefficients of the Hermite polynomials turn out
to be conditional expectations of polynomials in�−1/2(X −X 0); that is, lin-
ear combinations of conditional noncentral moments of X . The final step is
approximating these conditional moments using Taylor expansions based
on the infinitesimal generator of the process X .

The expansion of the conditional density of Y is obtained by a change
of variable. The transition density of Y is

fY (�, y|Y0; γ ) = Det[∇ψ(y; γ )]fX (�,ψ(y; γ )|ψ(Y0; γ ); γ ), (5.70)

where∇ψ(y; γ ) = σ−1
Y (y; γ ) is the Jacobian of the transformationψ . Taking

logarithms gives the approximate log-likelihood function of Y :

15 This expansion is reminiscent of the SNP approximate density used by Gallant and
Tauchen (1996) (see Chapter 6). Both are approximations to an unknown conditional density
of a discretely sample process from a diffusion model. However, Ait-Sahalia solves explicitly for
the coefficients of the Hermite polynomials in terms of the fundamental model parameters.
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ln fY (�, y|Y0; γ ) = − ln(2π�)
2

+ lnDet[∇ψ(y; γ )]

− 1
2�

(ψ(y; γ ) − ψ(Y0; γ ))2 +
K∑
k=0

C (k)
X (ψ(y; γ )|ψ(Y0; γ ))�

k

k!
.

(5.71)

For the case ofmultivariate diffusions, whether the same approximation
scheme works or not depends on the structure of the diffusion matrix
σY . Not every multivariate diffusion can be transformed to a new random
variable X with unit diffusion, σX = I . A necessary and sufficient condition
for such “reducibility” is that

∂σ−1
Y,ij (y; γ )
∂yk

= ∂σ−1
Y,ik(y; γ )
∂y j

, (5.72)

where σ−1
Y,ij is the ij th element of σ−1

Y . Condition (5.71) is in fact not satisfied
bymany diffusions of interest. For example, it is not satisfied by the bivariate
model (5.16) because Y1 determines the conditional volatility of both fac-
tors. More generally, whenever a subset of the state variables determines the
volatilities of other state variables, the diffusion is not likely to be reducible
in this sense.

For irreducible diffusions, Ait-Sahalia starts with

ln fY (�, y|Y0; γ ) = − ln(2π�)
2

− 1
2�

(y − Y0)2

+
K∑
k=0

C (k)
Y (y|Y0; γ )�

k

k!
+ lnDet

[
σ−1
Y

]
.

(5.73)

Then the coefficients C (k)
Y (y|Y0; γ ) are expanded directly in Taylor series in

(y − Y0). The computations are more involved, but he is nevertheless able
to obtain analytic expressions for these coefficients (again, up to derivatives
of the drift and diffusion coefficients of Y ).

5.7. Characteristic Function-Based Estimators

Given that, by definition, the CCF and/or CMGF of an affine process is
known (at least up to the solution of ODEs), estimation can in principle be
based on these representations of the conditional distribution even when
the functional form of the conditional density is unknown. This observation
has been exploited by Chacko (1999), Jiang and Knight (1999), Singleton
(2001), Das (2002), Knight and Yu (2002), and Chacko and Viceira (2005)
among others, to construct estimators of affine diffusions, affine asset pric-
ing models, or linear time-series models.
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The case we focus on is that of τ = 1, where time is measured in
units of the sampling interval of the available data, so that CCFt is the
characteristic function of Yt+1 conditioned on Yt . In this case, we suppress
the dependence of CCFt on τ and simply write CCFt (u). Adaptation of the
proposed estimators to the case of τ > 1 is immediate. To highlight the
dependence of the CCF on the unknown parameter vector γ , we write
CCFt (u, γ ) and let γ0 denote the true population value of γ .

5.7.1. ML Estimation by Fourier Inversion

Since the functional form of the CCF of an affine process is known, the
conditional density function of Yt+1 is also known up to an inverse Fourier
transform of CCFt (u, γ ):

fY
(
Yt+1

∣∣Yt ; γ ) = 1
(2π)N

∫
RN
e−iu

′Yt+1CCFt (u, γ ) du. (5.74)

Given (5.74), it follows that l T (γ ) is

l T (γ ) = 1
T

T∑
t=1

log
{

1
(2π)N

∫
RN
e−iu

′Yt+1CCFY (u, γ ) du
}
. (5.75)

Maximization of (5.75) can proceed in the usual way, conjecturing a value
for γ , computing the associated Fourier inversions, and so on. We refer to
the resulting estimator as the ML-CCF estimator.

Singleton (2001) illustrates the ML-CCF estimator for a one-factor
square-root diffusion process (n = 1 and Yt = rt as in Example 2.1). Since
the distribution of rt+1 conditioned on rt is noncentral χ2, the conditional
characteristic function for rt+1 is

CCFt (u) = (1 − iu/c)−(2κθ/σ 2) exp
{
iue−κrt

(1 − ui/c)
}
. (5.76)

To implement the ML-CCF estimator, with {rt } treated as an observed pro-
cess, the conditional density of rt+1 given rt was computed byGauss-Legendre
quadrature. With as few as twenty quadrature points the ML-CCF estimator
was identical to those computed using the known noncentral chi-square dis-
tribution of r .

While these univariate results are encouraging, the computational de-
mands of the ML-CCF estimator in the case of multivariate diffusions grow
rapidly with the dimension of Y . For instance, using the basic product rule,
the number of points in the grid for approximating the Fourier inversion
increases with (qp)N , where N is the dimension of Yt and qp is the number
of quadrature points used in numerical integration.
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The computational burden of Fourier inversion of a multidimensional
CCF can be avoided, at the cost of some econometric efficiency, by using
the conditional density functions of the individual elements of Y .16 Let ιj
denote the N -dimensional selection vector with 1 in the j th position and
zeros elsewhere. Then the density of Yj,t+1 = ιj · Yt+1 conditioned on the
entire Yt is the inverse Fourier transform of CCFt (ωιj , γ ) viewed as a function
of the scalar ω:

f j
(
Yj,t+1

∣∣Yt ; γ ) = 1
(2π)

∫
R
e−iωι

′
j
Yt+1CCFt (ωιj , γ ) dω. (5.77)

Estimation based on the densities (5.77) involves atmostN one-dimensional
integrations, instead of one N -dimensional integration. We refer to such
estimators as partial-ML or PML-CCF estimators.

The PML-CCF estimator is most naturally implemented as a GMM esti-
mator. Fixing j , if the model is correctly specified, we then get

E
[
∂ log f j
∂γ

(
Yj,t+1

∣∣Yt , γ0)
]

= 0 (5.78)

and hence, under regularity, maximization of the PML-CCF objective
function

l jT (γ ) = 1
T

T∑
t=1

log
{

1
(2π)

∫
R
e−iωι′

j
Yt+1CCFt (ωιj , γ ) dω

}
(5.79)

gives a consistent estimator of γ0. One of the regularity conditions is that
γ0 is identified from knowledge of the conditional likelihood function of a
single j , f j (Yj,t+1|Yt ; γ ).17 The first-order conditions associated with (5.79)
are

∂ l jT
∂γ

(γT ) = 1
T

T∑
t=1

1
f j
(
Yj,t+1

∣∣Yt , γT )

× 1
(2π)

∫
R
e−iωι

′
j
Yt+1

∂CCFt
∂γ

(ωιj , γT ) dω = 0. (5.80)

16 The following is based on Singleton (2001). Chacko (1999) proposed a similar estima-
tor for a single bond price (single component of Yt ).

17 We take up the issue of econometric identificationmore systematically in later chapters
when we consider specific asset pricing problems. Anticipating these discussions, γ 0 is identi-
fied from the pricing relations for a single bond in affine term structure models, for example.
See Dai and Singleton (2000) and Chapter 12.
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These K equations in the K unknowns γT can be solved to obtain a consis-
tent and asymptotically normal GMM estimator of γ0.

In general, the efficiency of this estimator increases with the number of
the conditional densities (5.80) that are used in estimation. When multiple
densities are used in constructing this GMM estimator, one introduces a dis-
tancematrix that exploits the fact that themoment conditions that underlie
GT are martingale difference sequences.

Though the PML-CCF estimator does not exploit any information about
the conditional joint distribution,18 information about the conditional co-
variances can be easily incorporated into the estimation by appending mo-
ments to the vector εt+1. For example, for an affine diffusion, the population
conditional covariance between Yj,t+1 and Yk,t+1, say Covt (Yj,t+1,Yk,t+1; γ ),
is known to be an affine function of Yt with coefficients that are known
functions of γ . Thus, letting

ηjk,t+1 ≡ (
Yj,t+1 − E[Yj,t+1

∣∣Yt ])Yk,t+1 − Covt
(
Yj,t+1,Yk,t+1; γ

)
, (5.81)

we can add terms of the form ηjk,t+1(γ )h(Yt ), where h : RN → R, to εt+1.
The products ηjk,t+1(γ0)h(Yt ) are martingale difference sequences, so the
optimal distance matrix is again computed from a consistent estimator of
E[εt+1ε

′
t+1].

5.7.2. GMM Estimation Based on the CCF

Singleton (2001) and Carrasco et al. (2005) construct GMM-style estimators
directly using the empirical characteristic function and show that certain
versions of these estimators approximate, arbitrarily well, the efficiency of
the ML estimator (are asymptotically equivalent to the ML-CCF estimator).
Following Singleton, we introduce a set Z∞

T of “instrument” functions with
elements z t (u) : RN → CQ , where C denotes the complex numbers, with
z t (u) ∈ It , z t (u) = z̄ t (−u), t = 1, . . . ,T , where It is the σ -algebra generated
by Yt . Defining the “residual”

εt+1(u, γ ) ≡ e iu′Yt+1 − φt (u, γ ), (5.82)

each z ∈ Z∞
T indexes an estimator γ z∞T of γ0 satisfying

1
T

∑
t

∫
RN
z t (u)εt+1

(
u, γ z∞T

)
du = 0. (5.83)

18 Estimation based on the conditional density functions f (Yj,t+1|Yt ) does, of course,
exploit some information about the correlation among the state variables, since this density is
conditional on Yt . In particular, it exploits all of the information about the feedback among
the variables through the conditional moments of each Yj,t+1, E[Y mj,t+1|Yt ].
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Under the regularity conditions for GMM estimators outlined in Chapter 3,
γ z∞T is consistent, and asymptotically normal with limiting covariancematrix

V∞
0 (z) = D(z)−1�∞(z)(D̄(z)′)−1, (5.84)

where

D(z) = E
[∫
RN
z t (u)

∂φt (u)
∂γ

du
]
, (5.85)

�∞(z) = E
[∫
RN
z t (u)εt+1(u, γ0) du

∫
RN

ε̄t+1(u, γ0)z̄t (u)′ du
]
. (5.86)

Extending the analyses by Feuerverger and McDunnough (1981) and
Feuerverger (1990) for an i.i.d. environment to the case of Markov time-
series models, Singleton (2001) shows that the optimal index in Z∞

T , in the
sense of giving the smallest asymptotic covariance matrix among empirical
CCF estimators, is

z∗∞t (u) = 1
(2π)N

∫
RN

∂ ln f
∂γ

(
Yt+1

∣∣Yt , γ0)′e−iu′Yt+1 dYt+1; (5.87)

and, moreover, the limiting covariance matrix of the GMM estimator γ ∗∞T
obtained using z∗∞t (u) is the asymptotic Cramer-Rao lower bound, I (γ0)−1.

From a practical perspective, the ECCF estimator z∗∞t has no computa-
tional advantages over the ML-CCF estimator, because the index z∗∞ cannot
be computed without a priori knowledge of the conditional density func-
tion. Accordingly, Singleton developed a computationally tractable estima-
tor that is consistent and “nearly” as efficient as these ML estimators. Setting
N =1 for notational simplicity, the basic idea is to approximate the integral∫

R
z t (u)

[
e iuYt+1 − φYt (u, γ )

]
du (5.88)

underlying the construction of (5.83) with the sum over a finite grid in
R. For any finite grid, no matter how coarse, this GMM-CCF estimator is
shown to be consistent and asymptotically normal with an easily computable
asymptotic covariance matrix. Moreover, the asymptotic covariance matrix
of the optimal GMM-CCF estimator is shown to converge to I (γ0)−1 as the
range and fineness of the approximating grid in R increases.

This GMM-CCF estimator circumvents the need for multidimensional
Fourier inversion. However, it introduces a new computational considera-
tion. Namely, as the grid of u’s is made increasingly fine, the correlations
among the sample moments for “nearby” u’s become increasingly large,



Page 129 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

5.7. Characteristic Function-Based Estimators 129

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[Last Page]

[129], (32)

Lines: 1093 to 1094

———
441.28pt PgVar
———
Normal Page
PgEnds: TEX

[129], (32)

so much so that the distance matrix often becomes ill conditioned (nearly
singular). In practice, singularity problems may arise when as few as two
or three u’s are used in the approximating grid. Fortunately, as shown by
Carrasco et al. (2005), there is a way around this problem. They construct
a GMM-CCF estimator that exploits a continuum of moment equations
simultaneously.
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6
Simulation-Based Estimators of DAPMs

6.1. Introduction

For several reasons, the implementation of GMM and ML estimators in the
analysis of DAPMs may be computationally demanding, if not essentially
infeasible. One such circumstance is when there are unobserved state vari-
ables. For instance, the stochastic volatility model of the instantaneous re-
turn (Example 2.3) has

dr (t) = κ(r̄ − r (t)) dt + √
v(t) dBr (t), (6.1)

dv(t) = ν(v̄ − v(t)) dt + σv
√
v(t) dBv(t), (6.2)

where the volatility process v(t) is assumed to be unobserved by the econo-
metrician. Consequently, discretely sampled returns, {rt }, are not Markov
conditioned on their own history and the functional form of the condi-
tional distribution of rt is unknown.Moreover, apart from a few special cases,
the moments of rt , expressed as functions of the unknown parameters, are
unknown.1 The preceding estimation problem is, of course, rendered even
more challenging by the presence of jumps in returns or volatility, possibly
with state-dependent arrival intensities.

This chapter discusses two possible solutions to the problem of estimat-
ing DAPMs in the presence of jumps and latent time series: the simulated
moments estimator (SME) and the Markov chain Monte Carlo (MCMC)
estimator. Both of these estimators are applicable to DAPMs without latent
variables. However, it is especially in situations where one or more variables
are latent or the processes involve complex specifications of jumps that

1 For this particular example approximate ML estimators have been developed, some of
which were discussed in Chapter 5.

130
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these methods often clearly dominate others, both in their tractability and
potential econometric efficiency.

Much of this chapter is devoted to discussing conditions for the con-
sistency and asymptotic normality of the SME.2 We suppose that the state
vector Yt that determines asset prices follows a time-homogeneous Markov
process whose transition function depends on an unknown parameter vec-
tor β0. Asset prices, and possibly other relevant data, are observed as g (Yt ,
β0) for some given function g of the underlying state and parameter vector.
In parallel, a simulated state process {Y β

s } is generated (analytically or nu-
merically) from the economicmodel and corresponding simulated observa-
tions g (Y β

s , β) are taken for a given parameter choice β. The parameter β is
chosen so as to “match moments,” that is, to minimize the distance between
sample moments of the data, g (Yt , β0), and those of the simulated series
g (Y β

t , β), in a sense to be made precise. The SME extends the GMM estima-
tor to a large class of asset pricing models for which themoment restrictions
of interest do not have analytic representations in terms of observable vari-
ables and the unknown parameter vector.

For two reasons, the regularity conditions underlying GMM estimation
for time-series models without simulation are not applicable to estimation
problems involving simulation. First, in simulating time series, presample
values of the series are typically required. In most circumstances, however,
the stationary distribution of the simulated process, as a function of the
parameter choice, is unknown. Hence, the initial conditions for the time
series are not generally drawn from their stationary distribution and the
simulated process is usually nonstationary. Second, functions of the cur-
rent value of the simulated state depend on the unknown parameter vector
both through the structure of the model (as in any GMM problem) and in-
directly through the generation of data by simulation. The feedback effect
of the latter dependence on the transition law of the simulated state pro-
cess implies that the first-moment-continuity condition used in Chapter 3
in establishing the uniform convergence of the sample to the population
criterion functions is not directly applicable to the SME. Furthermore, the
nonstationarity of the simulated series must be accommodated in establish-
ing the asymptotic normality of the SME.

The next three sections present a more formal definition of the SME
and prove that it is consistent and asymptotically normal. Then we take
up the important issue of moment selection or, equivalently, the choice
of g (Yt , β). Specifically, we show how to construct moments using the scores
of the log-likelihood function from an auxiliary time-series model that

2 Portions of this chapter are taken from Duffie and Singleton (1993), copyright by
the Econometric Society. Complementary discussions of simulated moment estimation are
presented in McFadden (1987), Pakes and Pollard (1987), and Lee and Ingram (1991).
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captures important features of the conditional distribution of the data. If
the auxiliary model chosen is sufficiently flexible in capturing features of
the conditional distribution of Y , then the resulting SME is asymptotically
efficient (achieves the same efficiency as the unknown ML estimator).

The last section outlines theMCMC estimator as an alternative, one that
in some circumstances has more attractive properties than the SME.

6.2. SME: The Estimation Problem

We assume that a given RN -valued state process {Yt }∞t=1 is generated by the
difference equation

Yt+1 = H (Yt , εt+1, β0), (6.3)

where the parameter vector β0 is to be estimated, and {εt } is an i.i.d. se-
quence ofRp -valued random variables on a probability space (	,F ,P ). The
number of shocks, p, need not equal the dimension of the state vector, N .
The probability distribution of εt is given a priori up to a possibly unknown
parameter vector.

The parameter vector β0 lies in the admissible parameter space 
 ⊂
RK , 
 compact. In addition, letting Z t = (Yt ,Yt−1, . . . ,Yt−�+1) for some
positive integer � < ∞, we assume that estimation of β0 is based on the
moments of the observation function g (Z t , β), g : RN � × 
 → RM , for
positive integers � and M , with M ≥ K . Moments of the observed series
are calculated as sample moments of the observed g ∗

t ≡ g (Z t , β0). Note
that we do not require that all N of the state variables be observed by
the econometrician. In the presence of unobserved state variables, it is
implicit that g defines moments of those state variables for which historical
observations are available.

The function H may be known or determined implicitly by the numer-
ical solution of a discrete-time model for equilibrium asset prices or by a
discrete-time approximation of a continuous-time model. For example, in
the stochastic volatility diffusion model (6.1) and (6.2), with correlation
Corr(dBr , dBv) = ρ, the Euler discretization scheme leads to the bivariate
data-generating process(

�r nk
�vnk

)
= 1

n

(
κ
(
r̄ − r nk−1

)
ν
(
v̄ − vnk−1

)
)

+
( √

vnk−1 0

ρσv
√
vnk−1

√
1 − ρ2σv

√
vnk−1

)
1√
n

(
ε1k

ε2k

)
,

(6.4)

where εk is a bivariate standard normal vector. According to this discretiza-
tion, each discrete sampling interval (day, week, and so on) is divided up
into n subintervals so every nth simulated observation from (6.4) corre-
sponds to one observed data point. In deriving the asymptotic distribution
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of estimators based on this or other discretization schemes, one can either
assume that discretization describes the true probability model for the state
vector or, if the true model is a diffusion, then one can develop the asymp-
totics with n→∞ as sample size gets large. In this chapter we take n as fixed
(the discretization is the truth). Chapters 5 and 7 discuss the asymptotic the-
ory for the case of the true discrete-time process implied by a continuous-
time model.

For certain special cases of (6.3) and g , the function mapping β to
E[g (Z t , β)] is known and independent of t . In these cases, the GMM
estimator

bT = argminβ∈


[
1
T

T∑
t=1

g ∗
t − E[g (Z t , β)]

]′
WT

[
1
T

T∑
t=1

g ∗
t − E[g (Z t , β)]

]
,

(6.5)

for given “distance matrices” {WT } is consistent for β0 and asymptotically
normal under regularity conditions in Hansen (1982b) and Chapter 3. For
instance, if the drift of r in (6.1) is the constant µr (no mean reversion),
then the unconditional moments of discretely sampled rt generated by the
volatility specification (6.2), as well as the volatility model

d log v(t) = ν(v̄ − log v(t)) dt + σv dBv(t), (6.6)

are known in closed form.3 However, essentially any deviation from these
two basic specifications places one in an environment where the moments
are not known.

The simulated moments estimator circumvents the requirement that
β �→E[g (Z t , β)] is known by making the much weaker assumption that the
econometrician has access to an Rp -valued sequence {ε̂t } of random vari-
ables that is identical in distribution to, and independent of, {εt }. Then, for
any RN -valued initial point Ŷ1 and any parameter vector β ∈ 
, the sim-
ulated state process {Y β

t } can be constructed inductively by letting Y β

1 = Ŷ1
and Y β

t+1 = H (Y β
t , ε̂t+1, β). Likewise, the simulated observation process {g β

t }
is constructed by g β

t = g (Z β
t , β), where Z

β
t = (Y β

t , . . . ,Y
β

t−�+1). Finally, the
SME of β0 is the parameter vector bT that best matches the samplemoments
of the actual and simulated observation processes, {g ∗

t } and {g bTt }.
More precisely, let T : IN→ IN define the simulation sample size T (T )

that is generated for a given sample size T of actual observations, where
T (T )→∞ as T→∞. For any parameter vector β, let

3 See Das and Sundaram (1999) for a discussion of themoments of the square-root model
and Melino and Turnbull (1990) for the moments of the log-volatility model.
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GT (β) = 1
T

T∑
t=1

g ∗
t − 1
T (T )

T (T )∑
s=1

g β
s (6.7)

denote the difference in sample moments. If {g ∗
t } and {g β

s } satisfy a law of
large numbers, then limT GT (β) = 0 if β = β0. With identification condi-
tions, limT GT (β) = 0 if and only if β = β0. We therefore introduce a se-
quence W = {WT } of M×M positive-semidefinite matrices and define the
SME for β0 given (H , ε, T , Ŷ1,W ) to be the sequence {bT } given by

bT = argmin
β∈


GT (β)′WTGT (β) ≡ argmin
β∈


QT (β). (6.8)

The distance matrix WT is chosen with rank at least K and may depend on
the sample information {g ∗

1 , . . . , g
∗
T }⋃{g β

1 , . . . , g
β

T (T ) : β∈
}.
Comparing (6.5) and (6.8) shows that the SME extends the method-

of-moments approach to estimation by replacing the population moment
E[g (Z t , β)] with its sample counterpart, calculated with simulated data. The
latter sample moment can be calculated for a large class of asset pricing
models for which E[g (Z t , β)] (treated as a function of β) is not known.

For several reasons, this estimation problem is not a special case of the
estimation problem discussed in Chapter 3. The most important difference
between the estimation problem with simulated time series and the stan-
dard GMM estimation problem lies in the parameter dependency of the
simulated time series {g β

t }. In a stationary, ergodic environment, one ob-
serves g (Z t , β0), where the data-generation process {Yt } is fixed and β0 is
the parameter vector to be estimated. In contrast, g β

t = g (Z β
t , β) depends

on β not only directly, but indirectly through the dependence of the entire
past history of the simulated process {Y β

t } on β.
Furthermore, in contrast to the simulated moments estimators for i.i.d.

environments, the simulation of time series requires initial conditions for
the forcing variables Yt (rt and vt in our example). Even if the transition
function of the Markov process {Yt } is stationary (i.e., has a stationary dis-
tribution), the simulated process {Y β

t } is not generally stationary since the
initial simulated state Y β

1 is typically not drawn from the ergodic distribution
of the process. In this case, the simulated process {g β

t } is nonstationary. At
a practical level, one can leave out an initial portion of the simulated state
variables {Y β

t } in order to mitigate transient effects. The formal justification
for this approach to dealing with initial conditions problems comes with
establishing that the effects of initial conditions die out in such a way as to
not affect the asymptotic distribution of the SME.

A related initial conditions problem, common to the GMM and simu-
lated moments estimation of equilibrium asset pricing models, occurs when
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one of the state variables, say Yj t , is determined as a deterministic func-
tion of the history of Yt . Examples include the GARCH model of stochastic
volatility, where return volatility σ 2

t is linear in σ 2
t−1 and (rt−1 −µr ,t−1)

2 (see
Chapter 7), and models with capital accumulation, where today’s capital
stock is linear in last period’s stock and investment. In the former case, the
initial volatility is unobserved, whereas in the second case one may wish to
accommodate mis-measurement of the initial capital stock.4 The regularity
conditions introduced subsequently to address the initial conditions prob-
lem for simulation are also applicable to these other settings.

6.3. Consistency of the SME

The presence of simulation in the estimator pushes one to special lengths
in justifying regularity conditions for the consistency ofmethod-of-moments
estimators that, without simulation, are often taken for granted. There are
two particular problems. First, since the simulated state process is usually
not initialized with a draw from its ergodic distribution, one needs a condi-
tion that allows the use of an arbitrary initial state, knowing that the state
process converges rapidly to its stationary distribution. Second, one needs
to justify the usual starting assumption of some form of uniform continuity
of the observation as a function of the parameter choice. With simulation, a
perturbation of the parameter choice affects not only the current observa-
tion, but also transitions between past states, a dependence that compounds
over time.

Initially we describe the concept of geometric ergodicity, a condition
ensuring that the simulated state process satisfies a law of large numbers
with an asymptotic distribution that is invariant to the choice of initial con-
ditions. Then ergodicity of the simulated series is used to prove a uniform
weak law of large numbers for GT (β) and weak consistency of the SME (i.e.,
bT →β0 in probability).5

6.3.1. Geometric Ergodicity

In order to define geometric ergodicity, let P tx denote the t -step transition
probability for a time-homogeneous Markov process {Xt }; that is, P tx is the

4 See Dunn and Singleton (1986) and Eichenbaum et al. (1988) for examples of studies
of Euler equations using GMM estimators in which this type of initial condition problem arises.

5 In our discussion of consistency for GMM estimators, we focused on strong consistency
(almost sure convergence). Duffie and Singleton (1993) give conditions on the state transition
function H that guarantee that the compounding effects of simulation on the properties of
estimators damp out over time, and then use these conditions to prove strong consistency.
However, their damping conditions are not satisfied by many of the diffusion models that
make up DAPMs. Therefore, we focus on their conditions for weak consistency, which appear
to place somewhat weaker requirements on H .
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distribution of Xt given the initial point X 0=x . The process {Xt } is ρ-ergodic,
for some ρ ∈ (0, 1], if there is a probability measure π on the state space of
the process such that, for every initial point x ,

ρ−t∥∥P tx − π
∥∥
v → 0 as t → ∞, (6.9)

where ‖ · ‖v is the total variation norm.6 The measure π is the ergodic
distribution. If {Xt } is ρ-ergodic for ρ < 1, then {Xt } is geometrically ergodic.
In calculating asymptotic distributions, geometric ergodicity can substitute
for stationarity since it means that the process converges geometrically to its
stationary distribution. Moreover, geometric ergodicity implies strong (α)
mixing in which the mixing coefficient α(m) converges geometrically with
m to zero (Rosenblatt, 1971; Mokkadem, 1985).

In what follows, for any ergodic process {Xt }, it is convenient for us to
write X∞ for any random variable with the corresponding ergodic distribu-
tion. We adopt the notation ‖ X ‖q = [E(‖ X ‖q)]1/q for the Lq norm of
any RN -valued random variable X , for any q ∈ (0,∞). We let Lq denote the
space of such X with ‖ X ‖q < ∞, and let ‖ x ‖ denote the usual Euclidean
norm of a vector x .

A key ingredient for ergodicity is positive recurrence,7 for which a key
condition is irreducibility. For a finite Markov chain, irreducibility means
essentially that each state is accessible from each state, obviously a suffi-
cient condition in this case for both recurrence and geometric ergodicity.
Mokkadem (1985) uses the following convenient sufficient condition of ir-
reducibility of a time-homogeneous Markov chain {Xt } valued in RN with
t -step transition probability P tx .8

Condition 6.3.1. For any measurable A ⊂ RN of nonzero Lebesque measure and
any compact K ⊂ RN , there exists some integer t > 0 such that

inf
x∈K P

t
x (A) > 0. (6.10)

For Condition 6.3.1 to hold, it is obviously enough that Px(A) is contin-
uous in x and supports all ofRN for each x . However, this single-period “full
support” condition is too strong an assumption in a setting with endogenous
state variables. To be more concrete, consider the equilibrium asset pricing

6 The total variation of a signed measure µ is ‖ µ ‖v = suph:|h(y)|≤1

∫
h(y) dµ(y).

7 For a finite-state Markov chain, recurrence means essentially that each state occurs
infinitely often from any given state. See, e.g., Doob (1953) for some general definitions.

8 General criteria for the geometric ergodicity of a Markov chain have been obtained by
Nummelin and Tuominen (1982) and Tweedie (1982).
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model examined byMichner (1984) in which agents have logarithmic utility
over a single consumption good. The production function is z t k

φ
t , 0<φ<1,

where kt is the capital stock and the technology shock follows the law of
motion

ln z t+1 = ςz + ρ ln z t + εt+1, (6.11)

for constants ςz and ρ. Under these simplifying assumptions, the implied
equilibrium asset pricing function and law ofmotion for the capital stock are:

pt = δ

(1 − δ)
(1 − φ)z t k

φ
t , (6.12)

dt = (1 − φ)z t k
φ
t ,

k t+1 = δφz t k
φ
t . (6.13)

Clearly, the distribution of k t+1 given (k t , z t ) is degenerate. Nevertheless,
if {εt } is, say, i.i.d. normal, then {Yt } for this illustrative economy satisfies
Condition 6.3.1. More generally, Condition 6.3.1 is not a strong condition
on models with endogenous state variables provided that these variables do
not move in such a way that renders some states inaccessible from others.9

A second key ingredient for ergodicity is aperiodicity. For example,
the Markov chain that alternates deterministically from “heads” to “tails”
to “heads” to “tails,” and so on, is not ergodic, despite its recurrence.

With these definitions in hand, we can review Mokkadem’s sufficient
conditions for geometric ergodicity of what he calls “nonlinear AR(1) mod-
els,” which includes our setting:

Lemma 6.1 (Mokkadem). Suppose {Yt }, as defined by (6.3), is aperiodic and
satisfies Condition 6.3.1. Fix β and suppose there are constants C > 0, δβ ∈ (0, 1),
and q > 0 such that H (·, ε1, β) : RN →Lq is well defined and continuous with

‖H (y, ε1, β)‖q < δβ‖y‖, ‖y‖ > C . (6.14)

Then {Yt } is geometrically ergodic. Moreover, {‖Y β
t ‖q} and ‖Y β

∞‖q are uniformly
bounded.

Condition (6.14), inspired by Tweedie (1982), means roughly that {Yt },
once outside a sufficiently large ball, heads back into the ball at a uniform
rate.

9 If the state process {Xt } is valued in a proper subset S of RN , Condition 6.3.1 obviously
does not apply, but analogous results hold if Condition 6.3.1 applies when substituting S
everywhere for RN (and relatively open sets for sets of nonzero Lebesgue measure).
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6.3.2. A Uniform Weak Law of Large Numbers

Since geometric ergodicity of {Y β
t } implies α-mixing, it also implies that {Y β

t }
satisfies a strong (and hence weak) law of large numbers. For consistency of
the SME, however, standard sufficient conditions require a strong or weak
law to hold in a uniform sense over the parameter space 
. For example,
the family {{g β

t } : β ∈ 
} of processes satisfies the uniform weak law of large
numbers if, for each δ > 0,

lim
T→∞P

[
sup
β∈


∣∣∣∣∣E(g β
∞
) − 1
T

T∑
t=1

g β
t

∣∣∣∣∣ > δ

]
= 0. (6.15)

In our setting of simulated moments, {Z β
t } is simulated based on various

choices of β, so continuity of g (Z β
t , β) in β (via both arguments) is useful

in proving (6.15). We assume the following global modulus of continuity
condition on {g β

t }.

Definition 6.1. The family {g β
t } is Lipschitz, uniformly in probability, if there is

a sequence {Ct } such that for all t and all β and θ in 
,
‖ g β

t − g θ
t ‖ ≤ Ct ‖ β − θ ‖,

where CT = T−1 ∑T
t=1 Ct is bounded (with T ) in probability.

Lemma 6.2 (Uniform Weak Law of Large Numbers). Suppose, for each
β ∈ 
, that {Y β

t } is ergodic and that E(|g β
∞|) < ∞. Suppose, in addition, that

the map β �→ E(g β
∞) is continuous and the family {g β

t } is Lipschitz, uniformly in
probability. Then {{g β

t } : β ∈ 
} satisfies the uniform weak law of large numbers.

Proof (Lemma 6.2).10 Since 
 is compact it can be partitioned, for any n, into n
disjoint neighborhoods
n1 ,


n
2 , . . . , 


n
n in such a way that the distance between any

two points in each 
ni goes to zero as n → ∞. Let β1, β2, . . . , βn be an arbitrary
sequence of vectors such that βi ∈ 
ni , i = 1, . . . , n. Then, for any ε > 0,

P

[
sup
β∈


∣∣∣∣∣ 1T
T∑
t=1

(
g β
t − E(g β∞))∣∣∣∣∣ > ε

]

≤ P
[
n⋃
i=1

{
sup
β∈
ni

∣∣∣∣∣ 1T
T∑
t=1

(
g β
t − E(g β

∞
))∣∣∣∣∣ > ε

}]

10 The strategy for proving this lemma, which was suggested byWhitneyNewey, follows the
proof strategies used by Jennrich (1969) and Amemiya (1985) to prove similar lemmas. Newey
(1991) presents a more extensive discussion of sufficient conditions for uniform convergence
in probability.
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≤
n∑
i=1

P

[
sup
β∈
ni

∣∣∣∣∣ 1T
T∑
t=1

(
g β
t − E(g β

∞
))∣∣∣∣∣ > ε

]

≤
n∑
i=1

P

[∣∣∣∣∣ 1T
T∑
t=1

(
g βi
t − E(g βi∞

))∣∣∣∣∣ > ε

2

]
(6.16)

+
n∑
i=1

P

[
1
T

T∑
t=1

sup
β∈
ni

∣∣∣g β
t − g βi

t

∣∣∣ + sup
β∈
ni

∣∣E(g β
∞
) − E(g βi∞

)∣∣ > ε

2

]
,

where the last inequality follows from the triangle inequality. For fixed n, since {Y βi
t } is

ergodic and E(|g βi
t |) < ∞, the first term on the right-hand side of (6.16) approaches

zero as T→∞ by the weak law of large numbers for ergodic processes.
As for the second right-hand-side term in (6.16), the Lipschitz assumption on

{g β
t } implies that there exist C t such that
n∑
i=1

P

[
1
T

T∑
t=1

sup
β∈
ni

∣∣∣g β
t − g βi

t

∣∣∣ + sup
β∈
ni

∣∣E(g β
∞
) − E(g βi∞

)∣∣ > ε

2

]

≤
n∑
i=1

P

[
sup
β∈
ni

|β − βi | 1T
T∑
t=1

Ct + sup
β∈
ni

∣∣E(g β
∞
) − E(g βi∞

)∣∣ > ε

2

]
. (6.17)

The assumption that CT = T−1 ∑T
t=1 Ct is bounded in probability implies that there

is a nonstochastic bounded sequence {AT } such that plim (
CT − AT

) = 0. Thus,
for T larger than some T ∗ and some bound B, the right-hand side of (6.17) is less
than or equal to

n∑
i=1

P

[
sup
β∈
ni

|β − βi |
∣∣CT − AT

∣∣ + sup
β∈
ni

|β − βi |B

+ sup
β∈
ni

∣∣E(g β
∞
) − E(g βi∞

)∣∣ > ε

2

]
. (6.18)

By continuity of β �→ E(g β
∞), we can choose n once and for all so that |β −βi |B +

|E(g β
∞) − E(g βi∞) | < ε/4 for all β in 
ni and all i. Thus, the limit of (6.18) as

T →∞ is zero, and the result follows. Q.E.D.

The ergodicity assumption on {Y β
t } in Lemma 6.2 can be replaced with

Mokkadem’s conditions for geometric ergodicity on the transition function
H and disturbance εt , summarized in Lemma 6.1.
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6.3.3. Weak Consistency

Next, we summarize several important assumptions that are used in our
proofs of both consistency and asymptotic normality of the SME.

Assumption 6.1 (Technical Conditions). For each β ∈ 
, {‖ g β
t ‖2+δ : t =

1, 2, . . .} is bounded for some δ > 0. The family {g β
t } is Lipschitz, uniformly in

probability, and β �→ E(g β
∞) is continuous.

Assumption 6.2 (Ergodicity). For all β ∈ 
, the process {Y β
t } is geometrically

ergodic.

The hypotheses of Lemmas 6.1 and 6.2 are sufficient for Assumptions 6.1
and 6.2 provided Mokkadem’s conditions apply for some q > 2.

We impose the following condition on the distance matrices {WT } in
(6.8).

Assumption 6.3 (Convergence of Distance Matrices). �0 is nonsingular and
WT →W0 = �−1

0 almost surely, where ( for any t)

�0 ≡
∞∑

j=−∞
E
([
g ∗
t − E(g ∗

t

)][
g ∗
t−j − E(g ∗

t−j

)]′)
. (6.19)

For the second moments in this assumption to exist, and their sum to con-
verge absolutely, the assumptions that {‖ g ∗

t ‖2+δ : t = 1, 2, . . .} is bounded
for some δ > 0 and geometric ergodicity of {Yt } together suffice, as shown
by Doob (1953: pp. 222–224). Further, as with GMM, the choice of W0 in
Assumption 6.3 leads to themost efficient SME within the class of SMEs with
positive-definite distance matrices.

Note that �0 in Assumption 6.3 is a function solely of the moments of
{g ∗
t }; in particular, �0 depends neither on β nor on the moments of the

simulated process {g β
t }. Thus, �0 can be estimated using, for instance, the

sum of sample autocovariances of the data {g ∗
t }, weighted as in Newey and

West (1987b) and the discussion of Case ACh(∞) in Chapter 3.11 Given the
definition of �0 and the fact that geometric ergodicity implies α-mixing,
it follows that the Newey and West estimator is consistent for �0 in our
environment.

Alternatively, �0 could be estimated using simulated data {g β
t }. Since

the rate of convergence of spectral estimators is slow and one has control

11 Several estimators of �0 have been proposed in the literature. See, e.g., Hansen and
Singleton (1982), Newey andWest (1987a), and Eichenbaum et al. (1988). In general, E[(g ∗

t −
Eg ∗
t )(g

∗
t−j − Eg ∗

t−j )
′] is nonzero for all j in (6.19) and the Newey and West estimator is

appropriate.
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over the size T (T ) of the simulated sample, this alternative may be relatively
advantageous. A two-step procedure for estimating�0 is required, however,
so in establishing consistency of a simulated estimator of �0 one would
need to account both for dependence of {g β

t } on an estimated value of
β and the parameter dependence of simulated series. One approach to
establishing consistency would be to extend the discussion of consistent
estimation of spectral density functions using estimated residuals without
simulation, found in Newey and West (1987a) and Andrews (1991), to the
case of simulated residuals.

Under Assumptions 6.1–6.3, the criterion function QT (β) converges
to the asymptotic criterion function Q 0 : 
 → R defined by Q 0(β) =
G∞(β)′W0G∞(β) almost surely. We assume that Q 0 satisfies:

Assumption 6.4 (Uniqueness of Minimizer). Q 0(β0)<Q 0(β), β∈
, β �=β0.

Our first theorem establishes the consistency of the SME {bT :T ≥1} given
by (6.8).

Theorem 6.1 (Consistency of SME). Under Assumptions 6.1–6.4, the SME
{bT } converges to β0 in probability as T→∞.

Proof (Theorem 6.1). By the triangle inequality,∣∣∣∣∣
(
1
T

T∑
t=1

g ∗
t − 1
T

T∑
s=1

g β
s

)
− [
E
(
g ∗

∞
) − E(g β

∞
)] ∣∣∣∣∣

≤
∣∣∣∣∣ E(g ∗

∞
) − 1
T

T∑
t=1

g ∗
t

∣∣∣∣∣ +
∣∣∣∣∣ E(g β

∞
) − 1
T

T∑
s=1

g β
s

∣∣∣∣∣ . (6.20)

Assumption 6.2 implies that the first term on the right-hand side of (6.20) converges
to zero in probability. By Lemma 6.2, the second term on the right-hand side of (6.20)
converges in probability to zero uniformly in β. Now δT (β) ≡ |QT (β)−Q 0(β) |
satisfies

δT (β) =
∣∣∣ GT (β)′WTGT (β) − [

E
(
g ∗

∞
) − E(g β

∞
)]′W0

[
E
(
g ∗

∞
) − E(g β

∞
)] ∣∣∣

≤
∣∣∣ GT (β) − [

E
(
g ∗

∞
) − E(g β∞)] ∣∣∣′ ∣∣ WT ∣∣ ∣∣ GT (β) ∣∣

+ ∣∣ E(g ∗
∞
) − E(g β

∞
) ∣∣′ ∣∣ WT −W0

∣∣ ∣∣ GT (β) ∣∣
+ ∣∣ E(g ∗

∞
) − E(g β

∞
) ∣∣′ ∣∣ W0

∣∣ ∣∣∣ GT (β) − [
E
(
g ∗

∞
) − E(g β

∞
)] ∣∣∣ . (6.21)

Therefore, if we let �T = supβ∈
 |GT (β) − [E(g ∗∞) − E(g β
∞)]|, then
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sup
β∈


δT (β) ≤ �T |WT | [φ0 + �T ] + φ0 |WT −W0 | [φ0 + �T ] + φ0 |W0 | �T ,
(6.22)

where φ0 ≡ max{|E(g ∗∞) − E(g β
∞)| : β ∈ 
} exists by the continuity condition in

Assumption 6.1. Since each of the terms on the right-hand side of (6.22) converges
in probability to zero, plimT [supβ∈
 δT (β)] = 0. This implies the convergence of
{bT } to β0 in probability as T→∞, as indicated, for example, in Amemiya (1985):
p. 107. Q.E.D.

6.4. Asymptotic Normality of the SME

The regularity conditions used in Chapter 3 to prove the asymptotic nor-
mality of GMM estimators are no longer directly applicable because of the
nonstationarity of {Y β

t }. Therefore, in this section we extend our discussion
of asymptotic normality to the case of geometrically ergodic forcing pro-
cesses that may not be stationary.

In deriving the asymptotic distribution of {√T (bT − β0)}, we use an
intermediate-value expansion of GT (β) about the point β0. Accordingly, we
adopt the following assumption.

Assumption 6.5. (1) β0 and the estimators {bT } are interior to 
. (2) g β
t is

continuously differentiable with respect to β for all t . (3) D0 ≡ E[∂g β0∞ /∂β] exists,
is finite, and has full rank.

Expanding GT (bT ) about β0 gives

GT (bT ) = GT (β0) + ∂G ∗(T )(bT − β0), (6.23)

where (using the intermediate value theorem) ∂G ∗(T ) is theM ×K matrix
whose ith row is the ith row of ∂GT (b iT )/∂β, with b

i
T equal to some convex

combination of β0 and bT .
Premultiplying (6.23) by [∂GT (bT )/∂β]′WT , and applying the first-

order conditions for the optimization problem defining bT , we get[
∂GT (bT )

∂β

]′
WTGT (bT ) = 0 =

[
∂GT (bT )

∂β

]′
WTGT (β0) + JT (bT − β0), (6.24)

where

JT =
[
∂GT (bT )

∂β

]′
WT ∂G ∗(T ).

Equation (6.24) can be solved for (bT − β0) if JT is invertible for suffi-
ciently large T . This invertibility is given by Assumption 6.5(3) provided



Page 143 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

6.4. Asymptotic Normality of the SME 143

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[143], (14)

Lines: 464 to 512

———
0.5792pt PgVar
———
Long Page
PgEnds: TEX

[143], (14)

∂GT (bT )/∂β converges in probability to D0. For notational ease, let Dβ f
β
t =

df (Z β
t , β)/dβ (the total derivative). Under the following additional assump-

tions, Lemma 6.2 and Theorem 4.1.5 of Amemiya (1985) imply that
plimT ∂GT (bT )/∂β = D0.

Assumption 6.6. The family {Dβg β
t : β ∈ 
, t = 1, 2, . . .} is Lipschitz, uni-

formly in probability. For all β ∈ 
, E(|Dβg β
∞|) < ∞, and β �→ E(Dβg

β
∞) is

continuous.

Under these assumptions, the asymptotic distribution of
√
T (bT −β0) is

equivalent to the asymptotic distribution of (D ′
0�

−1
0 D 0)

−1D ′
0�

−1
0

√
TGT (β0).

The following theorem provides the limiting distribution of
√
TGT (β0).

Theorem 6.2 Suppose T /T (T )→τ as T→∞. Under Assumptions 6.1–6.6,

√
TGT (β0) �⇒ N [0, �0 (1 + τ)] . (6.25)

Proof (Theorem 6.2). From the definition of GT ,

√
TGT (β0) =

(
1√
T

T∑
t=1

[
g ∗
t − E(g ∗

∞
)])

−
√
T√
T (T )

(
1√
T (T )

T (T )∑
s=1

[
g β0
s − E(g β0∞

)])
. (6.26)

We do not have stationarity, but the proof of asymptotic normality of each term on
the right-hand side of (6.26) follows Doob’s (1953) proof of a central limit theorem
(Theorem 7.5), which uses instead the stronger geometric ergodicity condition. In
particular, we are using the assumed bounds on ‖ g β

t ‖2+δ to conclude that asymptotic
normality of g ∗

t and g
β0
t (suitably normalized) follows from the geometric ergodicity of

{Yt } and {Y β0
t }. (Note that, although Doob’s theorem 7.5 includes his condition D 0

as a hypothesis, the geometric ergodicity property is actually sufficient for its proof.)
Our result then follows from the independence of the two terms in (6.26) and the
convergence of

√
T /

√
T (T ) to

√
τ . Q.E.D.

The following corollary is an immediate implication of Theorem 6.2:

Corollary 6.4.1. Under the assumptions of Theorem 6.2,
√
T (bT − β0) con-

verges in distribution as T → ∞ to a normal random vector with mean zero and
covariance matrix

%0 = (1 + τ)
(
D ′

0�
−1
0 D 0

)−1
. (6.27)
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As τ gets small, the asymptotic covariance matrix of {bT } approaches
[D ′

0�
−1
0 D 0]−1, the covariance matrix obtained when an analytic expression

for E(g β
∞) as a function of β is known a priori. The proposed SME uses

a Monte Carlo generated estimate of this mean, which permits consistent
estimation of β0 for circumstances in which the functional form of E(g β

∞) is
not known. In general, knowledge of E( f β∞) increases the efficiency of the
method-of-moments estimator of β0. However, if the simulated sample size
T (T ) is chosen to be large relative to the size T of the sample of observed
variables {g ∗

t }, then there is essentially no loss in efficiency from ignorance of
this population mean. Typically, in applications of the SME to asset pricing
problems, it is assumed that T is large and τ ≈ 0.

These results presume that the model is identified. The rank condition
for the class of models considered here is Assumption 6.5(3). Inmany GMM
problems, verifying that the choice of moment conditions identifies the
unknown parameters under plausible assumptions about the correlations
among the variables in the model is straightforward. However, inspection
of the moment conditions used in simultaneously solving and estimating
dynamic asset pricing models may give little insight into whether Assump-
tion 6.6(3) is satisfied. In the context of the stochastic volatility example, for
instance, it might not be clear a priori which of the moments selected iden-
tify the correlation ρ between the diffusions. The identification problem is
likely to be even more challenging when the model is solved numerically
for some of the elements of {Y β

t } as functions of the state and parameter
vectors. In Section 6.6 we discuss an approach to systematically selecting
moments in such a way that many of the known features of the conditional
distribution of Yt are captured in the choice of g .

6.5. Extensions of the SME

The SME can be extended along a variety of different dimensions. One
obvious extension is to let g ∗

t be a function of β. In order to accommodate
this extension, we need one additional primitive, a measurable observation
function g̃ : RN � × 
 → RM , where � is the number of periods of states
entering into the observation g [(Yt , . . . ,Yt−�+1), β] at time t . We can always
assume without loss of generality that � = �. We replace the observation
g ∗
t on the actual state process used in the SME with the observation g̃ β0

t ≡
g̃ (Z t , β0), and assume that E[g̃ β0

t − g β0
t ] = 0. This leads us to consider the

difference in sample moments:

GT (β) = 1
T

T∑
t=1

g̃ β
t − 1

T (T )

T (T )∑
s=1

g β
t . (6.28)
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We once again introduce a sequence {WT } of positive-semidefinite distance
matrices and define the criterion functionQT (β) = GT (β)′WTGT (β) as well
as the extended SME {bT } of β0, just as in (6.8).

In this case, we replace �0 defined by (6.19) with the weighted covari-
ance matrix, for the positive scalar weight τ ≡ limT→∞ T /T (T ), �g̃ ,g ,τ =
τ�0 + �1, where

�1 =
∞∑

j=−∞
E
([
g̃ β0
t − E(g̃ β0

t
)][
g̃ β0
t − E(g̃ β0

t
)]′)

. (6.29)

Assuming that the families {g β
t } and {g̃ β

t } satisfy the technical conditions
of Assumption 6.112 and that WT → W0 = �−1

g̃ ,g ,τ almost surely, the weak
consistency of this extended SME follows from an argument almost identical
to the proof of Theorem 6.1. Furthermore, under the same assumptions as
in Theorem 6.2,

√
T (bT −β0) converges in distribution to a normal random

vector with mean zero and covariance matrix

%g̃ ,g ,τ = (
D ′

0�
−1
g̃ ,g ,τD 0

)−1
. (6.30)

In contrast to the matrix %0 in (6.27), consistent estimation of %g̃ ,g ,τ must
typically be accomplished in two steps, using both simulated and observed
data.

Allowing the observation function g̃ β
t to depend on β is useful in many

asset pricing problems. For instance, one may wish to compare the sample
mean of the intertemporal marginal rate of substitution of consumption in
the data to the mean of the corresponding simulated series.

A second example arises when one or more of the coordinate func-
tions defining g̃ , say g̃ j , has the property that h j (β) = E[g̃ j (Z∞, β)] de-
fines a known function h j of β. If this calculation cannot be made for
every j , one can mix the use of calculated and simulated moments by
letting g j (z, β) = h j (β) for all z, for any j for which h j is known. This
substitution of calculated moments for sample moments improves the pre-
cision of the simulated moments estimator, in that the covariance matrix
%g̃ ,g ,τ is smaller than the covariance matrix %0 obtained when all moments
are simulated. Errors in measurement of g ∗

t are accommodated by letting
g̃ β0
t = g (Z t , β0) + ut , where {ut } is an ergodic, mean-zero RM -valued mea-

surement error. Note that the asymptotic efficiency of the SME is increased
by ignoring the measurement error in simulation and comparing sample
moments of the simulated {g (Z β

t , β)} and {g̃ β
t }.

12 Note that the uniform-in-probability Lipschitz condition for {g̃ β
t } is qualitatively weaker

than the same condition for {g β
t }, since g̃ β

t depends only directly on β (i.e., Yt is not dependent
on β).
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6.6. Moment Selection with SME

A key issue faced in implementing the SME is the choice of the function
g that describes the moments to be used in estimation. In principle, one
would want to choose moment equations that capture some of the known
features of the data, such as persistence, conditional heteroskedasticity, and
nonnormality. Gallant and Tauchen (1996) have proposed a very clever
application of the SME that allows one to easily capture these features of
asset prices or returns.

Let Yt denote the subvector of the state process Yt that is observed.
In the stochastic volatility model, for example, Yt = rt and Y ′

t = (rt , vt ).
Further, let f (Yt | �Yt−1; δ) denote a conditional density function of the data
that captures parametrically the features of the data that one is interested in
representing by g . Maximum likelihood estimation of δ gives the estimator
δT that solves

∑
t

∂ log f
∂δ

(
Yt | �Yt−1; δT

) = 0. (6.31)

The estimator δT is a consistent estimator (under regularity conditions) of
the δ0 that satisfies

E
[
∂ log f
∂δ

(
Yt

∣∣ �Yt−1; δ0
)] = 0. (6.32)

Importantly, there is no presumption that the density f is the true condi-
tional density of Yt or that δT is a consistent estimator of any of the param-
eters of the true data-generating process for Yt . Rather, δT is a consistent
estimator of the δ0, the parameter vector that minimizes the Kullback-Leibler
information criterion, E[log(p(Yt | �Yt−1;β0)/f (Yt | �Yt−1; δ))] by the choice of
δ, where p is the density of the actual data-generating process for Y . This in-
formation criterion can be interpreted as a measure of our ignorance about
the true structure of the data-generating model.13

Having chosen f and estimated δT by themethod ofML, we let the score
of this log-likelihood function be the vector of moments used to estimate
the parameters β0 of the asset pricing model. That is, the function of the
observed data is chosen to be

g (Z t , β0; δT ) = −∂ log f
∂δ

(
Yt

∣∣ �Yt−1; δT
)
, (6.33)

13 See Akaike (1973) for a discussion of the use of this information criterion in model
selection, and White (1982) for a discussion of the properties of ML estimators of misspecified
models.
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and the corresponding function for simulated data with parameter vector
β is

g
(
Z β
t , β; δT

) = −∂ log f
∂δ

(
Yβ
t

∣∣ �Yβ

t−1; δT
)
. (6.34)

In simulating Yβ
t , it is generally necessary to simulate the entire state vec-

tor Y β
t and then select out the subvector Yβ

t that enters these moment
conditions.

Substituting these expressions into GT (β) in (6.7) gives

GT (β) = − 1
T

∑
t

∂ log f
∂δ

(
Yt

∣∣ �Yt−1; δT
) + 1
T

∑
s

∂ log f
∂δ

(
Yβ
s

∣∣ �Yβ

s−1; δT
)

= 1
T

∑
s

∂ log f
∂δ

(
Yβ
s

∣∣ �Yβ

s−1; δT
)
, (6.35)

where the last equality follows from the fact that δT is theML estimator of the
auxiliary model. Thus, the sample moments entering the GMM criterion
function depend only on the simulated data. The sources of randomness in
GT are the estimator δT and shocks εt used in the simulation. However, if T
is assumed to be large enough for the sample moments to have converged
to their population counterparts, then we can interpret GT as

GT (β) =
∫∫

∂ log f
∂δ

(
Yt

∣∣ �Yt−1; δT
)
p
(
Yt

∣∣ �Yt−1;β
)
dYt p

( �Yt−1;β
)
d �Yt−1, (6.36)

where p(Yt | �Yt−1;β) and p( �Yt−1;β) are the true conditional and marginal
distributions of the Y process generated by parameter vector β. In this case,
the only source of randomness in GT (β) is δT . This “large T ” assumption
was made in Gallant and Tauchen (1996) and has been adopted implicitly
in most applications of their approach to DAPMs.

For example, if Yt is an observed scalar process and one is interested
in capturing first-order serial correlation and conditional heteroskedasticity
that depends on lagged squared projection errors, then one could set Ỹ ′

t =
(1,Yt ) and choose

Yt | �Yt−1 ∼ N (
a ′
0Ỹt−1, γ0 + γ1ε

2
t−1

)
, εt ≡ Yt − a ′

0Ỹt−1. (3.37)

The first-order conditions to maximizing the log-likelihood function over
δ′ = (a ′

0, γ0, γ1) are

1
T

∑
t

ε̂t Ỹt−1

σ̂ 2
t−1

= 0, (6.38)



Page 148 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

148 6. Simulation-Based Estimators of DAPMs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[148], (19)

Lines: 645 to 702

———
7.08794pt PgVar
———
Normal Page

* PgEnds: Eject

[148], (19)

1
T

∑
t

(
ε̂2t

σ̂ 2
t−1

− 1

)
∂σ̂ 2
t−1

∂γ

1

σ̂ 2
t−1

= 0, (6.39)

where γ ′
T = (γ0T , γ1T ), and

ε̂t ≡ (
Yt − a ′

0T Ỹt−1
)
, σ̂ 2

t−1 ≡ γ0T + γ1T ε̂
2
t−1. (6.40)

Thus, the components of GT (β) are

1
T

∑
s

ε̂βs Ỹ
β

s−1

σ̂
β2
s−1

, (6.41)

1
T

∑
s

(
ε̂β2s

σ̂
β2
s−1

− 1

)
∂σ̂

β2
s−1

∂γ

1

σ̂
β2
s−1

, (6.42)

where the hatted variables are evaluated at simulated Y β
s and the ML esti-

mator δ′
T = (a ′

T , γ
′
T ).

More generally, as suggested in Gallant and Tauchen (1996), a tractable
and flexible family of auxiliary models is constructed as follows. Let µ �Y,t−1
denote the linear projection of Yt onto Lµ lags of Y ; that is, the fitted values
from a standard vector autoregression with Lµ lags. Moreover, they allow for
“ARCH”-like errors by transforming the innovations in this autoregression
by the matrix R �Y,t−1 with elements that are linear functions of the absolute
values of Lr past values of the εj t = (Yt − µ �Y,t−1) j .14 For example, with
Lr = 2, the transformation RY,t−1 has the form

RY,t−1 =




τ1 + τ7 |ε1,t−1| τ2 τ4

+τ25 |ε1,t−2|
0 τ3 + τ15 |ε2,t−1| τ5

+τ33 |ε2,t−2|
0 0 τ6 + τ24 |ε3,t−1|

+τ42 |ε3,t−2|,



. (6.43)

We let z t denote the standardized Yt :

14 The computer code currently available from Gallant and Tauchen for implementing
an SME using an auxiliary model of this type also allows one to specify the heteroskedasticity
as being of the GARCH(1,1) type (Bollerslev, 1986). Andersen et al. (1999b) develop an
auxiliary model based on Nelson’s (1991) EGARCHmodel. All of these models of conditional
heteroskedasticity are discussed in depth in Chapter 7.
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z t = R−1
�Y,t−1

(
Y − µ �Y,−1

)
, (6.44)

and approximate the conditional density function of Xt , as viewed through
this auxiliary model, as

f
(
Yt

∣∣ �Y�,t−1, δ
) = c( �Yt−1

) [
ϕ0 + [

h
(
z t
∣∣ �Yt−1

)]2]N (z t ), (6.45)

where N (·) is the density function of the standard normal distribution, ϕ0
is a small positive number, h(z|Y) is a Hermite polynomial in z, c( �Yt−1) is
a normalization constant, and �Yt−1 is the conditioning set. The Hermite
polynomial h is given by

h
(
z t
∣∣ �Yt−1

) = A1 +
Lh∑
l=1

n∑
i=1

A3(l−1)+1+i zli,t . (6.46)

Its presence in (6.45) serves to introduce nonnormality in the conditional
distribution of Yt by scaling the conditional normal density by a polynomial
in lagged values of Yt . This formulation is actually a special case of that
in Gallant and Tauchen (1996) in that the coefficients in the Hermite
polynomial h(z t | �Yt−1) are assumed to be constants, independent of the
conditioning information. This assumption can be relaxed to obtain amore
general auxiliary model.

Returning to the general case, we still have to compute the large-sample
distribution of the SME bT of β0. Toward this end, let

G∞(β) =
∫ ∫

∂ log f
∂δ

(
Yt

∣∣ �Yt−1; δ0
)
p
(
Yt

∣∣ �Yt−1;β
)
dYt p

( �Yt−1;β
)
d �Yt−1, (6.47)

and note thatG∞(β0) = 0 if the DAPM is correctly specified, by definition of
δ0 in (6.32). Then, by the usual derivation of the large-sample distribution
of ML estimators,

√
T (δT − δ0) �⇒ N

(
0, d−1

0 �0
(
d ′
0

)−1)
, (6.48)

where

d 0 = E
[
∂2 log f
∂δ∂δ′

(
Yt

∣∣ �Yt−1; δ0
)]
. (6.49)

The interpretation of �0 depends on one’s view of the auxiliary model.
In standard ML theory,

�0 = E
[
∂ log f
∂δ

(
Yt

∣∣ �Yt−1; δ0
)∂ log f

∂δ

(
Yt

∣∣ �Yt−1; δ0
)′]

. (6.50)
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Moreover, d ML
0 and �0 cancel each other (up to signs), because of relation

(3.52). If the chosen auxiliary model is assumed to be sufficiently rich
to nest the true conditional density of the data-generating process, then
these standard results apply and the asymptotic covariance matrix of δT is
d−1
0 = −�−1

0 .
When selecting an auxiliary model, we do not require that the auxiliary

density f (Yt | �Yt−1; δ) be the true density of the data-generating process for
Y , however. If not, then d −1

0 and �0 do not cancel each other. Moreover, in
general the score ∂ log f (Yt | �Yt−1; δ0)/∂δ will not be a martingale difference
sequence (does not satisfy the counterpart to (2.7)) and so will be serially
correlated. Therefore, this SME falls under Case ACh(∞) from Chapter 3
and

�0 =
∞∑

j=−∞
E
[
∂ log f
∂δ

(
Yt

∣∣ �Yt−1; δ0
)∂ log f

∂δ

(
Yt−j

∣∣ �Yt−j−1; δ0
)′]

. (6.51)

Using these observations, we see that

√
TGT (β0)

a= √
TG∞(β0) + d 0

√
T (δT − δ0)

= d 0
√
T (δT − δ0) �⇒ N (0, �0), (6.52)

where the a= denotes asymptotic equivalence. Therefore, the optimal dis-
tance matrix to use in constructing this score-based SME is �0, and the op-
timal SME is

bT = argmin
β∈


GT (β)′�−1
T GT (β), (6.53)

where �T is a consistent estimator of �0. This can be estimated using ei-
ther the historical data on Y ( just as the information matrix is estimated
in conventional ML estimation), or using the simulated Y bT . When using
simulated data, a two-step estimation procedure is necessary in order to get
a consistent estimator of β0 to use in construction of �T .

Finally, a standard mean-value expansion of the first-order conditions
to this GMM problem implies that

0 a= D ′
0�

−1
0

√
TGT (β0) + D ′

0�
−1
0 D 0

√
T (bT − β0), (6.54)

where

D 0 ≡ plimT→∞
∂GT (bT )

∂β
. (6.55)
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It follows that √
T (bT − β0) �⇒ N

(
0,

(
D ′
0�

−1
0 D 0

)−1)
. (6.56)

Typically, the number of parameters of the auxiliary model (equal to
the dimension of the score vector), M , is much larger than the number
of parameters of the DAPM, K . Therefore, a flexible choice of the auxiliary
model leads naturally to a set of diagnostic tests of the fit of themodel. Using
(6.56) and the Wald test of an individual moment condition developed in
Chapter 4, we can test the null hypotheses that elements of mean score
vector from the auxiliary model, G∞(β0), are zero using the sample scores
(6.35). In this setting, rejection of the null that a particular mean score is
zero would suggest that theDAPMdoes not adequately describe the features
of the conditional distribution of Y governed by the associated parameter in
the auxiliary model. It is sometimes possible to group parameters according
to, for example, whether they describe the conditional mean, variance,
or higher-order moments of the distribution of Y . In such cases, one can
construct chi-square goodness-of-fit tests of a DAPM’s fit to certain aspects
of the distribution of Y .

Several studies have examined the small-sample properties of the SME
and compared them to the properties of standard GMM and (when feasi-
ble) ML estimators. Of particular interest is how the properties of the SME
depend on the choice of auxiliary model (and hence number of moments
chosen) and sample size. Chumacero (1997) compared the small-sample
properties of the efficient SME and a GMM estimator using a more conven-
tional selection of moments for a stochastic volatility model (see Chapter 7)
and a consumption-based asset pricing model (see Chapter 10). He found
that the SME was more efficient and often showed less bias than the GMM
estimator. At the same time, tests of the overidentifying restrictions using
the SME tended to reject the models too often under his null hypotheses.

Andersen et al. (1999a) also examine the finite-sample properties of es-
timators for a stochastic volatility model. They considered auxiliary models
with ARCH (Engle, 1982), GARCH (Bollerslev, 1986), and EGARCH (Nel-
son, 1991) specifications of conditional volatility (see Chapter 7). Overall,
the SME performed very well relative to GMM estimators based on a less
systematic choice of instruments. In particular, they found that for their
models and parameter choices the overall goodness-of-fit chi-square statis-
tics from simulated moments estimation led to reliable inference.

Zhou (2001b) examines the finite-sample properties of GMM, ML and
quasi-ML, and efficient SME of a univariate square-root diffusion model,
motivated by the literature on interest rate modeling (see Example 2.1 and
Chapter 12). He finds that the ML estimator is the most efficient. Quasi-ML
estimation is second in efficiency, but it provides the most reliable results
in testing overidentifying restrictions. GMM is the least efficient estimation
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method, based on the moments chosen. The efficient SME performs espe-
cially well in high-volatility environments. However, using this method leads
to a substantial bias toward rejection of overidentifying restrictions.

6.7. Applications of SME to Diffusion Models

The application of SME to continuous-time models has been formally stud-
ied by Gallant and Long (1997) and Gallant and Tauchen (1997), and
widely applied in subsequent studies. The basic idea is to discretize the
process (5.4) describing the evolution of Yt , simulate a long time series
for the discretely sampled Y from this approximate model, and then com-
pute method-of-moments estimators by comparing the model-implied sam-
ple moments to those computed using historical data.

More concretely, consider again the Euler approximation (5.13) to the
diffusion (5.4). Starting with an initial value Y0 of the state vector and a
value for the parameter vector γ , a simulated time series Y γ,n

t can be con-
structed recursively using a standard normal random number generator to
draw the εnt . Every nth value of the Y γ,n

t is then sampled and assigned to the
simulated, discretely sampled state, where we have indexed the simulation
by the discretization size 1/n.

Taken literally, for fixed n, the distribution of the simulated Y γ,n
t does

not have the same distribution as Yt because (5.13) is not the same as the
original diffusion process. Whether or not this observation presents new
econometric complications depends on one’s view about the role of the
discretization. One view—suggesting that there is a complication—is that
when a discretization is used for simulation, it is not enough to take the
limits as sample and simulation sizes go to infinity to derive the large-sample
distribution of the resulting SME. Wemust also address what happens when
the discretization interval goes to zero or, equivalently, when n→ ∞. The
Euler scheme (5.13) has the property that, assuming µ and σ satisfy certain
polynomial growth conditions (see Kloeden and Platen, 1992: th. 10.2.2),

E
(∣∣Yt − Y γ,n

t

∣∣) ≤ K (1/n)1/2, (6.57)

for some constant K independent of n and for all n ≥ n∗. In the sense
of (6.57), the Euler approximate is said to converge strongly with order
0.5. However, strong convergence in this sense does not tell us directly at
what rate n should be increased with sample size T to ensure the asymptotic
normality of the SME. This issue is not avoided by the use ofmore “efficient”
schemes with larger orders of strong convergence,15 though such schemes
may be preferred because of their faster convergence.

15 The accuracy of the Euler scheme tends to deteriorate with increased variation in
the drift and volatility of Yt . See Kloeden and Platen (1992) for a theoretical treatment of
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A second view is that discretization is a numerical or computational is-
sue. With today’s computers we are free to set n to a very large number and
use approximation schemes that converge strongly with high order. Under
this view, the approximation errors are not relevant to the derivation of the
asymptotic distribution of γ0, for which it is assumed that n = ∞. Further-
more, for high-order approximation schemes, they are also not material to
the accuracy of the computation of parameter estimates. This second view
is the one expressed most often [see, e.g., Gallant and Long (1997) and
Gallant and Tauchen (1997)].

6.8. Markov Chain Monte Carlo Estimation

An alternative estimation strategy for diffusion models, including models
with latent state variables, is the method of Markov chain Monte Carlo.16

There are several features of this approach that may recommend it over al-
ternatives, including SME. First, its conceptual foundations draw upon the
Bayesian theory of inference. Additionally, as part of the estimation pro-
cess, MCMC generates estimates not just of the parameters of the model,
but also of the latent volatility, jump times, and jump sizes. From these esti-
mates the historical residuals of the returns and volatility processes can be
computed for use in diagnostic analyses, as we illustrate in Chapter 7. Thus,
this approach may be particularly attractive for jump-diffusion models. Re-
liable estimation of these parameters using SME depends on the auxiliary
model adequately capturing the fat-tailed nature of jump processes and,
as we will see, ensuring that this richness is captured can be challenging.
Finally, MCMC allows the separation and quantification of estimation risk
and model specification risk, and infrequent observations or missing data
are easily accommodated.

A classic example of a setting where MCMC is conveniently applied is
the stochastic volatility model of equity returns in which that state vector
is (S t , vt ), where S t is an observed stock price and vt is a latent stock-price-
volatility process (see, e.g., Jacquier et al., 1994, Eraker et al., 2003, and
Eraker, 2004). A simplified version of this model has

d ln S t = √
vt dWS t , (6.58)

d ln vt = (v̄ − κ ln vt ) dt + σvdWvt , (6.59)

with Corr(dWv, dWS ) = 0. (The case of nonzero drift in ln S t and nonzero
correlation between return and volatility shocks are considered inChapter 7.)

approximation schemes with higher orders of strong convergence and Gallant and Long
(1997) for illustrations.

16 A comprehensive survey of this method with applications to finance can be found in
Johannes and Polson (2003). We largely follow their notation in the following overview of
MCMC.
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Whereas the stock price is observed, the stochastic volatility v is not. More-
over, ln S t is not Markov given its past history (the only series that is ob-
served) so the likelihood function of the sample (ln S 1, . . . , ln ST ) is not
easily derived.

The parameters of this model can be estimated by the method of SME.
In fact a very similar Example 2.3 was used as motivation of this estimation
method. However, as a GMM estimator, SME is generally inefficient relative
to MCMC since the latter exploits both information in the likelihood func-
tion and a researcher’s priors. Moreover, SME does not provide an estimate
of the latent state v. A time series on {vt } is usually computed after estimation
using filtering methods.

The roots of MCMC estimation lie within the framework of Bayesian in-
ference. The basic idea is to combine a prior distribution over the unknown
parameter vector with the conditional density of the state vector to obtain
a joint posterior distribution of the parameters and the state conditional
on the observed asset prices (or any other observed data included in the
analysis). From this joint posterior distribution the marginal posterior dis-
tributions of the states and parameters can be computed. In particular, the
mean or median, standard deviation, quantiles, and so on, of the posterior
distribution of the parameters can be computed. Themean of this posterior
distribution is typically interpreted as the MCMC estimator of the unknown
parameters.

Let 
 denote the parameter vector of interest, X be a vector of (possi-
bly latent) state variables, and Y denote the vector of observed asset prices
or yields. The MCMC algorithm constructs a Markov chain that converges
to the joint distribution p(
,X |Y ). From this distribution, one can de-
termine both p(
|Y ) (which gives the parameter estimates) and p(X |Y )
(which provides estimates of the unobserved states). Key to this construc-
tion is the Clifford-Hammersley theorem, which implies that under a posi-
tivity condition, knowing p(
|X ,Y ) and p(X |
,Y ) is equivalent to knowing
p(X ,
|Y ).17 What gives the MCMC algorithm its traction is that the first two
distributions are often much easier to characterize than the joint distribu-
tion p(X ,
|Y ).

When it is feasible to simulate from both of these densities, the MCMC
algorithm uses the Gibbs sampler. Given realizations up to g −1,X ( g )

t is
drawn from p(Xt |
( g−1),Y ); and
( g ) is drawn from p(
|X ( g−1)

t ,
( g−1),Y ).
When direct sampling from the joint density p(X ,
|Y ) is not feasible,
researchers have replaced Gibbs sampling with Metropolis-Hastings sam-
pling. Suppose, for example, that simulation from the conditional density
p(X |
,Y ) is not feasible and, to simplify notation, let X be a scalar and let

17 This theorem brings comparable simplification when 
 or X is a vector. For instance,
the conditional density p(
|X ,Y ) is determined by the densities p(
j |
(−j ),X ,Y ), where

(−j ) is the set of 
’s excluding 
j . See Johannes and Polson (2003) for further discussion.
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π(X )=p(X |
,Y ). The basic idea is to start with a distribution q(X (g+1)|X (g ))

that is known and from which samples can be easily drawn. Depending on
the application, q(·) may depend on the parameters, other state variables,
and previous draws of X . Then a single Gibbs sampling step is replaced by
the two steps:

1. Draw X ( g+1) from the proposal density q(X ( g+1)|X ( g )).
2. Accept X ( g+1) with probability α(X ( g ),X ( g+1)), where

α(X ( g ),X ( g+1)) = min
(
π(X ( g+1))/q(X ( g+1)|X ( g ))

π(X ( g ))/q(X ( g )|X ( g+1))
, 1

)
. (6.60)

Hence, instead of having to sample from the distribution π(X ), one needs
to evaluate it at only two points. The reason this algorithm works is that
the modified transition probability q(X ( g+1)|X ( g )) α(X ( g ),X ( g+1)) satisfies
a reversibility condition that ensures that it converges to the stationary or
invariant distribution of π . Note that the accept/reject decision depends
only on the ratio π(X ( g+1))/π(X ( g )). This is an attractive feature since π is
typically known only up to a constant of proportionality. Critical in prac-
tice to the success of this algorithm is the choice of the candidate den-
sity q(·), as this choice influences the rate of convergence to the invariant
distribution.

Once a sample {
( g ),X ( g )}Gg=1 is drawn, by either of these sampling
methods, the moments of the joint distribution of (
,X ) can be computed
by Monte Carlo. This is because, under suitable regularity (see the papers
cited previously for discussion),

1
G

G∑
g=1

h
(

( g ),X ( g )) →

a.s.

∫
h(
,X )p(
,X |Y ) dXd
. (6.61)

This convergence requires ergodicity or other similar conditions that en-
sure applicability of a strong law of large numbers, some regularity on the
function h, and that the Markov chain generated by the sampling method
converges in distribution to p(
,X |Y ).

To gain some intuition for how MCMC works, consider again the stock
price process (6.58) simplified to the case of constant volatility (while allow-
ing for nonzero drift):

d ln S t = µS dt + σS dWt , (6.62)

for constantsµS and σS . [See Johannes and Polson (2003) for further discus-
sion of various perturbations of this example.] Given the Gaussian structure
of this model, continuously compounded returns follow the discrete-time
process
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� ln S t = µS + σS εt , εt ∼ N (0, 1). (6.63)

Though this model leads to a known, closed-form representation of the
likelihood function for the data (S 1, . . . , ST ), it is nevertheless instructive
to work through the MCMC algorithm to illustrate its use. The relevant dis-
tributions to be determined are p(µS |σ 2

S ,� ln S ) and p(σ 2
S |µS ,�, ln S ). We

can derive expressions for these densities using Bayes’s rule and assump-
tions about the researcher’s priors on (µS , σ

2
S ).

For illustrative purposes, suppose that the researcher has independent
priors. Then Bayes’s rule allows us to write

p
(
µS

∣∣σ 2
S ,� ln S

) = p
(
� ln S

∣∣µS , σ 2
S

)
p
(
µS

)
, (6.64)

p
(
σ 2
S

∣∣µS ,� ln S
) = p

(
� ln S

∣∣µS , σ 2
S

)
p
(
σ 2
S

)
, (6.65)

where p(σ 2
S ) and p(µS ) are the priors on these parameters. The density

p(� ln S |µS , σ 2
S ) is that of a normal, because ε is normally distributed. A

common assumption is that p(µS ) is normal and p(σ 2
S ) is inverted gamma.

One motivation for this choice is that it gives rise to p(µS |σ 2
S ,� ln S ) and

p(σ 2
S |µS ,� ln S ) having the normal and inverted-gamma distributions, re-

spectively. Therefore, the MCMC algorithm proceeds by drawing

µ
( g+1)
S ∼ p

(
µS

∣∣(σ 2
S

)( g )
, � ln S

) ∼ Normal, (6.66)

(
σ 2
S

)( g+1) ∼ p
(
σ 2
S

∣∣µ( g )
S ,� ln S

) ∼ Inverted Gamma. (6.67)

Since all of the relevant distributions are known, this is a Gibbs sampler.
Note the key role of the researcher’s priors in this implementation of
MCMC.

The gains from application of MCMC become apparent when one or
more of the state variables is unobserved. We encounter this situation when
the precedingmodel of the stock price is extended to have stochastic volatil-
ity as in (6.58). For econometric analysis, the literature has often focused on
the discrete-time counterpart of this model:

Rt = √
vt−1εS t , (6.68)

ln vt = αv + βv ln vt−1 + ηvεvt , (6.69)

where Rt ≡ ln S t − ln S t−1 is the continuously compounded return. In
applying the MCMC algorithm to this model, the Clifford-Hammersley the-
orem allows us to focus on the conditional densities

p
(
αv, βv

∣∣ηv, v,R), p(η2v ∣∣αv, βv, v,R), and p
(
v
∣∣αv, βv, η2v,R).
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Jacquier et al. (1994) adopt normal priors on (αv, βv) and an inverted-
gamma prior on η2v so the densities p(αv, βv |ηv, v,R) and p(η2v |αv, βv, v,R)
are proportional to normal and inverted-gamma distributions, respectively.

However, simulating from the density p(v|αv, βv, η2v, S ) is not easy even
in this rather simplified model. Johannes and Polson (2003) show that

p(v|
,R) ∝ p(R |
, v)p(v|
) ∝
T∏
t=1

p(vt |vt−1, vt+1,
,R). (6.70)

Each term in the latter expression takes the form

p(vt |vt−1, vt+1,
,R) ∝ v1/2t × e− lnR 2
t /2vt × e−e2t /2σ 2

v × v−1
t × e−e2t+1/2σ

2
v , (6.71)

were et = ln vt − αv − βv ln vt−1. Expression (6.71) is clearly quite com-
plicated and is not an immediately recognizable distribution. Therefore a
Metropolis-Hastings algorithm is used in which the distribution q(vt ) is cho-
sen to be a gamma distribution.

Returning to the general MCMC estimation problem, within asset pric-
ing settings, we can often exploit the Markov structure of the state variables
to further simplify the relevant distributions. Additionally, some of the vari-
ables may be independent of each other, and jump times or sizes may be in-
dependent of the underlying asset prices. For instance, in the equity option
pricing literature, jump amplitudes are usually assumed to be independent
of the level of the stock price (see Chapter 15).

Some simplification was also achieved in the preceding examples
through the choice of priors. The use of conjugate priors meant that some
of the conditional densities for the parameters inherited the same func-
tional forms as those of the priors. Should researchers prefer different pri-
ors, then determining these distributions might be a nontrivial task. It is
also likely that in some applications of MCMC the results will be sensitive to
the researcher’s choice of priors.

Of course MCMC methods are not immune to all of the challenges we
faced with likelihood estimation without unobserved states. In particular,
we often do not have closed-form expressions for this density p(Y |X ,
), so
approximations may be involved. Another potential source of approxima-
tions in applications ofMCMCmethods is the discretization of a continuous-
time process. For instance, in the stochastic volatility example, if (6.58) and
(6.59) represent the true data-generating process, then (6.69) is not the ex-
act representation of the implied discrete-time stock return process. Rather,
the discrete-time model is more naturally thought of as a discretization of
the continuous-time model.
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7
Stochastic Volatility, Jumps,

and Asset Returns

This chapter explores the shapes of the conditional distributions of asset
returns from two complementary perspectives. First, we present various
descriptive statistics of the historical data that will be useful in assessing the
goodness-of-fit of DAPMs. Second, we explore how alternative choices of
probability models for the risk factors affect the model-implied shapes of
return distributions.

That the distributions of most returns are “fat tailed” and often
“skewed” has been extensively documented in the finance literature. We
begin this chapter with some descriptive evidence on the nonzero skewness
and excess kurtosis of the unconditional distributions of equity and bond
market yields. Subsequently, we examine the conditional third and forth mo-
ments of return distributions and illustrate how these moments can be used
to discriminate among alternative time-series models for returns.

Potentially important sources of these nonnormal shapes are recurrent
periods of volatile and quiet financial markets. Accordingly, a central fo-
cus of this chapter is on how alternative parameterizations of time-varying
volatility—“stochastic volatility”—and sudden infrequent price moves—
“jumps”—affect the shapes of return distributions. Jumplike behavior can
be induced by a classical jump process (e.g., a Poisson process), shocks that
are drawn from a mixture of distributions, or a “switching-regime” process.
Accordingly, we first highlight the conceptual differences among these alter-
native formulations and then add in stochastic volatility, all in discrete time.

This discussion is followed by a review of continuous-time models with
stochastic volatility and jumps.1 We also review some of the key empirical

1 There is also a continuous-time counterpart to switching-regime models. See, e.g.,
Dai and Singleton (2003b) for a discussion of regime-switching versions of several popular
continuous-time models of interest rates. Most of the empirical literature has focused on
discrete-time versions of these models and we do as well.

158
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findings in this literature as those results play a central role in our discussion
of option pricing models in Chapter 15. Finally, we discuss the link between
discrete- and continuous-time models by exploring the continuous-time
limit of several discrete-time models as the sampling interval of the data
becomes increasingly short.

7.1. Preliminary Observations about Shape

Beyond the first two moments (mean and volatility), we also examine the
skewness and kurtosis of model-implied return distributions. The (uncondi-
tional) skewness of a random variable r , defined as Skew = E[(r − E(r ))3]/
σ 3, is a measure of the degree to which positive deviations from its mean are
larger than the negative ones. A second important feature of a distribution
is the degree to which it is “thick” or “thin” tailed. A standard measure of
tail fatness is kurtosis, Kurt = E[(r − E(r ))4]/σ 4. The kurtosis of a normal
random variable is 3, so distributions with kurtoses larger than 3 are said to
exhibit excess kurtosis.

To help in developing some intuition for the degree of departure from
normality of actual market returns, Table 7.1 presents the sample mean (µ),
standard deviation (σ , what we call “volatility”), skewness (Skew), and kurto-
sis (Kurt) of returns for various markets and instruments around the world.
As an illustrative fixed-income instrument we used the 5-year swap rate, be-
cause data were available for a wider range of countries than was the case for
intermediate-term government bonds. These instruments are defaultable,
of course, and also implicitly reflect the sovereign risks associated with the
currencies in which they were issued. The equity returns are constructed
from MSCI price indices and the swap returns are approximate holding
period returns on the 5-year swap rates, both over the sample period of
January 1990 through June 2004.2

All of the returns exhibited substantial excess kurtosis. Hong Kong eq-
uity returns had the largest kurtosis, owing in part to the political turmoil
surrounding the return of Hong Kong to Chinese control. In the case of
swaps, the European currency crises and the consequent large interven-
tions by monetary authorities are partially responsible for these kurtoses.
In particular, the substantial increases in short-term rates in Sweden were
reflected in a kurtosis of 23 for swap holding period returns.

Additionally, daily equity returns in developed markets tended to be
negatively skewed (long tails in the direction of negative returns), whereas

2 The sample period for the Hong Kong swap data is much shorter, starting in 2002, and
some of the other swap yield series start in 1991, instead of 1990. Holding period returns on
swaps were constructed using the linearized present value model discussed in Shiller (1979)
and Singleton (1980).
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several of the Asian markets exhibited positive skewness. This negative skew-
ness is often attributed to the “leverage effect,” because of Black’s (1976) in-
sight that declining stock prices tend to lead to a higher firm leverage ratio
(higher debt/equity ratio) and, consequently, more risk for equity holders.
While conceptually this relationship among prices, leverage, and volatility
holds, subsequent research suggests that this particular economic mecha-
nism may not account for the magnitude of skewness observed historically.
Nevertheless, the basic empirical observation itself is frequently referred to
as the leverage effect.

In summary, most holding period returns on securities exhibit excess
kurtosis or fat tails. Equity returns tend to be negatively skewed, whereas the
patterns of skewness for fixed-income instruments are more varied. These
findings suggest that whatever the econometric model of returns adopted,
it should imply nonnormal, fat-tailed marginal return distributions.

The nonnormality of the marginal distributions of returns need not im-
ply the nonnormality of the conditional distributions. Moreover, Table 7.1
provides no information about the dependence of conditional moments of
returns on the state of the economy. One simple “probability model” that
characterizes the dependence of conditional moments on market condi-
tions says that conditional moments of returns are well approximated by
computing rolling historical sample moments over a fixed window of data,
possibly with weighting of past observations to give more weight to the re-
cent data. For instance, Figure 7.1 displays rolling estimates of the sample
volatility, skewness, and kurtosis of returns on the S&P500 index using a geo-
metric weighting of past observations with weight factor 0.98 and a 100-day
window [see the discussion of (7.3) for a precise description of these calcula-
tions]. All of these estimates change over time. Moreover, there are notable
periods of volatility clustering (quiet and turbulent times), with associated
changes in rolling kurtosis and skewness statistics. The largest upward spikes
in volatility are often accompanied by large increases in kurtosis.

As we will see, one potential source of time-varying skewness and kur-
tosis is the variation over time in the conditional volatilities of returns. Ac-
cordingly, it is also instructive to examine the rolling sample “standardized”
returns, computed by subtracting off the rolling sample mean and dividing
by the rolling sample standard deviation. The rolling sample skewness and
excess kurtosis for these standardized returns are displayed in Figure 7.2.
Standardizing does remove some of the large negative skewness in the lev-
els of returns. However, those periods during which the skewness of returns
was particularly large and negative remain, even in the standardized data.
Similarly, though the excess kurtosis is notably smaller in the standardized
data, there are coincident large excess kurtoses both in the levels and in the
standardized series. That the standardized returns inherit the nonnormality
of the unprocessed returns suggests, as we will see, that stochastic volatility
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Figure 7.1. Rolling sample moments of S&P500 returns. Daily continuously com-
pounded returns on the S&P500 are used to construct rolling sample moments over
100-day windows. The sample period is October 1983 through December 2003.

alone (or, at least, standard formulations of stochastic volatility) is not by
itself sufficient to describe the conditional distributions of returns.

To explore the conditional distributions of returns more systematically,
we turn next to an examination of the distributions implied by several
popular time-series models of returns.3

3 If our goal was solely to estimate the conditional distributions of returns, we could
use nonparametric statistical methods to estimate the conditional densities and, from these
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Figure 7.2. Rolling sample moments of standardized S&P500 returns. The daily
returns are standardized by subtracting off the sample mean and dividing by the
rolling sample standard deviation. The sample period is October 1983 through De-
cember 2003.

densities, the implied conditional moments. However, dynamic asset pricing models are typi-
cally constructed using parametric models of price/return behavior. Therefore, our primary
focus is on how particular features of these parametric probability models translate into the
shapes of return distributions.
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7.2. Discrete-Time Models

A wide variety of discrete-time models for returns have been studied in the
literature. Rather than attempting a comprehensive review of these models,4

we focus on a small number of models that capture some of the key features
of the more popular ones. We begin with an overview of models of stochastic
volatility, and then discuss extensions of these to allow for jumps or switches
in regimes.

7.2.1. Discrete-Time Stochastic Volatility Models

A widely studied formulation of stochastic volatility is the discrete-time
GARCH(p,q) model proposed by Rosenberg (1972), Engle (1982), and
Bollerslev (1986), which has returns following the process:

rt = µt−1 + σt−1εt , (7.1)

σ 2
t−1 = ω +

p∑
j=1

αj (rt−j − µt−j−1)
2 +

q∑
i=1

βiσ
2
t−i−1, (7.2)

where µt−1 is the mean of rt conditioned on the history of returns at date
t − 1, {εt } is a sequence of i.i.d. N (0, 1) shocks, and ω, (αj : j = 1, . . . , p),
and (βi : i = 1, . . . , q) are nonnegative.5

The special case with (p = 1, q = 1), the GARCH(1,1) model, is closely
related to the so-called “rolling historical” volatility model that sets ω = 0
and α = (1 − β)6:

σ̂ 2
t ,β = (1 − β)

∞∑
j=0

β j (rt−j − µt−j−1)
2. (7.3)

This representation, which shows the geometric weighting of past squared
return shocks implicit in GARCH models, underlies the plots in Figure 7.1.
The geometric weighting serves to mitigate the sensitivity of estimated vola-
tility to outliers relative to equally weighted, rolling finite histories.

Nevertheless, because the impact of the current return rt on σ2
t (through

σ 2
t−1ε

2
t ) is quadratic, outliers in the data may lead GARCH models to exag-

gerate the level of return volatility. In particular, a day of exceptionally large

4 Excellent surveys of discrete-time models can be found in Bollerslev et al. (1992, 1994).
5 This notation is nonstandard relative to the literature on GARCH and was chosen to

reflect the fact that σ 2
t resides in the information set It of returns dated t and before.

6 This model is often used in market risk measurement systems. See, e.g., Litterman and
Winkelmann (1998). RiskMetrics adopted a volatility model similar to (7.3) (Phelan, 1995)
withµt−1 constant and a horizon of 2 weeks, a history of 100 days, and a decay factor of β=0.96.
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absolute returns may cause an “overshooting” in forecasted volatility that
dies out too slowly over time relative to actual market volatility. There are
at least two ways to measure the implied persistence in volatility in GARCH
models. One measure of persistence is the degree of autocorrelation of σ 2

t .
Within the GARCH(1,1) model, the coefficient on σ 2

t−1 in the projection
E[σ 2

t |It−1] is α+β. The condition (α+β)<1 ensures the covariance station-
arity of the GARCH(1,1) process [Bollerslev (1986)].7 Using this measure,
a market crash or “jump” could imply an inappropriately sustained major
impact on forecasted volatility if (β + α) is near unity.

An alternative measure of persistence is the median lag of past (rt−j −
µt−j−1)

2 in the conditional variance expression itself. Writing the condi-
tional variance in a GARCH model as

σ 2
t = ω̄ +

∞∑
j=0

δj
(
rt−j − µt−j−1

)2
, (7.4)

we define the median lag as the value of ν that satisfies (
∑ν−1

j=0 δj )/(
∑∞

j=0 δj )= 1
2 . For the GARCH(1,1) model ν=− log 2/ log β, which depends only on

β as it is this parameter that governs the rate of geometric decay of the effect
of past squared return shocks on σ 2

t [see (7.3)]. With the median lag, as β
gets larger a large return shock has a longer-term effect on volatility.

The dependence of σ 2
t on ε2

t in all of these GARCH-style models implies
that return shocks have a symmetric effect on volatility. A large positive
or negative return shock of equal magnitude in absolute value has the
same effect on volatility. For many markets, and in particular many equity
markets, it has long been recognized that positive and negative shocks have
asymmetric effects on volatility. Large negative shocks have a larger effect
than correspondingly large positive shocks. Historical volatility measures,
including GARCH models, do not capture this asymmetry.

Motivated by the evidence of asymmetry, several researchers have pro-
posed “asymmetric” GARCH-like models. Nelson (1991) specified the loga-
rithm of the conditional variance as

ln σ 2
t = ω + α(|εt | − E |εt | + βεt ), (7.5)

leading to the exponential or EGARCH model. By specifying the logarithm
of σ 2

t as a function of εt , he ensured that the conditional variance stays posi-
tive even if some of the coefficients in (7.5) are negative. Positive deviations
of |εt | from its mean lead to increases in the conditional variance, similar to
the GARCH model. However, unlike in the GARCH model, with nonzero β

7 More generally, for a GARCH(p,q) process, we have covariance stationarity if the sum
of α’s and β’s on lagged squared return shocks and variances is less than unity.
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the effect of εt on σ 2
t is asymmetric: if −1<β<0, then a negative surprise has

a larger (positive) effect on volatility than a positive return surprise of the
same absolute magnitude, for instance. Dependence on additional lagged
deviations of |ε| from its mean is easily accommodated.

Modifications of the basic GARCH(1,1) model to allow for asymmetry
have been proposed by Glosten et al. (1993) and Heston and Nandi (2000),
among others. The GJR model has

σ 2
t = ω + αε2

t + γ ε2
t 1{εt ≥0} + βσ 2

t−1. (7.6)

With γ < 0, positive return shocks increase volatility less than negative
shocks, thereby inducing asymmetry. The conditional variance remains pos-
itive in this model as long as β ≥ 0 and α + γ ≥ 0. Alternatively, the model
proposed by Heston and Nandi has

rt = µ + λσ 2
t−1 + σt−1εt , (7.7)

σ 2
t = ω + α (εt − γ σt−1)

2 + βσ 2
t−1, (7.8)

with εt ∼N (0, 1). The conditional covariance between rt and σt implied by
this model is Covt−1(rt , σ

2
t ) = −2αγσ 2

t−1. Hence, with γ >0, a large negative
return shock raises σ 2 more than a large positive shock.

Though volatility is time varying in these models, there is not an in-
dependent source of randomness to volatility over and above past return
shocks. One can allow for “true” stochastic volatility in discrete-time models
by introducing a random volatility shock to the process σ 2

t or ln σ 2
t . For in-

stance, following Taylor (1986) (see also Jacquier et al., 1994, and Kim et al.,
1998), one could assume that ln σ 2

t = ω+ β ln σ 2
t−1 + σvνt . By construction,

in this model σ 2
t ≥ 0.

Alternatively, adapting our discussion of autoregressive-gamma models
in Chapter 5, we could assume that σ 2

t follows an AG(a, bσ 2
t−1, c) process

with

σ 2
t = ca + bσ 2

t−1 + ηv,t−1νt , (7.9)

η2
vt = c2a + 2bc2σ 2

t−1, (7.10)

where νt is an error with mean zero and unit variance. A potential limitation
of this model is that when combined with a model for returns, the construc-
tion of a DA1(2) model presumes that the return and variance shocks are
independent, conditional on past returns and variances. That is, within a
period return and volatility shocks are mutually independent. We will see
that this is a counterfactual assumption, one that is not required for the
preceding model of ln σ 2

t .
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More generally, when modeling the level σ 2
t in discrete time, one must

be careful to ensure that σ 2
t remains nonnegative. While this can always be

ensured by truncating the distribution of σ 2
t at some lower bound v̄, it may

put positive probability mass on the variance v̄ that should be accommo-
dated when constructing the relevant likelihood function.

7.2.2. Jumps and Regime Switches in Discrete Time

Consistent with the preceding discussion, a common assumption in stochas-
tic volatility models for returns is that ε in (7.1) is Gaussian (the conditional
distribution of returns is a normal). As we have already seen, for many fi-
nancial markets, the distributions of standardized returns (rt − µt−1)/σt−1

over daily or weekly investment horizons exhibit substantial excess kurtoses
and nonzero skewness. Thus, a Gaussian conditional distribution for rt is
typically counterfactual. To better match the higher-order moments of re-
turns, we can extend the model by introducing fat-tailed shocks to r . Three
tractable ways of introducing such shocks are: (1) let ε be drawn from a
fatter-tailed distribution than a normal; (2) allow the conditional distribu-
tion of r to possibly change over time, with switching governed by a Markov
“regime” process; or (3) add jumps to r . We discuss each of these modeling
strategies in turn, initially in a setting with constant conditional volatility.

Several researchers have allowed the return shock ε to be drawn from a
fat-tailed distribution. For example, Bollerslev (1987) assumes a t distribu-
tion and Baille and Bollerslev (1989) use a power exponential distribution
for ε. Another approach is to have ε drawn from the “mixture-of-normals”
model discussed briefly in Section 4.6. Specifically, suppose that

εt ∼
{

N
(
0, σ2

1

)
with probability p

N
(
0, σ2

2

)
with probability (1 − p)

, (7.11)

where 0 < p < 1 is the mixing probability and pσ2
1 + (1 − p)σ2

2 = 1 since εt

has unit variance. The kurtosis of εt is8

Kurt = 3
[
pσ4

1 + (1 − p)σ4
2

]
[
pσ2

1 + (1 − p)σ2
2

]2 = 3
[
pσ4

1 + (1 − p)σ4
2

] ≥ 3. (7.12)

Thus, a mixture-of-normals shock induces excess kurtosis in returns.
Though this extension introduces fat tails, it preserves the zero condi-

tional skewness of the basic stochastic volatility models, because the means
of the normal distributions being mixed are zero. Similar models have been

8 The last inequality follows from the fact that pσ4
1 + (1 − p)σ4

2 is at least as large as
[pσ2

1 + (1 − p)σ2
2]2.
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studied by Jorion (1988) (a normal-Poisson mixture distribution) and Hsieh
(1989) (a normal-log normal mixture distribution).

Alternatively, building on the work by Hamilton (1989) and Gray (1996),
substantial attention has recently been devoted to switching-regime mod-
els. If we suppose that the economy can be in one of two regimes (exten-
sions to more regimes are straightforward) and that the modeler does not
observe which regime the economy is currently in, the information about
the current state of the economy is summarized by I t . As discussed in Sec-
tion 4.6, the modeler is assumed to know the functional form of the con-
ditional distribution of rt given I t−1 and the future regime of the economy,
f (rt |I t−1, St = i; θ0), i = 1, 2. In general, both the functional forms of the
conditional distributions and their associated parameter vectors may differ
across regimes.

Under these assumptions, the conditional density of rt ,

f (rt |I t−1; θ0) = f (rt |I t−1, St = 1; θ10)p 1,t−1

+ f (rt |I t−1, St = 2; θ20)(1 − p 1,t−1),
(7.13)

is known up to the conditional probability p 1,t−1 = Pr{St = 1|I t−1}. This
conditional probability is determined once the process governing switches
in regimes is specified.

The transition between regimes in switching-regime models is typically
assumed to be governed by a Markov switching process in which

Pr{St = i|St−1 = i, I t−1} =
{

Pt−1 i = 1

Q t−1 i = 2.
(7.14)

Hamilton (1989) assumed that Pt−1 and Q t−1 were constant over time and
many subsequent studies have retained this assumption.9 On the other
hand, Hamilton (1994) and Gray (1996) propose tractable models with
time-dependent (I t−1-dependent) switching probabilities. In particular, us-
ing Bayes’s rule and letting g i,t−2 ≡ f (rt−1|I t−2, S t−1 = i), the counterpart
to (4.116) for state-dependent P and Q is

p 1,t−1 = (1 − Q t−1)

[
g 2,t−2(1 − p 1,t−2)

g 1,t−2p 1,t−2 + g 2,t−2(1 − p 1,t−2)

]

+ Pt−1

[
g 1,t−2p 1,t−2

g 1,t−2p 1,t−2 + g 2,t−2(1 − p 1,t−2)

]
.

(7.15)

9 This formulation generalizes the discussion in Section 4.6 by allowing state-dependent
transition probabilities for the Markov process St .
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Thus, once one expresses Pt−1 and Q t−1 as functions of I t−1, the conditional
probabilities p 1t can be computed recursively using (7.15). Two possible
specifications for Pt−1 (similarly, Q t−1) are Pt−1 = �(α0 +αX X t−1), where �

is the cumulative normal distribution function, and 1/(1 + eα0+αX X t−1), for
some Xt−1 ∈ I t−1.

A key difference between a model based on a mixture of (not neces-
sarily normal) distributions and a regime-switching model is that the latter
introduces an additional source of persistence through the Markov pro-
cess St governing changes in regimes. This can be seen formally by setting
Pt = (1 − Q t ), for all t . In this case,

Pr{St = i|St−1 = i, I t−1} = Pr{St = i|St−1 = j, I t−1},
for ⊃�= i, so the probabilities that St takes on the values of 1 or 2 are
independent of the previous regime, St−1. Equivalently, the Markov pro-
cess St exhibits no persistence. Substituting this constraint into (7.15) gives
p 1,t−1 = Pt−1. Therefore, in the absence of any persistence in the regime
process St , the data-generating process for rt simplifies to a mixture-of-
distributions model with mixing probabilities Pt and (1 − Pt ).

A third means of introducing fat tails into return distributions is to add
a jump process to the data-generating process. This can be accomplished
by adding a Bernoulli random “jump” Z t , taking on the values {0, 1} and
satisfying Pr{Z t = 1} = ζ , with independent random amplitude ξ . A typical
specification of the distribution of ξ is N (m J , δ

2
J ). With this addition,

rt = µt−1 + σεt + ξZ t . (7.16)

Note that the conditional mean of the error term, E[σεt + ξZ t |I t−1], is not
zero, but rather is ζm J , owing to the presence of the jump. By adjusting the
mean of rt by ζm J , we can rewrite (7.16) in terms of the mean zero shock
(ξZ t − ζm J ).

This Bernoulli jump model has rt jumping at most once between t − 1
and t . A convenient way of allowing for multiple jumps within a single
time interval is to use a Poisson jump process. The Poisson formulation
arises naturally when the discrete-time model of interest is derived from a
continuous-time model. We discuss this model subsequently in our coverage
of continuous-time models.

7.2.3. Reintroducing Stochastic Volatility

As will be apparent from our review of empirical work on continuous-time
models, incorporating both jumps and stochastic volatility facilitates match-
ing of the empirical distributions of stock returns. However, some care must
be exercised in how this combination is achieved.
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An issue that may arise in the case of jumps is that a jumpy random
variable may take on inadmissible values. For instance, consider the model
AG(a, bσ 2

t−1, c) [see (7.9)] for the conditional variance σ 2
t . By construction,

σ 2
t is nonnegative in this model. However, if a jump in volatility is introduced

by adding ξZ t to this model,

σ 2
t = ca + bσ 2

t−1 + ηv,t−1νt + ξZ t , (7.17)

η2
vt = c2a + 2bcσ 2

t−1, (7.18)

then clearly the support of the distribution of ξ must be nonnegative. For
otherwise, σ 2

t may take on negative values. This problem does not arise in
adding a jump to returns (which may be negative).

Computational tractability may also be compromised by the combina-
tion of stochastic volatility and regime switching. The reason is that the con-
ditional variances of asset returns are often highly persistent. As such, σ 2

t
depends on lagged information that is itself regime dependent. In the case
of an ARCH(p) model for rt ,

σ 2
t−1(St ) =

p∑
j=1

αj

(
rt−j (St−j ) − µt−j−1(St−j−1)

)2

so there is dependence not only on St , but also on (St−1, . . . , St−p−1). This
dependence can be handled by increasing the effective number of regimes.
For example, if there are two regimes and p lagged squared residuals in an
ARCH model, then the model can be recast as a standard regime-switching
model with 2 p+1 regimes (Cai, 1994; Hamilton and Susmel, 1994). The
computational burden of estimation increases with p.

This problem is particularly acute in the case of a GARCH model, be-
cause σ 2

t implicitly depends on the entire past history of the regimes. To
circumvent the path dependence of GARCH volatilities, Gray (1996) pro-
posed a modification of the literal implementation of a switching GARCH
model. He examined the special case of (7.13) in which

f
(
rt
∣∣I t−1, St = i; θi0

) ∼ N
(
µi,t−1, σ

2
i,t−1

)
with µi,t−1 linear in rt−1 and σ 2

i,t−1 determined by a modified GARCH(1,1)
process as follows. Letting

εt = rt − [
p 1,t−1µ1,t−1 + (1 − p 1,t−1)µ2,t−1

]
,

he assumed that
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σ 2
t−1 = p 1,t−1

(
µ2

1,t−1 + σ2
1,t−1

)+ (
1 − p 1,t−1

)(
µ2

2,t−1 + σ2
2,t−1

)
(7.19)

− [
p 1,t−1µ1,t−1 + (1 − p 1,t−1)µ2,t−1

]2
and

σ 2
i,t−1 = ωi + αiε

2
t−1 + βiσ

2
t−2, i = 1, 2. (7.20)

In this manner, the σ 2
it are dependent on a common, average lagged con-

ditional variance that breaks the dependence of the likelihood on the en-
tire history of regimes St , while keeping the key persistence property of a
GARCH model.

7.3. Estimation of Discrete-Time Models

Given a parametric assumption about the distribution of εt conditional
on the entire past history of returns at date t − 1, and assuming that a
Markov switching or jump process is independent of εt , then all of these
discrete-time volatility models can be estimated by the method of maximum
likelihood. (Here we have in mind Gray’s version of the switching GARCH
model.) In developing the relevant likelihood functions, we begin with
models that exclude jumps.

Let µt−1 and σt−1 denote the conditional mean and volatility of rt , and
suppose that these moments may depend on finite J -histories of rt−1 and
σt−1. This would be true, for example, in GARCH(p,q) models with p ≤ J

and q ≤ J . Then rt |I t−1 ∼ N (µt−1, σ
2
t−1), where I t−1 is the information set

generated by past returns rt−1, rt−2, . . . , r 1 and the presample values �r J
0 and

�σ2J
0 . This follows from the fact that σ 2

t−1 can be recursively built up in all
of these models from past returns, given the initial presample values �σ2J

0 .
Furthermore, if µt−1 depends on �r J

t−1, then the conditional mean of r 1

depends on �r J
0 , so we condition on these initial returns as well.

With this notation, the likelihood function of the data can be written as

LT
(
rT , . . . , r 1

∣∣�r J
0 , �σ2J

0 ; θ) = f
(
rT , . . . , r 1

∣∣�r J
0 , �σ2J

0 ; θ) (7.21)

= f
(
rT
∣∣IT−1; θ

)
f
(
rT−1

∣∣IT−2; θ
)
. . . f

(
r 1
∣∣�r J

0 , �σ2J
0 ; θ).

The functional form of the conditional density f , for a typical date t, de-
pends on the model. In the case of GARCH models,

f
(
rt
∣∣It−1; θ

) = 1√
2πσ 2

t−1

e− 1
2 (rt −µt−1)

2/σ 2
t−1 . (7.22)
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Substituting this density into (7.21) and taking logarithms gives the log-
likelihood function lT (β) used in estimation.

Alternatively, in the MixGARCH model, we have

f
(
rt
∣∣It−1; θ

) = p × 1√
2πσ 2

t−1σ
2
1

e− 1
2 (rt −µt−1)

2/(σ 2
t−1σ

2
1)

+ (1 − p) × 1√
2πσ 2

t−1σ
2
2

e− 1
2 (rt −µt−1)

2/(σ 2
t−1σ

2
2 ).

(7.23)

This form arises because, in a given regime i, the conditional variance of
rt is σ 2

t−1 × Var(εt |Regime = i), which is σ 2
t−1σ

2
i , i = 1, 2. The constraint

pσ2
1+(1−p)σ2

2 = 1 is imposed in estimation. Though easy to write down, the
likelihood function of the MixGARCH model is globally unbounded, a well-
known problem of mixture-of-normal models [e.g., Quandt and Ramsey
(1978)]. This is illustrated by setting µ0 = r 1 and letting σ1 approach zero,
in which case (7.23) with t = 1 approaches infinity and, hence, so does
the likelihood function. This is typically not a problem in practice, because
numerical search routines find local optima, and one can search across
local optima with bounded likelihood function values. Kiefer (1978) shows
that there exists a consistent, asymptotically normal local optimum with the
usual properties of ML estimators.

In Gray’s formulation of a regime-switching GARCH model,

f
(
rt
∣∣I t−1; θ

) = p 1,t−1 × 1√
2πσ2

1,t−1

e− 1
2 (rt −µ1,t−1)

2/σ2
1,t−1

+ (1 − p 1,t−1) × 1√
2πσ2

2,t−1

e− 1
2 (rt −µ2,t−1)

2/σ2
2,t−1 .

(7.24)

Owing to the mixture nature of the resulting likelihood function, this model
also implies a globally unbounded likelihood function. Therefore, in gen-
eral, it inherits the challenge of reliable numerical identification of the pa-
rameters of the global optimum to the likelihood function.

In maximizing l T , it is necessary to choose an initial value of �σ2J
0 and

possibly of �r J
0 . The latter can be avoided by ignoring the conditional den-

sities of the first J returns. However, the former is necessary, because σ 2
t is

a constructed series rather than one that is directly observed. To construct
the time series of volatilities, Bollerslev (1986) suggests using the sample
variance of r as the initial value of σ 2

t , and we do so here as well in our
implementation of the GARCH(1,1) model. Intuitively, the use of this esti-
mated initial condition should not affect the estimates if the dependence of
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σ 2
t on its own lagged values far in the past dies out over time, as is the case

in the GARCH(1,1) model if α + β<1.
To formalize the argument that the asymptotic properties of ML esti-

mators are insensitive to the choice of initial volatility, we can call upon the
large-sample arguments used in Chapter 6. In GARCH models satisfying a
“root condition” such as α + β < 1, the effects of past (rt−s − µt−s−1)

2 on
σ 2

t , s > 0, die out geometrically fast. So we would expect that this “initial
condition” problem, which gives rise to a nonstationarity, is transient and
does not affect the asymptotic distribution of the estimators.

To highlight the key properties of alternative time-series models of
returns, we focus on the classical GARCH(1,1) or “historical volatility” and
MixGARCH discrete-time models. Table 7.2 shows the estimates for these
reference models using daily data on continuously compounded S&P500
index returns. The data, which cover the sample period January 3, 1980,
through December 31, 1996, are from the analysis by Andersen et al. (2002).
In estimating the MixGARCH model we fixed p, somewhat arbitrarily, at 0.9.
The intent was to avoid numerical indeterminacy associated with searching
over p along with the other parameters of the model. The implied estimate
of σ2 in this model is 1.93, giving the plausible result that volatility is much
higher in the infrequently occurring regime. The point estimates of α + β

in both models (0.994, 0.996) show a high level of persistence in (rt −
µ)2, consistent with previous studies of equity return volatility (see, e.g.,
Bollerslev et al., 1992). Additionally, βT >> αT so the median lag in the
effect of past (rt−j − µ)2 on σ 2

t is also large.
Adding in jumps to these models does not introduce any new complica-

tions. For the case of a Bernoulli jump without regime switching, we end up
with a mixture-of-distributions model. With probability ζ , rt is drawn from
the distribution N (µt−1 + m J , σ

2
t−1 + δ2

J ), and with probability (1 − ζ ) it is
drawn from the distribution N (µt−1, σ

2
t−1). This mixture model was imple-

mented, for example, by Das (2002) for interest-rate data.

Table 7.2. ML Estimates of the Parameters of the GARCH(1,1)
and MIXGARCH Models Using the S&P500 Equity Index

Parameters

Model µ ω α β σ1

GARCH(1,1) 0.057 0.013 0.070 0.918 NA
(0.012) (0.002) (0.002) (0.004)

MixGARCH 0.057 0.009 0.053 0.938 0.835
(0.011) (0.002) (0.004) (0.006) (0.009)

Note : Standard errors of the estimates are given in parentheses.
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When both regime switching and jumps are present, we effectively have
two sources of mixing, one from jumps, which shows no persistence, and
one from the persistent Markov regime-switching process. For the case of
two regimes, and starting with (7.13), we write

f
(
rt
∣∣It−1, St = i; θi0

) = ζ f
(
rt
∣∣It−1, St = i, jump; θi0

)
+ (

1 − ζ
)
f
(
rt |It−1, St = i,no jump; θi0

)
,

(7.25)

and proceed to parameterize the distributions of rt conditional on both the
regime and whether or not there was a jump. Then, substituting (7.25)
into (7.13) gives the conditional density of rt for use in constructing the
likelihood function for the data.

Finally, throughout this discussion we have assumed that the likelihood
of a jump, ζ , is constant. Replacing ζ by ζt−1, we see that a function of
the information in It−1 presents no new conceptual difficulties, though
estimation of the resulting model may be more challenging in practice.

7.4. Continuous-Time Models

Many of the most widely studied continuous-time models are members
of the affine family of models discussed in Chapter 5. Accordingly, our
overview of these models here is relatively brief and focuses on the more
widely adopted parameterizations in the literature. After this overview, we
briefly discuss the nature of the continuous-time models implied by the
discrete-time GARCH-style models as the sampling interval of the data ap-
proaches zero.

7.4.1. Continuous-Time Stochastic Volatility Models

Typical continuous-time models of equity returns10 with stochastic volatility
have the stock price S following the process

d ln St = (µS + ηS vt ) dt + √
vt dWSt , (7.26)

and volatility vt following either

dvt = κv(v̄ − vt ) dt + σv
√

vt dWvt (7.27)

or

d ln vt = (v̄ − κ ln vt ) dt + σvdWvt . (7.28)

10 Some of the continuous-time models of stochastic volatility are reviewed in Taylor
(1994).



Page 175 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

7.4. Continuous-Time Models 175

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[175], (18)

Lines: 497 to 515

———
3.0pt PgVar
———
Normal Page
PgEnds: TEX

[175], (18)

In both cases, the Brownian motions driving returns and volatility may
be correlated with Cov(dWSt , dWvt ) = ρ dt . The specification (7.27) has v
following a square-root diffusion and, thus, falls within the affine family
discussed in Chapter 5. In contrast, ln v follows a Gaussian process in the
specification (7.28). Though ln v follows an affine process, it is

√
vt that

appears in (7.26), so the model (7.26)–(7.28) is not in the affine family.
Some researchers have chosen to model S instead of ln S , in which case

d ln St in (7.26) is replaced by dSt/St . Using Ito’s lemma, we can derive
either of these specifications from the other by appropriate adjustments
of the drifts. In some studies, the presence of volatility in the drift of S ,
ηSvt , arises owing to such an adjustment. For instance, if the drift of dSt/St

is assumed to be the constant µS dt , then the implied drift of d ln St is
(µS − 0.5vt ) dt . In other cases, researchers have included vt directly as a
determinant of the drift of dSt/St or d ln St .

Jumps to either returns or volatility are easily added. As introduced in
Chapter 5, we let Z S be a Cox process with associated arrival intensity ζS

and (possibly random) amplitude JS , and then add the term dZSt to (7.26).
Just as in the discrete-time case, a typical specification has JS ∼N (m JS , δ

2
JS ).

When jumps in returns are present, we refer to the volatility model (7.27)
as the SVJ model and to the model (7.28) as the SLJ model, and we omit the
J when jumps in returns are not present.

Similarly, jumps in volatility are introduced through addition of the
term dZvt to either (7.27) or (7.28). In the former case, Jv must have positive
support to ensure that v stays positive. This is seen to, for example, by
assuming that Jv = emJv (constant positive amplitude for jumps in volatility)
and imposing the Feller condition (σ 2

v − 2κv v̄) < 0 (see Chapter 5). Since
ln vt is Gaussian in the second specification of volatility, jumps with negative
amplitude are admissible.

A model that is sometimes referred to as a “pure” jump-diffusion (PJ)
model has

dx t = µS dt + σS dWSt + dZSt , (7.29)

where x(t) ≡ ln [P (t)/P (0)] and JS is distributed as N (mJS , δ
2
JS ). Focus-

ing first on the nonjump component of (7.29), we note that this model
implies that x(t) follows a Gaussian diffusion model and, hence, that the
continuously compounded return over any interval of length n, r n

t , is dis-
tributed as N (nµS ,nσ 2

S ). This is an immediate consequence of the assump-
tions of constant instantaneous mean and variance and the independence
over time of the increments (shocks) dWSt . To this normal distribution, we
add a Poisson jump process with the probability of a jump over any short
time interval [t , t + dt) of ζS dt . Within any discrete interval of length n

there may be multiple jumps, with the number of jumps L being distributed
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as a Poisson process with intensity ζS n. Combining these observations, we
have

r n
t =

{
x ∼ N

(
nµS ,nσ 2

S

)
if no jumps

x + J
(1)
S + . . . + J

(L)
S if L jumps

, (7.30)

with Pr{L = "} = e−ζS n(ζS n)"/"! from the Poisson(ζS n) distribution.
All of these models have been studied in the financial literature. In

particular, the PJ model was adopted in Das (2002) to model short-term
interest rates. The SV model is similar to those used by Heston (1993) in his
studies of equity and currency market volatility; and the SVJ model is similar
to the models used by Bakshi et al. (1997) and Bates (2000) to study equity
option prices (see Chapter 15). The SVJ and SLJ models are compared in
Andersen et al. (2002). Eraker et al. (2003) study a model with jumps in
both prices and volatility, with the jump in volatility added to (7.27).

7.4.2. Continuous-Time Limits of GARCH Models

The SV and SVJ models are “true” stochastic volatility models in that volatil-
ity may move independently of returns, in contrast to, say, the GARCH
models, where volatility is driven by past return shocks. An interesting ques-
tion raised by this difference is: How does the continuous-time limit of the
GARCH model compare with these continuous-time, stochastic volatility
models? Nelson (1990) was one of the first to examine the continuous-time
limits of GARCH and EGARCH models. He obtained the result that the
limit of the GARCH(1,1) process is the volatility process

dv(t) = [ω + θv(t)] dt + ησ 2(t) dWv(t), (7.31)

where θ < 0 and the Brownian motion Wv is independent of the shock driv-
ing prices, WS . Subsequently, Duan (1997) extended Nelson’s arguments to
a broader class of GARCH-type models.

What may seem striking about these results is that starting from a de-
terministic function of lagged information in a GARCH model (σ 2

t is a deter-
ministic function of past squared deviations of rt from its conditional mean),
Nelson obtains a limiting process in which vt (the continuous-time limit of
σ 2

t ) is driven by a Brownian motion Wv that is not perfectly correlated with
the price shock WS . In particular, the fact that one shock drives prices in dis-
crete time, whereas two shocks drive prices in continuous time, would seem
to suggest that the financial theory underlying the pricing of securities with
payoffs depending on S (t) is fundamentally different in the discrete and
limiting continuous-time economies.
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A resolution of this apparent puzzle is provided by Corradi (2000), who
showed that the nature of the limiting process obtained depends mathe-
matically on how the limits are taken. She breaks each time interval into
subintervals of length h and writes the GARCH(1,1) process as

ln Sth − ln S(t−1)h = σ(t−1)hεth, (7.32)

σ 2
th − σ 2

(t−1)h = ωh + (βh − 1)σ 2
(t−1)h + h−1αhσ

2
(t−1)hε

2
th, (7.33)

where εth ∼ i.i.d. N (0, h). The coefficients are allowed to depend on h to
reflect the fact that their magnitudes depend on the length of the discrete
time interval over which data are (hypothetically) collected. The scaling by
h−1 in the last term of (7.33) standardizes this term so that its expectation
conditional on information at date (t − 1)h is αhσ

2
(t−1)h (as in the standard

GARCH model). Starting from this approximation, Corradi assumes that

lim
h→0

h−1ωh = ω, lim
h→0

h−1(αh + βh − 1) = θ < 0 (7.34)

and

lim
h→0

h−δαh = 0,∀δ < 1. (7.35)

Under these assumptions she shows that, as h →0, the process (7.31)–(7.33)
converges to

d ln S (t) = √
v(t) dWS (t), (7.36)

dv(t) = (ω + θv(t)) dt . (7.37)

Thus, in her mathematical construction, v(t), the continuous-time limit
of σ 2(t), is a deterministic process described by the ordinary differential
equation (7.37).

The reason Corradi obtains a different limit than the one obtained by
Nelson is explained by the different assumptions they make about the h-
dependence of the coefficients in their discrete-time models. In particular,
instead of (7.35), Nelson assumes that

lim
h→0

2h−1α2
h = η2, (7.38)

for a constant η. This assumption, together with (7.34), implies that the
system (7.32)–(7.33) converges to the system (7.36) and (7.31), where WS

and Wv are independent Brownian motions.



Page 178 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

178 7. Stochastic Volatility, Jumps, and Asset Returns

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[178], (21)

Lines: 601 to 636

———
3.60605pt PgVar
———
Normal Page
PgEnds: TEX

[178], (21)

To shed some light on the relative usefulness of these two (mathe-
matically correct) limits of the discrete-time GARCH(1,1) model we use
the conventional multiplication rules of stochastic calculus, (d ln S (t))2 =
v(t)(dWS (t))2 = v(t) dt , to rewrite (7.37) as

dv(t) = (ω + θ1v(t)) dt + θ2(d ln S (t))2, (7.39)

for any θ1 and θ2 satisfying θ1 + θ2 = θ . Following Corradi (2000), if we take
an Euler discrete approximation to (7.39) we get

vth − v(t−1)h = hω + θ1hv(t−1)h + θ2v(t−1)hε
2
th, (7.40)

with εth ∼ i.i.d. N (0, h). We see that setting ωh = hω, βh −1 = θ1h, and αh =
θ2h recovers the discrete-time GARCH(1,1) model (7.33). Moreover, the
h-dependent parameters (ωh, βh, αh) satisfy Corradi’s assumptions (7.34)
and (7.35). This is not true of Nelson’s limiting model. Indeed, an Euler
approximation to (7.31) leads to a volatility process with its own indepen-
dent source of uncertainty, contrary to the spirit of the GARCH model.

Similar intuition for why Corradi’s assumptions seem natural is ob-
tained by stepping outside these GARCH models and examining the true
discrete-time model implied by the univariate square-root diffusion of Ex-
ample 2.1. With (2.29) and (2.54) and the approximation e x ≈ 1 + x for
small x , the expressions for the mean and variance of the distribution of
rth − r(t−1)h conditional on r(t−1)h are approximately

E
[
rth − r(t−1)h

∣∣r(t−1)h
] ≈ −κhr(t−1)h + r̄κh, (7.41)

σ 2
r (h) ≈ σ 2hr(t−1)h + r̄

σ 2

2
κh2. (7.42)

Focusing first on the conditional mean, we note that the parameters of
the constant term, r̄κh, and slope coefficient, κh, are proportional to h.
Therefore, when scaled by h−1, these coefficients (trivially) converge to
constants as h →0, consistent with the assumptions in Nelson and Corradi.

With regard to the conditional variance, the second term involves h2

so it is approximately zero (for small h). Therefore, for fixed (small) h,
the “shock” to rth is σ

√
r(t−1)hhεth , where εth has conditional mean zero and

conditional variance one. Equivalently, letting the conditional variance of
εth be h, the shock term is σ

√r(t−1)hεth . It follows that the coefficient (σ)
does not depend on h. This is a special case of Corradi’s assumption (7.33),
with h−1αh = α, a constant. It does not match up naturally with Nelson’s
formulation, as he would have h−1σ 2 converging to a nonzero constant as
h →0.
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7.5. Estimation of Continuous-Time Models

The discussion of estimation methods in Chapter 5 focused on the case
where {Yt } is an observed, discretely sampled time series from a continuous-
time model. This covers the case of the realized rt from the (constant
volatility) PJ model. However, in all of the other continuous-time models,
stochastic volatility (vt ) is a latent process. Therefore, at least one com-
ponent of Y is unobserved and estimation must be based on (observed)
current and lagged prices or returns rt alone. These particular latent vari-
able models—the two stochastic volatility models for asset prices (7.27) and
(7.28)—are rather special in that we know quite a bit about the conditional
distribution of observed returns, even though volatility is latent. For some
parameterizations of these models, analytic expressions for certain uncon-
ditional moments of r are known and, hence, GMM estimation is feasible
(see, e.g., Melino and Turnbull, 1990). However, when vt appears in the
drift of rt and/or there are jumps in returns or volatility, then the literature
has typically turned to alternative estimation strategies.

As was discussed in Chapter 6, the SME estimator often remains a fea-
sible estimator in the presence of latent variables. All one has to do is work
with the moments of the subvector Yt of Yt that is observed. This was the
methodology used by Andersen, Benzoni, and Lund (ABL) (Andersen et
al., 2002) to estimate several continuous-time, jump-diffusion models for
the S&P500 equity index. They examined jump-diffusion models in which
there were no jumps in volatility (ζv = 0) and the drift of dSt/St was the
constant µS dt (hence v entered the drift of ln St as −0.5vt ). The amplitude
of jumps in ln St , ξS , was distributed as N (−0.5δ2, δ2), so they were assum-
ing that the amplitude of jumps in dSt/St had mean zero. Estimation was
accomplished using the efficient selection of moments proposed by Gallant
and Tauchen (1996) with an EGARCH-based auxiliary model to generate
moments and data over the sample period 1980 through 1996.

Eraker, Johannes, and Polson (EJP) (Eraker et al., 2003) allowed for
jumps in both ln St and vt , with JS ∼ N (mSJ , δ

2
JS ). The drift in ln St was

assumed to be µS dt (ηS = 0). Their sample period was January 2, 1980,
through December 31, 1999, and they used Markov Chain Monte Carlo
(MCMC) methods to construct estimates of their parameters.11 EJP con-
sidered two formulations of models with jumps in volatility, motivated by
the specifications introduced in Duffie et al. (2000). Model SVIJ has inde-
pendently arriving return and volatility jumps with JS ∼ N (mJS , δ

2
JS) and

Jv = emJv . Model SVCJ has perfectly correlated jump times (contempora-
neously arriving jumps) with Jv = emJv and JS | Jv ∼ N (mJS + ρJ Jv, δ

2
JS ).

11 See Chapter 5 for a brief overview of this estimation method, and Johannes and Polson
(2005) for a more extensive discussion of the method and applications.
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Table 7.3. Estimates of the Diffusion Parts of Several
Stochastic Volatility Models Using the S&P500 Equity Index

Parameters

Model µS v̄ κ σv ηS ρ

Andersen et al. (2002: table 6)
SV 0.050 0.660 0.016 0.077 ≡ −0.5 −0.380

(0.010) * (0.005) (0.014) (0.083)
SVJ 0.055 0.664 0.013 0.068 ≡ −0.5 −0.323

(0.011) * (0.002) (0.011) (0.027)
SL 0.050 −0.008 0.154 0.101 ≡ −0.5 −0.400

(0.010) (0.003) (0.004) (0.016) (0.071)
SLJ 0.046 −0.010 0.021 0.114 ≡ −0.5 −0.386

(0.008) (.001) (0.001) (0.004) (0.019)

Eraker et al. (2003: table 3)
SV 0.044 0.905 0.023 0.143 ≡ 0 −0.397

(0.011) (0.108) (0.007) (0.013) (0.052)
SVJ 0.050 0.814 0.013 0.095 ≡ 0 −0.467

(.011) (0.124) (0.004) (0.010) (0.058)
SVCJ 0.055 0.538 0.026 0.079 ≡ 0 −0.484

(0.011) (0.054) (0.004) (0.007) (0.062)
SVIJ 0.051 0.559 0.025 0.090 ≡ 0 −0.504

(0.011) (0.081) (0.006) (0.011) (0.066)

Note : Standard errors of the estimates are given in parentheses.

Estimates for both the ABL and EJP models are shown in Tables 7.3 and
7.4, reported on a daily basis.12

Within the SV and SL models, the magnitudes of κT reflect the highly
persistent nature of volatilities in equity markets (κ = 0 would mean that the
conditional variance is a random walk). For the parameterizations SVJ and
SV, the estimated long-run mean of volatility (

√
v̄ ∗ 252) ranges between

about 13 and 15%, which is roughly consistent with historical sample volatil-
ity (15.9% for the EJP sample period).

Particularly in the models studied by EJP, we see that the estimated val-
ues of σv fall with the addition of jumps. This suggests that, in the absence
of jumps, the volatility of volatility has to be higher in order for this model
to match the historical volatility in equity returns. Allowing for jumps facili-
tates matching the historical distribution of returns with relatively moderate
volatility processes. As will be discussed more extensively in Chapter 15, this

12 ABL parameterize the drift of vt as (θ − κvt ) dt . We have computed the v̄ implied by
their estimates, but are unable to compute the associated standard errors from the information
provided in their paper.
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Table 7.4. Estimates of the Jump Parts of Several
Stochastic Volatility Models Using the S&P500 Equity Index

Parameters

Model mSJ (%) δJS (%) ζS mvJ (%) ζv ρJ

Andersen et al. (2002: table 6)
SVJ NA 1.95 0.020 NA NA NA

(0.06) (0.003)
SLJ NA 2.17 0.019 NA NA NA

(0.05) (0.001)

Eraker et al. (2003: table 3)
SVJ −2.59 4.07 0.006 NA NA NA

(1.30) (1.72) (0.002)
SVCJ −1.75 2.89 0.007 1.48 NA −0.601

(1.56) (0.568) (0.002) (0.340) (0.992)
SVIJ −3.09 2.99 0.005 1.80 0.006 NA

(3.25) (0.749) (0.003) (0.574) (0.002)

PJ −0.01 0.80 0.767 NA NA NA
(0.003) (0.010) (0.257)

Note : Standard errors of the estimates are given in parentheses.

will be an important consideration in pricing options with related jump-
diffusion models.

Turning to the jump parameters in Table 7.4, the estimated means
of the jump amplitude distributions are negative; on average, jumps in
prices are downward. (In the models of ABL, there is a negative mean
induced by the Jensen’s inequality adjustment to the mean of ln St .) A
negative mean jump size induces negative skewness in the implied return
distribution because jumps in prices are on average downward. This is the
only source of negative skewness in the PJ model.

In the other jump-diffusion models, there are two sources of nonzero
skewness: a nonzero mean jump amplitude and negative correlation be-
tween the return and volatility shocks, ρ. Intuitively, ρ < 0 induces nega-
tive skewness because volatility increases when prices are declining and this
makes it more likely that large negative returns will be realized.

The arrival intensity ζS measures the number of jumps per day. There-
fore, annualized (using 252 days per year), the ABL models give an arrival
rate of about five jumps per year, with the amplitude of each jump having a
standard deviation of about 2%. Jumps in the EJP models are less frequent
(on average 1.5 jumps per year), but when a jump occurs its amplitude is
drawn from a distribution with a larger standard deviation (3–4%). This may
in part reflect the priors imposed by EJP that jumps, by nature, should be
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relatively infrequent and large. When we estimated the PJ model using the
same data (not reported here), we found its arrival rate was 190 jumps per
year, with the amplitude of each jump being drawn from a distribution with a
standard deviation of less than 1%. Since volatility in this model is constant,
it appears that the likelihood function is using the jump process to capture
day-to-day changes in volatility more than it is large jumps in returns. This
finding provides a cautionary reminder that the likelihood function may
use the parameters of the jump process to compensate for a misspecified
(stochastic or constant) volatility process.

Particularly during periods of large market moves—“crashes”—EJP
found that models SV and SVJ failed to describe return behavior adequately.
In the former case, to achieve the observed market moves, a multiple-sigma
draw from the diffusive shock would have to have occurred. Though jumps
give model SVJ more flexibility in explaining crashes, given the average size
of jumps, it appears as though multiple jumps—a clustering of jumps—
within a short time period would have been required to match history.
Such clustering is also counterfactual in the context of EJP’s model with
a constant arrival rate for jumps (ζ) and independent jump times for a
given ζ.

The SVCJ and SVIJ models fit the data better than the SVJ model.
Intuitively, this is because jumps in volatility have a more persistent effect on
return distributions, owing to the highly persistent nature of volatility. The
arrival rates of jumps in volatility in these models are also about 1.5 times per
year (for both independent and perfectly correlated arrivals of return and
volatility jumps). When a volatility jump does occur, its magnitude is about
1.5–2%. Equivalently, in annualized terms, starting from the mean level of
volatility, an average sized jump in volatility increases volatility from 15 to
24%. EJP compute the percentage of total return volatility owing to jumps
in returns and find that it is 14.7, 9.96, and 8.17% in the SVJ, SVCJ, and SVIJ
models, respectively. Thus, allowing for jumps in volatility attenuates the
role of jumps in returns in explaining overall return volatility. The added
flexibility of the SVIJ model over the SVCJ leads to a slight reduction in
the role of return jumps in the former. However, this flexibility comes with
the added challenge of estimating additional jump parameters, and these
parameters are relatively imprecisely estimated.

Figure 7.3 displays the time series of conditional volatilities of the
S&P500 index, along with the posterior probabilities of jumps in volatility,
implied by EJP’s models SVJ and SVCJ.13 The volatilities in the SVJ and SVCJ
models track each other quite closely, except during periods when there is
a high posterior probability of a jump in volatility. In the latter cases, the

13 I am grateful to Michael Johannes for providing the background information used to
construct this figure and for permission to reproduce it here.
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Figure 7.3. Time series of volatilities implied by models SVJ and SVCJ as estimated
in EJP. Vol Jump Prob is the time series of posterior probabilities computed from model
SVCJ: (a) subperiod 1987–1992; (b) subperiod 1995–1999.

volatility in SVCJ is higher than the volatility in SVJ. Furthermore, there
are several periods during which the volatility in SVJ is systematically higher
than in SVCJ. Such patterns are most likely attributable to the need for the
SVJ model to overstate volatility in relatively quiet periods in order to better
match volatility when it is relatively high.
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An additional weakness of the SVJ model noted by EJP is that it calls for
a clustering of jumps (in returns) in order to match historical patterns in
the data. As noted earlier, such clustering is not a likely outcome of models
with constant arrival rates of jumps. From Figure 7.3 it is seen that model
SVCJ performs better in this regard. Focusing on the crash in 1987, as an
extreme example, the posterior probability of a jump was 0.50 on October
16, the Friday before the crash. Other than October 19 itself, there were no
other nearby days with posterior jump probabilities above 0.10.

An interesting question that emerges from these comparisons is whether
or not a state-dependent intensity ζ is called for by the data. As we discuss
in more depth in Chapter 15, the options data do suggest that ζ is state
dependent. One common specification of a state-dependent intensity is to
have ζ depend on volatility v. An alternative extension of the basic models
considered so far is to allow for a persistent stochastic long-run mean of the
volatility process; that is, allow for a two-factor model of volatility. It bears
emphasis at this juncture that omission of either of these extensions may
affect the conclusions drawn about the relative contributions of stochastic
volatility versus jumps (in returns or volatility) to the volatility and kurtosis
of returns. We revisit these issues (and the features of these jump-diffusion
models more generally) in Chapter 15.

Two reasons for the differences across the point estimates in the studies
by ABL and EJP are the different sample periods and the different estima-
tion methods. The EJP study uses the additional data from 1997 through
1999. During the second half of 1998, in particular, the S&P500 index was
quite volatile and experienced some relatively large 1-day moves. This may
partially explain why EJP find a more pronounced role for jumps. The use
of the MCMC estimator in EJP, versus the SME estimator in ABL, may also
be playing a role. The relative performance of these estimation strategies in
the presence of significant jumps is a largely unexplored topic.

Since the conditional second- and higher-order moments are state de-
pendent in most of these models, in subsequent discussions we present evi-
dence on the shapes of return distributions at various initial values of mar-
ket volatility vt . To put different models on an equal volatility footing, we
compute conditional moments at an initial level of 14% volatility. This is
approximately the median of the (unconditional) distribution of the VIX
volatility index for our sample period.14 As can be seen from Figure 7.4, the
time pattern in the VIX index was similar to that of the fitted volatilities from
the GARCH(1,1) model (evaluated at the estimated parameter values). (An
explanation for the fact that the fitted GARCH estimate tended to lie below
VIX is presented in Chapter 15.)

14 This index is constructed as a weighted average of the implied volatilities on eight OEX
calls and puts with an average time to maturity of 30 days.
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Figure 7.4. Time series of VIX and GARCH-implied volatilities for the S&P500
index.

7.6. Volatility Scaling

If asset returns are i.i.d. over time, then the conditional variance of the n-day
holding period return r n

t+n on a position,

Vart (n) ≡ E
[(

r n
t+n − E

(
r n
t+n

∣∣σ 2
t

))2∣∣σ 2
t

]
, (7.43)

is simply n times the conditional variance of the 1-day return, Vart (n) =
nVart (1) = σ 2n. Accordingly, to gain some insight into the degree of tem-
poral dependence in return distributions implied by our reference models,
it is instructive to investigate the relative values of Vart (n) and nVart (1). At
this juncture, we undertake this investigation graphically, but in Chapter 9
we examine more formal tests of the autocorrelation of returns based on
these relative variances.

Figure 7.5 displays the percentage errors,(√
nVart (1) −√

Vart (n)
)/√

Vart (n) × 100,
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Figure 7.5. Percentage errors from scaling 1-day variance to compute n-day vari-
ances computed at initial volatility of 14%.

for various horizons and for the GARCH(1,1) and ABL reference models
(we excluded model PJ because scaling holds exactly in this model—see
below). For the GARCH-style models, the conditional variances are given by

Vart (n) = ω


n−1∑

j=1

1 − (α + β) j

1 − (α + β)


+ σ 2

t


 n∑

j=1

1 − (α + β) j

1 − (α + β)


, (7.44)

where it is understood that the first term is zero when n = 1. These errors
are in fact very small for the GARCH and MixGARCH models. Thus, if
portfolio returns are such that rolling historical volatility with normal or
mixture-normal shocks is a valid probability model, then scaling volatilities
leads to quite small errors.15

This finding is in sharp contrast to those in Diebold et al. (1998) and
Christoffersen et al. (1998), for example. The explanation of the difference
is that these authors answered a different question than the one we are
addressing (with the latter being the one that is of most interest for pricing).

15 How small these errors are depends, of course, on how the scaled volatilities are going
to be used. Risk managers at financial institutions often compute multiday volatilities by scaling
1-day volatilities. The errors in Figure 7.5 are small relative to the error tolerance of most risk
managers.
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Specifically, using the results of Drost and Nijman (1993), they compare the
conditional variances implied by the GARCH model for time series of 1-day
and temporally aggregated n-day returns. In contrast, our comparison of
volatilities involves Vart (n) relative to nVart (1) holding fixed the conditioning
information set of 1-day returns. By focusing on temporally aggregated returns,
Diebold et al. effectively condition on the history of nonoverlapping n-day
returns and, thereby, “throw away” the information in the past history of
1-day returns. In pricing securities, agents use the 1-day return information
available to them, so the results from the literature on temporal aggregation
are not the most relevant for agents’ measurement problems.

Both of these discrete-time models have a single source of uncertainty;
namely, return shocks. Therefore, it is of interest to examine the analogous
plots for the continuous-time models with volatility shocks. The term struc-
ture of volatility in the SVJ model is given by

Vart (r n
t+n) = δ2

JSκvζS n + (−1 + e−κv n + κvn)κv v̄ + vt (1 − e−κv n)

κv
, (7.45)

with the special case of the SV model obtained from (7.45) by setting δJS =
0 = ζS . Note that the jump component adds a constant δ2

JS ζS n to the n-day
conditional variance and that this constant scales linearly with n. Conse-
quently, jumps, as we have formulated them with constant intensities and
moments of the jump amplitude distribution, satisfy the linear scaling rule.
It is the presence of stochastic volatility vt that potentially leads to mis-
measurement of return volatility by scaling. The more important jumps
are in determining Vart (r n

t+n), the better the approximation of the linear
scaling rule.

The errors from scaling 1-day volatility to get long-horizon volatility in
the SVJ and SLJ models are also displayed in Figure 7.5. Once again, the er-
rors from scaling up volatility are less than 2% over the horizons examined.

7.7. Term Structures of Conditional Skewness and Kurtosis

To explore the implications of stochastic volatility and jumps for the shapes
of return distributions in more depth, we examine the term structures of
conditional skewness and kurtosis for the same six reference models (the
GARCH models and the stochastic volatility models as estimated by ABL).
For each model, the third and fourth moments of r n

t+n , conditional on the
level of volatility vt , are computed for various holding periods n.16

16 Formulas for these moments in the SV and PJ models are presented in Das and Sun-
daram (1999), where the implications of these models for the shapes of option-implied volatil-
ity smiles are investigated. The term structures of kurtosis for the GARCH and MixGARCH
models were computed by Monte Carlo simulation. (The term structures of skewness for the
latter models are zero by assumption.)
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7.7.1. Term Structures of Skewness

A typical pattern for the term structure of skewness implied by a jump-
diffusion model (with a fixed intensity of arrival of jumps) is for skewness to
be large for small n and to decline (essentially exponentially) to zero as the
length of the holding period increases (Das and Sundaram, 1999). In the
PJ model, whether skewness approaches zero from above (positive skew)
or below (negative skew) depends on whether the sign of the mean mJS

of the jump amplitude distribution is positive or negative. For the S&P500
data, m̂JS < 0, so the conditional distribution of r n

t is negatively skewed for
small n and the skew declines toward zero as n increases. The dissipation
of skewness is often rapid in basic jump-diffusion models, approaching zero
over horizons of just a few days. That is, the effect of jumps on the skewness
of returns is often a short-horizon phenomenon.

The term structures of conditional skewnesses of the stochastic volatility
models are displayed in Figure 7.6. The source of time variation in condi-
tional skewness in these models is the presence of stochastic volatility—time
variation in vt —combined with the nonzero correlation ρT between return
and volatility shocks. In the SVJ and SLJ models, the jump components
could contribute an additional, state-independent skew to the distribution
of returns (with characteristics much like in a pure-jump model). However,

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

SL 

SV

0 2 4 6 8 10 12 14 16 18 20
Holding Period (Days)

Sk
ew

n
es

s

Figure 7.6. Term structures of skewness computed at 14% initial volatility.
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ABL set muJS to zero in their estimation, thereby removing this source of
skewness.

Conditional skewness is negative in all of the ABL reference models
because ρT < 0. As the length of the holding period is increased, skewness
starts near zero and then increases with the length of the holding period.
This pattern is what we would expect to see, because these models embody
a diversification effect in the following sense: as n ↓ 0 or n ↑ ∞, skewness
converges to zero (Das and Sundaram, 1999). An interesting question, then,
for the purpose of our subsequent discussion of pricing is: Over what hori-
zon does skewness build up, thereby invalidating an assumption of normal
returns? From Figure 7.6 it is seen that for these models to fit historical
S&P500 returns, skewness starts near zero and then builds up to a moderate
magnitude in a matter of days (20 days is approximately 1 month). Inspec-
tion of similar plots over longer horizons shows that the skewness in S&P500
returns approaches zero (the temporal diversification effect) after about 1
year. However, the sample (daily) unconditional skewness of the S&P500
is −0.66, which is much larger in absolute value than the model-implied
magnitudes displayed in Figure 7.6.

7.7.2. Term Structures of Kurtosis

The term structures of conditional kurtosis implied by the reference models
are displayed in Figure 7.7. Focusing first on the SV and SL models, as
with skewness, there is a temporal diversification effect: as n ↓ 0 or n ↑
∞, conditional excess kurtosis tends to zero. Between these limits, excess
kurtosis is positive for all n > 0. For the estimated reference models, excess
kurtosis starts near zero and builds up, ever so gradually, over the 20-day
horizon examined. However, after 20 days, the magnitude of the excess
kurtosis is very small, certainly relative to the sample excess kurtosis of 7.93
for the S&P500 data.

The SVJ and SLJ models, with their added jump components, induce a
different pattern for kurtosis than the SV and SL models. In the presence of
jumps, kurtosis starts positive and converges to 3 as n tends to infinity. At the
estimated parameter values, the jump effect is strong over horizons of a few
days, but after about 2 weeks little excess kurtosis from jumps remains. This
pattern is very much characteristic of a pure-jump model so, consistent with
our earlier observations about kurtosis in the SV and SL models, it seems
that the jump components are the primary determinants of excess kurtoses
in the SVJ and SLJ models.

The temporal diversification effect within the SV model is quite intu-
itive. Over very short horizons, the shocks to returns are approximately
normal by assumption, as would be true in any diffusion-based model with
continuous sample paths. [This can be seen from the Euler approximation
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Figure 7.7. Term structures of kurtosis computed at 14% initial volatility.

(6.4) of the SV model discussed in Chapter 6.] Since volatility is persistent,
large shocks to volatility take time to die out. The SV model induces periods
of high volatility followed by quiet periods, then periods of high volatility,
and so on. Such volatility clustering induces negative skewness and excess
kurtosis over intermediate horizons. Over long horizons, however, there is
an averaging effect associated with the longer and longer holding periods
and returns behave more like normally distributed variables for large n.

The nature of risk in pure-jump models is very different. Over short
holding periods, the possibility of a jump with a given amplitude mean
and variance may induce substantial skewness and excess kurtosis in return
distributions. This is because the jump size may be large relative to the
standard deviation of returns in the absence of jumps. However, as the
holding period is lengthened, if the amplitude distribution of the jumps
is held fixed, the effect of a jump on the cumulative holding period return
is relatively small compared to the volatility of returns in the absence of
jumps. This explains the convergence of both skewness and excess kurtosis
to zero in the PJ model as n increases.

The discrete-time GARCH-style models also start with a conditionally
normally distributed return over the sampling interval (by assumption) and
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then nonnormality builds up over time owing to the time-varying volatil-
ity. Recall that there are several ways of measuring persistence of volatil-
ity in a GARCH model and so an interesting question is which measure is
more closely linked to nonnormality of returns as holding periods increase.
Some guidance for answering this question comes from the expression for
the unconditional kurtosis of returns implied by the GARCH(1,1) model
(Bollerslev, 1986):

Kurt GARCH = 3 + 6α2(
1 − β2 − 2αβ − 3α2

) . (7.46)

Fixing (α + β)<1, we see that excess kurtosis is not invariant to the relative
size of α and β: increasing α increases the excess kurtosis of returns induced
by stochastic volatility. So this sum, viewed as a measure of volatility persis-
tence, is not directly relevant for assessing the degree of nonnormality.

The trade-offs are shown graphically in Figure 7.8 where the excess kur-
tosis (7.46) is graphed by fixing β and then ranging over the “admissible”
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Figure 7.8. Unconditional excess kurtosis of returns implied by the GARCH(1,1)
model for various values of admissible α and β.
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values of α defined as those values that imply a finite fourth moment.17 We
see that, as β approaches unity, the range of admissible α’s and the magni-
tudes of the model-implied excess kurtoses shrink substantially. Generally
speaking, high persistence in volatility as measured by median lag length
implies lower excess kurtoses of returns.

With an estimated β̂ of around 0.96, it is clear that the GARCH model is
theoretically incapable of generating excess kurtosis near the sample value
unless β̂ + α̂ ≈ 1. This shows up in Figure 7.7 in the form of relatively small
conditional kurtoses implied by the GARCH models. The MixGARCH cir-
cumvents this limitation of the GARCH model by introducing a marginal
distribution of the return shock ε that inherently may exhibit substantial
excess kurtosis. With volatility in the second regime (1.93) being roughly
2.3 times the level of volatility in the first regime (0.84), the mixture model
generates substantial kurtosis. Indeed, from Figure 7.7 we see that the Mix-
GARCH model generates more kurtosis over short horizons than any of the
other reference models. The unconditional excess kurtosis implied by the
MixGARCH model (at the ML estimates) is 13.11, which is even larger than
the sample estimate.

17 For the case of β = 0.75, there are somewhat larger admissible values of α that imply
substantially larger excess kurtoses than those displayed in Figure 7.8. We omitted these values
in order to show more clearly the behavior of the excess kurtosis for larger values of β.



Page 193 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[First Page]

[193], (1)

Lines: 0 to 9

———
* 340.096pt PgVar
———
Normal Page

* PgEnds: PageBreak

[193], (1)

Part II

Pricing Kernels, Preferences,
and DAPMs
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8
Pricing Kernels and DAPMs

Virtually all of the DAPMs that we explore empirically can be character-
ized in terms of the restrictions they impose on the joint distribution of a
pricing kernel q∗, a vector of state variables or “risk factors” Y , and the se-
curities with payoffs P that are being priced. In some cases q∗ has a natural
“structural” interpretation, in that it can be linked directly to agents’ pref-
erences or available technologies. In other cases, q∗ is given as a “reduced-
form” function of Y , in a manner that rules out arbitrage opportunities, but
does not provide a direct link to preferences. This chapter outlines these
approaches to modeling q∗ in more detail, thereby setting the stage for in-
depth analyses of the empirical fits of DAPMs.

We begin by expanding on the notion of a pricing kernel q∗ introduced
in Chapter 1 and, following Hansen and Richard (1987), present quite gen-
eral conditions under which a payoff qt+1 is priced as E[q∗

t+1qt+1|It] for an
information set It . Section 8.2 relates q∗ to agents’ marginal rate of substitu-
tion of consumption and, thereby, presents the conceptual foundations for
the consumption-basedmodels examined in Chapter 10. This is followed by
a discussion of conditional “beta” and factor models in Chapter 11. Though
we derive a beta representation of asset returns starting from an arbitrary
admissible pricing kernel q∗, we treat beta and factor models as part of our
discussion of preference-based models, because this facilitates economic in-
terpretation of the “benchmark” returns in beta/factor models. Finally, Sec-
tion 8.3 presents an overview of the “no-arbitrage” approach to pricing risky
securities, in which a reduced-form representation of q∗ is combined with
the assumption of no arbitrage opportunities to restrict the dynamic prop-
erties of security prices. This formulation of the pricing kernel underlies
the models covered in Chapters 12 through 16.

8.1. Pricing Kernels

To introduce the concept of a pricing kernel more formally, it is helpful to
be more precise about the contents of the payoff spaces and information

195
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sets introduced in Chapter 1. Initially, we focus on agents’ information set
A and define the payoff space

P+
t+1 = {

qt+1 ∈ At+1 : E
[
q2t+1

∣∣At ] < ∞}; (8.1)

that is, P+
t+1 is the set of random variables in the information set At+1 that

have finite second moments conditioned on At . This set can be interpreted
as a set of payoffs that are contingent on the realizations of the variables in
the information setAt+1 observed at date t+1. (We use the terminology “se-
curities in P+

t ” interchangeably with “securities whose payoffs are in P+
t .”)

To describe the properties of P+
t , a notion of distance between payoffs

is required. For any q1,t+1 and q 2,t+1 in P+
t+1, let

〈q1,t+1 | q 2,t+1〉A = E
[
q1,t+1q 2,t+1

∣∣ At ] (8.2)

denote a conditional inner product on P+
t+1, and define a conditional norm

by ‖qt+1‖A = [〈qt+1 | qt+1〉A]1/2. Using this notation, we define a payoff
space Pt ⊆ P+

t to be conditionally complete if every conditionally Cauchy
sequence in Pt converges conditionally to an element in Pt .1 Hansen and
Richard (1987) show that P+

t+1 is a conditionally linear and complete payoff
space.

We typically focus on the properties of conditionally complete subsets
Pt of P+

t . The reference to a complete payoff space in the preceding mathe-
matical (metric space) sense does not mean that we are assuming that mar-
kets are economically complete. If every element of At+1 is the payoff on a
tradable security, then markets are economically complete. However, if Pt
is a proper subset of P+

t , then the payoff space Pt may be complete, but
markets may not be economically complete. Examples of mathematically
complete payoff spaces in settings of economically incomplete markets are
those obtained by fixing a set of payoffs x t+1 ∈ At+1 and letting Pt+1 be
the closure of the set of all payoffs of the form ωt · x t+1 with ωt ∈ It , where
It ⊆ At . A complete payoff spacemay be nested in or nest the set of tradable
securities and, in either case, markets may be economically incomplete.

We do not presume that an econometrician’s information set, say J ,
is the same as A. The typical situation faced by an econometrician is that
market prices πt (qt+1) are available for a set of payoffs qt+1 in Pt+1. Clearly,
observing the payoffs and associated prices of these payoffs is not necessarily
equivalent to observing A. So as we proceed, we assess the prospects for

1 More precisely, following Hansen and Richard (1987), a sequence {q j,t+1 : j = 1, 2, . . .}
in P+

t+1 converges conditionally to q 0,t+1 if, for any ε>0, lim j→∞ Pr{‖q j,t+1−q 0,t+1‖A > ε} = 0.
Additionally, a sequence {q j,t+1 : j = 1, 2, . . .} in P+

t+1 is conditionally Cauchy if, for any ε > 0,
lim j,k→∞ Pr{‖q j,t+1 − qk,t+1‖A > ε} = 0.
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tractable empirical analysis by asking the question: Do analogous results
hold if we condition on the smaller information set J ⊂ A?

In Chapter 1 we introduced the idea of an “inner product” representa-
tion of prices on a payoff space P . Hansen and Richard (1987) formalize
the existence of such an inner product representation of a pricing function
πt : Pt+1 → At on a general payoff space under the assumption of value
additivity—the value of the sum of two payoffs is the sum of their respec-
tive values. We henceforth refer to their underlying assumptions about
(Pt , πt ,At ) as HR-regularity.2 Under HR-regularity, Hansen and Richard
show that there exists a unique payoff q∗

t+1 in Pt+1 that satisfies

πt (qt+1) = 〈
qt+1

∣∣ q∗
t+1

〉
A = E

[
qt+1q∗

t+1

∣∣ At ], for all qt+1 in Pt+1. (8.3)

Furthermore, Pr{‖q∗
t+1‖A > 0} = 1.

Importantly, the existence of a benchmark payoff q∗
t is not equivalent

to the absence of arbitrage opportunities. A pricing function πt on a payoff
space P is said to have no arbitrage opportunities if, for any qt+1 ∈Pt+1 for
which Pr{qt+1 ≥ 0} = 1, Pr({πt (qt+1) ≤ 0} ∩ {qt+1 > 0}) = 0. In other words,
nonnegative payoffs that are positive with positive probability conditioned
on At have positive prices.3 If Pt+1=P+

t+1, then Hansen and Richard (1987)
show that, under HR-regularity, πt has no arbitrage opportunities on P+

t+1 if
and only if Pr{q∗

t+1 > 0} = 1. From the proof of their Lemma 2.3 it is imme-
diate that, for any payoff space Pt+1 satisfying HR-regularity (not necessarily
P+
t+1), the assumption that Pr{q∗

t+1 > 0}=1 implies the absence of arbitrage
opportunities on Pt+1. When there are no arbitrage opportunities, we will
see in Section 8.3 that the pricing relation (8.3) can be transformed to one
where pricing is as if agents are risk neutral.

Letting rt+1 = qt+1/πt (qt+1) denote the (total) return on the security
with payoff qt+1, if rt+1 ∈ Pt+1, then (8.3) implies that πt (rt+1)= 1; returns
are those payoffs with unit price. We let Rt+1 denote this set of returns:

Rt+1 = {qt+1 ∈ Pt+1 : πt (qt+1) = 1}. (8.4)

Since ‖q∗‖>0 with probability one,

r ∗
t+1 = q∗

t+1/πt (q
∗
t+1) ∈ Rt+1, (8.5)

so the set of returns is nonempty.

2 Specifically, their assumptions are: (i) Pt+1 is a conditionally complete linear subspace
of P+

t+1. (ii) (Value additivity) For any q1,t+1 and q 2,t+1 and w 1t and w 2t in At , πt (w 1t q1,t+1 +
w 2t q 2,t+1) = w1tπt (q1,t+1)+w 2tπt (q 2,t+1). (iii) (Conditional continuity) If {q j,t+1 : j = 1, 2, . . .}
is a sequence of payoffs in Pt+1 that converges conditionally to zero, then πt (q j,t+1) converges
conditionally to zero: for any ε > 0, lim j→∞ Pr{‖ πt (q j,t+1) ‖A> ε} = 0. (iv) (Nondegenerate
pricing) There exists a payoff q 0,t+1 in Pt+1 for which Pr{πt (q 0,t+1) = 0} = 0.

3 This is the conditional counterpart to Ross’s (1978) no-arbitrage assumption.
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The return r ∗
t+1 ∈ Rt+1 is special in that it is the minimum second-

moment return within the set R. To see this, note that, for any rt+1∈ Rt+1,

E
[
q∗
t+1rt+1 − 1

∣∣ At ] = 0. (8.6)

Substituting (8.5) into (8.6) gives

E
[
r ∗
t+1rt+1

∣∣ At ] = {
E
[
q∗2
t+1

∣∣ At ]}−1
, rt+1 ∈ Rt+1. (8.7)

Since r ∗
t+1∈Rt , (8.7) implies that r ∗

t+1 satisfies

E
[
r ∗
t+1

(
rt+1 − r ∗

t+1

) ∣∣ At ] = 0, for all rt+1 ∈ Rt+1. (8.8)

It follows that r ∗
t+1 is the global minimum second-moment return in Rt+1:

E
[
r ∗2
t+1

∣∣ At ] ≤ E
[
r x2t+1

∣∣ At ], for all r xt+1 ∈ Rt+1. (8.9)

This observation is central to the construction of beta representations of
excess returns in Chapter 11.

8.2. Marginal Rates of Substitution as q∗

If agents are expected utility maximizers, then there is a direct link between
agents’ marginal rates of intertemporal substitution of consumption and
q∗. Considering, for the moment, the case of a single consumption good ct ,
we suppose that a representative agent chooses optimal consumption and
investment plans to maximize (1.2). Then, following Rubinstein (1976) and
Lucas (1978),

U ′(ct )πt (qt+1) = E
[
βU ′(ct+1)qt+1

∣∣At ]. (8.10)

In words, agents choose their consumption/investment plans (which lead to
equilibrium prices) so that the “utils” foregone by postponing consumption
and investing in a risky security just equal the present value of the utils
obtained from selling the security in the next period and consuming the
proceeds. Dividing both sides of (8.10) by U ′(ct ) gives

πt (qt+1) = E
[
m1
t+1qt+1

∣∣At ] = E
[
β
U ′(ct+1)

U ′(ct )
qt+1

∣∣∣∣At
]
. (8.11)

Therefore, an agent’s marginal rate of substitutionm1
t+1 = βU ′(ct+1)/U ′(ct ),

in equilibrium, prices all of the (potentially) tradable securities.
Since q∗

t+1 is a unique payoff in Pt+1 that prices all payoffs inPt+1, onemay
be tempted to conclude that q∗

t+1 =m1
t+1. However, in deriving the pricing



Page 199 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

8.2. Marginal Rates of Substitution as q∗ 199

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[199], (7)

Lines: 153 to 199

———
2.49112pt PgVar
———
Normal Page
PgEnds: TEX

[199], (7)

relation (8.3), there was no presumption that the payoff space of interest,
Pt+1, contains the marginal rate of substitution of either a representative or
an individual investor. Consequently we cannot conclude, and in general it
is not the case, that q∗

t+1 is equal to someone’s marginal rate of substitution.
Nevertheless, if P is a subspace of the payoffs on the traded securities avail-
able to agent j and the economic environment is such that m1

j,t+1 prices all
of these traded securities, then πt (qt+1) = E[m1

t+1qt+1|At], for qt+1 ∈ Pt+1.
That is, there are multiple pricing kernels that, when restricted to P , give
correct prices. Thismultiplicity goes away for the caseP=P+ wheremarkets
are economically complete and q∗

t+1=m1
t+1.

This discussion extends immediately to richer parameterizations of
preferences. In particular, a specification that encompasses many of the
models that have been examined empirically (and that are discussed in
Chapter 10) has

E

[ ∞∑
t=0

β t
(
U (st )γ − 1

γ

) ∣∣∣∣ A0

]
, (8.12)

where γ <1 and st is a vector of service flows fromm goods andU is given by

U (st ) =
m∏
i=1

[sit]δi , 0 < δi < 1,
m∑
i=1

δi = 1, (8.13)

and β ∈ (0, 1) is the subjective discount factor. As in Eichenbaum et al.
(1987), we assume that the dimension m of st is the same as the number
of consumption goods in the economy. Further, the technology mapping
acquisitions of goods to services is linear with

sit = A(L)et , (8.14)

where et is the m -dimensional vector of endowments of the m goods that
agents consume, andA(L) is a polynomial in the lag operatorL (Lx t ≡ x t−1)
given by

A(L) =
∞∑
τ=0

a τLτ . (8.15)

A positive value of the i�th entry of aτ , τ > 0, implies that acquisition
of the �th good in period t − τ contributes to the production of services
from the ith good in period t , while a negative entry implies that the �th
good contributes disservices to the service flow from good i.

Eichenbaum et al. (1987) and Schroder and Skiadas (2002) show that
if there is a complete set of contingent claims to services from goods and
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agents have identical utility functions given by (8.12)–(8.13) with the service
technology being given by (8.14), then equilibrium prices for securities in a
representative consumer economy are identical to those of the underlying
multiconsumer economy. Furthermore, if the polynomial A(L) has a one-
sided inverse and certain other regularity conditions are satisfied, then the
existence of complete markets in claims to future services implies complete
markets in claims to future goods and vice versa. Thus, for the purposes
of empirical work, one can proceed with the use of aggregate per-capita
data even though consumers are heterogeneous with regard to their en-
dowments (e.g., “rich” and “poor”). In the light of this aggregation result,
we henceforth interpret consumptions as aggregate numbers and speak of
a “representative agent.”

The choice variables in this model are the acquisitions of goods et that
are inputs into the service technology. Assume, without loss of generality,
that the numeraire consumption good—the good in which the payoffs in
Pt+1 are denominated—is good one. Also, let U ′

1(st ) denote the marginal
utility with respect to service flow s1t . Then the marginal utility with respect
to the numeraire good is

M1t = E
[
A11(L−1)U ′

1(st )
∣∣At ]. (8.16)

Therefore, agents’ marginal rate of substitution is given by

m1
t+1 = β

M1,t+1

M1t
. (8.17)

Here m1
t+1 is a ratio of conditional expectations, because goods acquired at

date t provide services not only at date t , but also in future periods according
to the technology (8.14). The present values of the future utils from these
services affect an agent’s decisions regarding current acquisitions of goods,
with weights determined by the polynomial A11(L). It follows that the law of
iterated expectations is not directly applicable to (8.3) with m1

t+1 in (8.17)
substituted for q∗

t+1. For the purposes of empirical analyses, it is therefore
often more convenient to work with expressions of the form

M1tπt (qt+1) = Et
[
βM1,t+1qt+1

∣∣At ] . (8.18)

Up to this point, all of the preference-based models examined have as-
sumed that agents’ maximize their expected utility that is additive across
period utility functions. Several researchers have proposed alternative for-
mulations of preferences that remain “recursive” (dynamically consistent),
but depart from expected utility maximization. One of themost widely stud-
ied departures builds upon the work of Kreps and Porteus (1978), Johnsen
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and Donaldson (1985), and Epstein and Zin (1989).4 These authors assume
that utility Ut , based on information up to date t , is given by

Ut = V
(
ut ,E

[
U γ

t+1

∣∣At ]1/γ) . (8.19)

The component ut is the period utility function which measures the “utils”
agents receive from consumption of goods and services at date t , and the
time “aggregator” V is chosen so that preferences are dynamically consistent
in the sense that agents’ evaluations of consumption streams starting at
a future date τ are consistent with Uτ . The most widely examined time
aggregator is

V
(
ut ,E

[
U γ

t+1

∣∣At ]1/γ) =
(
(1 − β)uρt + βE

[
U γ

t+1

∣∣At ]ρ/γ)1/ρ, (8.20)

where ρ, γ < 1. The special case of expected utility with constant relative
risk averse (CRRA) preferences is obtained by setting ρ = γ .

Epstein and Zin (1989, 1991) stress the potential importance of relax-
ing the constraint that ρ=γ when trying to resolve the asset pricing puzzles
that arise in standard expected utility environments. The practical conse-
quences of this extension are twofold. First, the coefficient of relative risk
aversion, 1 − γ , is no longer the reciprocal of the intertemporal elasticity
of substitution of consumption, 1/(1 − ρ). As stressed by Hall (1988), the
former measures agents’ willingness to substitute across states of nature at a
point in time, whereas the latter measures agents’ willingness to substitute
consumption over time in response to changes in macroeconomic condi-
tions. Allowing for a separation of risk aversion from intertemporal substi-
tution is shown in Chapter 10 to add considerable flexibility in matching
the moments of the joint distribution of consumption and asset returns.

Second, agents care about the timing of the resolution of uncertainty
(so, in particular, agents are no longermaximizers of expected utility). Early
resolution of uncertainty is preferred if γ < ρ, whereas later resolution is
preferred if γ >ρ.

As with the previous examples, if agents have homogeneous preferences
and markets are economically complete, then there exists a representative
agent. Furthermore, an intriguing feature of this model is that the associ-
ated pricing kernel involves the return on the aggregate wealth portfolio.
For example, using the aggregator (8.20), m1

t+1 is

m1
t+1 = βγ/ρ[ct+1/ct]θ(ρ−1) r θ−1

M,t+1, (8.21)

4 See Backus et al. (2004) for a comprehensive survey of the use of nonexpected utility
models in asset pricing models.
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where rM,t+1 is the return on the portfolio of aggregate wealth and θ≡γ /ρ.
The special case of logarithmic risk aversion is obtained as γ →0.

8.3. No Arbitrage and Risk-Neutral Pricing

Pricing kernels also play a central role in DAPMs built up from the premise
of the absence of arbitrage opportunities. However, the interpretation of the
pricing kernel in this case is often different, and its link to preferences is in-
direct. We first discuss the case of discrete time and then turn to continuous-
time models.

At the outset of this discussion it bears re-emphasizing that a pricing
kernel is typically defined relative to a space of payoffs P on the securities of
interest. For term structure analysis, P typically includes a specific universe
of bonds. For the pricing of options on common stocks, P may include
the prices of both common stocks and options on these stocks. In these
examples the pricing kernels discussed subsequently are in general not
equal to any agent’s marginal rate of substitution, in part because P does
not encompass the universe of payoffs available to agents. Nor should we
expect the pricing kernel for the term structure case to price options on
common stocks. Particularly in the case of the no-arbitragemodels specified
in continuous time, the payoff space is often left implicit, though it can
be inferred from the set of securities to which the kernel is applied in an
econometric analysis.

8.3.1. Risk-Neutral Pricing in Discrete Time

We suppose that the state of the economy is described by a discrete-time
Markovian process Yt (see Definition 5.1) with conditional density function
f P(Yt+1|Yt ), where P denotes the historical data-generating process of Y .5

Additionally, we assume that the payoff space Pt+1 satisfies HR-regularity,
PrP{q∗

t+1 > 0} = 1 (so there are no arbitrage opportunities), and Pt+1 con-
tains a unit payoff. Then a one-period riskless bond is tradedwith price e−rt ≡
E P[q∗

t+1|Yt], where rt is the (continuously compounded) yield on this bond.
In this setting

πt (qt+1) = E P
[
qt+1q∗

t+1

∣∣Yt ]
= e−rt

∫
qt+1

q∗
t+1 f

P(Yt+1|Yt )
E P
[
q∗
t+1

∣∣Yt ] dYt+1 ≡ e−rt E Q[qt+1|Yt], (8.22)

5 The measure P is sometimes referred to as the physical measure. At times we find it
convenient to highlight the fact that probabilistic statements about historical distributions
depend on P and we do so through the superscript P. However, at other times, for notational
simplicity, P is implicit. Note also that, in this context, the information set It is the σ -algebra
generated by Yt .
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where E Q denotes expectation under the risk-neutral probability distribu-
tion f Q(Yt+1|Yt ) ≡ q∗

t+1 f
P(Yt+1|Yt )/E P[q∗

t+1|Yt]. We see then that, formally,
risk-neutral pricing is obtained by adjusting the P distribution f P by e rt q∗

t+1.
Equivalently, the pricing kernel is the transformation between the historical
and risk-neutral measures:

q∗
t+1 = e−rt

f Q(Yt+1|Yt )
f P(Yt+1|Yt ) . (8.23)

In anticipation of discussions in subsequent chapters, it will also be useful to
recognize that the Radon-Nikodym derivative of the Pmeasure with respect
to the Q measure—the (dP/dQ)Dt ,t+1 that satisfies

f P(Yt+1|Yt ) = f Q(Yt+1|Yt )× (dP/dQ)Dt ,t+1 (8.24)

and defines the transformation between f P and f Q—is given by (dP/dQ)Dt ,t+1= 1/(e rt q∗
t+1). This follows immediately from (8.23).

The density f Q is often referred to as the state-price density, because it
represents the continuous-state counterpart to the so-called Arrow-Debreu
state-contingent claims. Heuristically, this can be seen from consideration of
a payoff qt+1 that is a Dirac delta function for the point Yt+1=y—it pays one
dollar if Yt+1 = y and zero otherwise. From (8.22) the price of this security
is e−rt f Q(Yt+1 = y|Yt ). Note also that the scaling by (dP/dQ)Dt ,t+1 in (8.24)
introduces the possibility that the P and Q distributions reside in different
families of distributions. Even if they reside in the same family, typically all of
the moments of the P distribution differ from the corresponding moments
of the Q distribution.

Risk-neutral pricing—pricing as if agents are risk neutral—is potentially
attractive because payoffs can be priced as discounted expected values and
simple expectations are often easier to compute than the expectation of
q∗
t+1qt+1. However, inspection of (8.24) reveals that the derivation of the
risk-neutral density f Q requires, at least implicitly, some information about
the pricing kernel and the density of the uncertainty under the actual prob-
ability measure, f P. Given q∗ and f P, we can often derive f Q. On the other
hand, positing f Q directly, whichmay be convenient for pricing, leaves open
the issues of the functional form of f P and the nature of the dependence of
q∗ on Yt+1. This “ignorance” is potentially problematic, because knowledge
of f Q alone is typically not sufficient for estimation (as contrasted with pric-
ing) since estimation exploits knowledge of some aspects of the distribution
of prices or returns under P. Therefore, for both estimation and pricing, it
is convenient to work with DAPMs for which the transformation between
f P and f Q is given explicitly, f P lends itself to tractable estimation, and f Q

leads to tractable pricing.
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The same logic used to derive (8.22) can be used to price payoffs re-
ceived multiple periods in the future. Consider, for example, the set of pay-
offs received at date t + 2, Pt+2. From the vantage point of date t + 1, these
are one-period-ahead payoffs and hence

πt+1(qt+2) = e−rt+1E Qt+1[qt+2], qt+2 ∈ Pt+2. (8.25)

Moreover, for those payoffs in Pt+2 for which πt+1(qt+2)∈Pt+1, substitution
of (8.25) into (8.22) gives

πt (qt+2) = E Qt
[
e−(rt+rt+1)qt+2

]
, qt+2 ∈ Pt+2. (8.26)

It follows more generally that, for similarly well-behaved payoffs at date T ,

πt (qT ) = E Qt
[
e−
∑T−t−1

j=0
rt+j qT

]
, qT ∈ PT . (8.27)

Under risk-neutral pricing, the price of a multi-period payoff is its expected
present value, discounted by the sum of the one-period yields on zero-
coupon bonds. Note that the latter yields are random variables from the
vantage point of date t , and rt+j ( j > 0) may be correlated with qT condi-
tional on It . Securities that involve a sequence of cash flows at different dates
can typically be viewed as portfolios of securities with date-specific payoffs.6

Under value additivity, the price of the portfolio is then the sumof the prices
of the date-specific payoffs.

Whereas risk-neutral pricing starts with a one-period horizon and re-
cursively constructs the prices of multiperiod payoffs, we could instead have
started directly with the payoff space Pt ,T defined as those payoffs at date T
with finite second moments conditional on It . Proceeding as before, letting
q∗
t ,T denote the pricing kernel for this payoff space,

πt (qT ) = EP
[
qT q∗

t ,T

∣∣Yt ]
= D(t ,T )

∫
qT
q∗
t ,T f

P(YT |Yt )
D(t ,T )

dYT ≡ D(t ,T )ET [qT |Yt], (8.28)

where D(t ,T ) denotes the price of a riskless zero-coupon bond issued at
date t with maturity T , and ET denotes expectation under the forward prob-
ability distribution f T (YT |Yt ) ≡ q∗

t ,T f
P(YT |Yt )/D(t ,T ). In this case, the ter-

minology “forward measure” is used, because πt (qT )/D(t ,T ) is the forward
price (as of date T ) of the payoff qT . In words, (8.28) states that the for-

6 As we discuss more extensively in Chapter 14, this portfolio approach to pricing is not
always applicable to defaultable securities.
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ward price of qT , as of date t , is the expected value of the payoff qT under
the distribution f T induced by the forward measure.

8.3.2. Risk-Neutral Pricing in Continuous Time

Suppose, in a continuous-time economy, the state is completely described
by a Markovian process Y (t) with

dY (t) = µPY (Y, t) dt + σY (Y, t) dW (t), (8.29)

where µPY is an N × 1 vector of drifts under the historical measure P and σY
is anN ×N state-dependent factor-volatility matrix. In this diffusion setting,
the “pricing kernel”Mt is written generically as

dMt

Mt
= −rt dt −�′

t dW (t), (8.30)

where rt = r (Y (t), t) is the instantaneous riskless rate, W (t) is a vector of
N independent Brownian motions, and �t = �(Y (t), t) is the N -vector
of market prices of risk.7 Furthermore, for a security with a dividend rate
h(Y (t), t) for t ≤T and terminal payoff g (Y (T )) at date T , its price at date
t ≤ T is expressed in terms ofM as

P (Y (t), t) = Et

[∫ T

t

M(s)
M(t)

h(Y (s), s)ds
]

+ Et

[
M(T )
M(t)

g (Y (T ))
]
, (8.31)

where Et denotes expectation conditioned on At .
Comparing (8.31) with (8.11), we see that the pricing kernel in

continuous-time models is conceptually similar to agents’ marginal utility.
Since, in a discrete-time setting, q∗

t+1 specializes to agents’ marginal rate
of substitution,M(t + 1)/M(t) is interpretable in an analogous manner to
q∗
t+1. Of course a necessary condition for these associations with agents’ pref-
erences to hold is that the dividend rate h(Yt ) and terminal payout g (YT )
be denominated in units of the numeraire consumption good. As in the
discrete-time case, the pricing relation (8.31) does not require a direct link
betweenM and preferences; it applies, for instance, to settings where all
relevant cash flows and payoffs are nominal (denominated in units of a
currency). Moreover, the pricing kernelM is often constructed to price a
specific subset of traded securities (e.g., a set of bonds or a set of common
stocks).

7 For simplicity we take the risk factors drivingM and Y to be one and the same. If this
were not the case, then we would set one or more of the elements of σY or � to zero.
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Intuitively, the assumed drift forM is obtained by consideration of the
price of a zero-coupon bond (denominated in the relevant numeraire) with
short maturity of length �, e−rt�,

Et

[
Mt+�
Mt

]
= e−rt� ≈ 1 − rt�. (8.32)

Subtracting one from both sides of (8.32) gives Et[(Mt+� −Mt )/Mt] =
−rt�, as in (8.30). Similarly, for small �, the diffusion component of M
is approximately −√

��′
tεt+1, where εt+1 ∼ N (0, I ). Therefore, the price

of the security that pays off a (standardized) unit of the j th state variable
drivingM , εj,t+1, is approximately

Et

[
Mt+�
Mt

εj,t+1

]
≈ Covt

(
−√

��′
tεt+1, εj,t+1

)
= −√

��j t . (8.33)

Thus, the market price of risk, −�j t , of the j th risk factor can be thought
of as the price, per unit of volatility, of shocks to the j th risk factor.

The practical problem faced by researchers pricing securities and their
associated derivatives is one of computing the expectations in (8.31). A
standard approach is to change from the historical (P) to the risk-neutral
(Q) measure, just as with the discrete-time case. Paralleling our previous
discussion, we start from (8.30) and note that the logarithm ofM follows
the process

d logMt =
(

−rt − 1
2
�(t)′�(t)

)
dt −�′

t dW (t). (8.34)

Therefore, the price of a generic payoff gT that is in the date-T information
set (generated by the stochastic process Y ) can be expressed as

EPt
[
e logMT−logMt g T

] = EPt
[
e− ∫Tt r (s)ds− 1

2 ∫Tt �(s)′�(s)ds−∫Tt �(s)′dW (s)gT
]
. (8.35)

The term

(
dQ
dP

)C
t ,T

≡ e−
1
2 ∫Tt �(s)′�(s)ds−∫Tt �(s)′dW (s) (8.36)

that scales e− ∫Tt r (s)dsgT is the continuous-time counterpart to the Radon-
Nikodym derivative of Q with respect to P, conditional on date t informa-
tion. That is, we can rewrite (8.35) as
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EQt
[
e− ∫Tt r (s)dsgT

]
= EPt

[
e− ∫Tt r (s)dsgT

(
dQ
dP

)C
t ,T

]
. (8.37)

To arrive at a directmeans of computing EQt [·] we can invokeGirsanov’s
theorem (see, e.g., Duffie, 2001) to conclude that

W Q
t = Wt +

∫ t

0
�(s)ds (8.38)

is a Brownian motion under Q. Therefore, differentiating (8.38) and sub-
stituting into (8.29) gives the following risk-neutral representation of the Y
process:

dY (t) = [
µPY (Y, t)− σY (Y, t)�(t)

]
dt + σY (Y, t) dW Q(t). (8.39)

The risk-neutral drift of Y is

µ
Q
Y (Y, t) = µPY (Y, t)− σY (Y, t)�(t), (8.40)

and the volatility of Y is unchanged by the change of measure. This sim-
plification (only the drift of Y is adjusted in the change in measure from
P to Q) is a convenient feature of continuous-time diffusion models. It is
with respect to this Q process for Y that the expectation E Qt [·] is evaluated.
That is, with knowledge of µQ and (8.39), the expectation E Q[·] can be
computed without knowledge of or reference to the P distribution of Y .

An alternative construction of risk-neutral pricing starts with the obser-
vation that the price of a zero-coupon bond must satisfy

D(t ,T )M(t) = EPt [D(s,T )M(s)] , (8.41)

for any t≤ s≤T . In other words, {D(t ,T )M(t)} is a martingale and, as such,
must have zero drift under P. By Ito’s lemma, D(t ,T ) (for fixed T ) satisfies
the PDE

dD(t ,T ) = µPD(Yt , t;T ) dt + σD(Yt , t;T )′ dWt , (8.42)

µD(Y, t;T ) =
[
∂

∂t
+H

]
D(t ,T ), (8.43)

σD(Y, t;T ) = σY (Y , t)′
∂D(t ,T )
∂Y

, (8.44)

where H is the infinitesimal generator for the diffusion Yt :
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H = µPY (Y, t)
′ ∂
∂Y

+ 1
2
Tr
[
σY (Y , t) σY (Y , t)′

∂2

∂Y ∂Y ′

]
. (8.45)

Therefore, the drift of D(t ,T )M(t), EPt [d(D(t ,T )M(t))/dt], is

EPt [dD(t ,T )M(t)] + EPt [D(t ,T )dM(t)] + EPt [dD(t ,T )dM(t)]

= µPD(Y , t;T )D(t ,T )M(t)− r (t)M(t)D(t ,T )

−M(t)D(t ,T )σD(Y , t;T )′�(t) = 0.

(8.46)

Dividing through byM(t) (which is strictly positive), substituting forµPD and
σD(Y, t;T ), and rearranging gives

[
∂

∂t
+ G

]
D(t ,T )− r (t)D(t ,T ) = 0, (8.47)

where G is the infinitesimal generator

G = (
µPYt − σYt�t

)′ ∂
∂Yt

+ 1
2
Tr
[
σYtσ

′
Yt

∂2

∂Yt∂Y ′
t

]
. (8.48)

It is the drift µQYt that appears in(8.48). Thus, by the Feynman-Kac formula,
the solution to this PDE is EQt [e− ∫Tt r (s)ds].

An analogous PDE is satisfied by the price of the fixed-income security
with state-dependent continuous coupon stream h(t) and payment g (Y (T ))
at maturity, as in (8.31):

[
∂

∂t
+ G

]
P (t)− r (t)P (t)+ h(t) = 0, (8.49)

with terminal value g (Y (T )).
Returning to our discussion of market prices of risk, a more formal way

of viewing � comes from inspection of the expected excess return from
holding the security with price P satisfying (8.49):

eP (t) ≡ E
[
dP (t)+ h(t)dt

P (t)dt
− r (t)

∣∣∣∣ At
]

= 1
P (t)

∂P (t)
∂Y (t)′

σY (t)�t . (8.50)

This expression is obtained by starting with the definition of eP (t) in (8.50)
and using the fact that P , as the price of a traded security, follows the risk-
neutral process
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dP (t)+ h(t)dt = r (t)P (t)dt + σP (t)dB Q(t)

= [r (t)P (t)+ σP (t)�(t)] dt + σP (t)dB(t).
(8.51)

Consequently,

E
[
dP (t)+ h(t)dt

P (t)dt
− r (t)

∣∣∣∣ At
]

= σP (t)�(t)
P (t)

= 1
P (t)

∂P (t)
∂Y (t)′

σY (t)�(t), (8.52)

where in the last step we used Ito’s lemma and the fact that P (t) = P (Y (t))
is a function of the state vector Y .

The term premultiplying �(t) in (8.50) is the volatility of P induced by
volatility in Y . Thus,� is the vector of risk premiums required for each unit
of volatility of the N risk factors. It is independent of the cash-flow pattern
of the security being priced and, hence, is common to all securities with
payoffs that are functions of the risk factors Y .

Throughout this discussion we have focused on a change of measure
to the risk-neutral measure Q because of its prominence in the pricing
component of econometric studies of DAPMs. This change of measure is
a special case of measure changes based on changing the numeraire in
which value is measured. Particularly in Chapters 14 and 16 we have the
need to price under alternative numeraires and, therefore, we briefly review
the general case. We fix T > 0 and let Z (t) and P (t) denote the prices of
two traded securities at date t<T , which, for simplicity, have no cash flows
prior to date T . We view P (t) as a numeraire price that defines an associated
measure m(P ) in the following sense. If we let V (t) = Z (t)/P (t), from the
counterparts of (8.49) for P (t) and Z (t) it follows that

0 = Vt + µ
m(P )′
Y VY + 1

2
Tr
[
σY σ

′
Y VYY ′

]
, (8.53)

where µm(P)Y = µPY −σY [�− σP ] and σP ≡ (σ ′
Y ∂P /∂Y )/P . Under regularity,

the Feynman-Kac theorem applied to (8.53) implies

V (t) = Em(P )t [V (T )] ⇔ Z (t)
P (t)

= Em(P )t

[
Z (T )
P (T )

]
, (8.54)

where the conditional expectation is taken with respect to a measure m(P )
under which Y follows the process

dY (t) = µ
m(P )
Y (t) dt + σY (t) dW m(P )(t),

with W m(P ) a vector of standard Brownian motions under measure m(P ).
Under the measure m(P ), the short rate r does not appear [in (8.53) and
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(8.54)] and the relative price V (t) follows a martingale. Different choices of
P (t) lead to different µm(P )Y (t) and therefore different pricing measures m(P ).

Risk-neutral pricing is obtained by choosing P (t) to be the price of a
continuously compounded bank deposit, P (t) = e ∫ t

0 r (s)ds , for which σP = 0
and the Q-drift of Y is µQY (t) ≡ µPY (t) − σY (t)�(t). Alternatively, we could
choose P (t) = D(t ,T ), the price of a zero-coupon bond issued at date t and
maturing at date T . In this case, V (t) is a “forward price” of security Z (t),
so QT is commonly referred to as the forward measure. Using the fact that
D(T ,T ) = 1, we see that (8.54) becomes

Z (t) = D(t ,T )ETt [Z (T )], (8.55)

where ETt [·] denotes conditional expectation under the measure QT.
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9
Linear Asset Pricing Models

From the very beginning of the application of statistical methods to fi-
nancial market data, expected returns have occupied a central place in
empirical finance. This is natural given the fundamental role of agents’
expectations about future asset prices in portfolio theory. We begin our
econometric analysis of DAPMs by examining the economic underpinnings
of, and historical evidence for, two widely studied restrictions on expected
returns: (1) expected holding-period returns on investments are constants
(implying, among other things, that asset returns are unpredictable), and
(2) the expected returns on two different investment strategies are equal.
The former restriction is on the time-series properties of the return on a
single asset. The latter is a restriction across securities and, by itself, it does
not restrict the time-series properties of either return.

The interest in the first hypothesis of unpredictable returns has arisen
primarily in the literature on returns on equity and currency positions,
whereas the link between expected returns on different investment strate-
gies has been the central issue in the literature on the term structure of
interest rates. After briefly discussing the economic underpinnings of these
two hypotheses, we turn to the empirical evidence from equity and bond
markets.

9.1. Economic Motivations for
Examining Asset Return Predictability

Early analyses of the conditional means of security returns (e.g., Fama,
1965) focused on the null hypothesis that expected holding-period returns
on investments are constants. The economicmotivation for this null hypoth-
esis was that rational investors should use available information “efficiently”
in predicting future stock prices and, as a consequence, stock returns (the
changes in logarithms of prices) should be unpredictable.

211
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Drawing upon the dynamic economic theory developed in the 1970s
and 1980s, we now know that optimal use of available information does
not, by itself, imply that stock returns will be serially uncorrelated. For in-
stance, from the basic preference-based pricing relation (8.11), the con-
ditional mean of the (total) return rt+1 from holding a security position
for one period can be expressed (using the definition of the conditional
covariance) as

E
[
rt+1

∣∣It ] − r ft = −Cov
[
rt+1,m1

t+1
∣∣It ]

E
[
m1
t+1

∣∣It ] , (9.1)

where r ft = 1/E[m1
t+1|At] is the total return on a one-period riskless bond

and It is a subset of agents’ information set At with the property that
r ft ∈ It . Intertemporal asset pricing theories, including standard neoclassi-
cal stochastic growth theory or life-cycle theories of consumer behavior (see
Chapter 10), typically imply that the conditional second moment in (9.1) is
serially correlated and, hence, that excess returns are predictable. By pre-
dictability here we mean best prediction, not best linear prediction, since
there is no presumption that best predictors (conditional expectations) are
linear in (9.1).

For a model to imply that expected excess returns are unforecastable,
special assumptions about the risk preferences of agents or the distribution
of the pricing kernel q∗ are necessary. Perhaps the most widely cited ratio-
nale for the null hypothesis that security returns are unpredictable is the as-
sumption that agents are risk neutral. To see the implications of risk neutral-
ity in the context of the economic environment underlying (8.11), suppose
that consumers have preferences over M consumption goods (c1, . . . , cM )

and that c1 is the numeraire good. In this case, we view returns and payoffs
in the payoff space P as being real payoffs denominated in units of the nu-
meraire consumption good. If agents are risk neutral in the sense that they
have linear period utility functions for the numeraire consumption good,

U
(
c1t , c2t , . . . , cMt

) = ac1t + Ũ
(
c2t , . . . , cMt

)
, (9.2)

then the marginal utility of the numeraire good is a and (8.11) simplifies to

πt (qt+1) = βE[qt+1 | It] ⇐⇒ E[rt+1 | It] = 1/β. (9.3)

Two key implications of (9.3) are: (1) the expected returns on all traded
assets (assets with payoffs in Pt+1) are constant and, hence, returns are seri-
ally uncorrelated; and (2) the expected returns on all admissible securities
are the same. Importantly, (9.3) is silent about higher-order moments of
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the distributions of returns. In particular, the conditional variances are in
general different across securities and they may be time varying.

These restrictions are on the means of real returns, as it is payoffs
in terms of consumption that agents are concerned with. Nevertheless,
empirical testing of (9.3) has often been based on returns on common
stocks or bonds with nominal payoffs. Some researchers have deflated the
nominal payoffs by a consumption deflator in order to get real returns, and
then proceeded by assuming that these constructed real returns are in Pt+1.
Others have proceeded to study the implications of (9.3) using nominal
returns directly. This presumes that one is using money as the numeraire
and that the nominal pricing kernel q∗ is constant. The exact form of the
nominal q∗ and whether or not it is constant depends on how money is
introduced into amodel. We address this issue inmore depth in Chapter 10.
At this juncture we simply remark that a nominal q∗ would be constant
if money appeared directly in agents’ utility function and agents are risk
neutral along the dimension of this particular good.1

Following Hansen and Singleton (1983), we can also derive restrictions
on the conditional means of asset returns in economies populated by risk-
averse agents. Starting with the fundamental pricing relation (8.3), in which
q∗
t may be taken to be a generic pricing kernel and not necessarily agents’
intertemporal marginal rate of substitution m1

t , we assume that the pric-
ing kernel and the holding-period returns on the securities of interest are
jointly lognormally distributed. More precisely, assume that q∗

t+1 prices the
relevant universe of securities with payoffs at date t + 1 and let rt+1 denote
the total return (payoff divided by initial price) on one of these securities.
Also, let x ′

t+1 = (log q∗
t+1, log rt+1) and ψt denote the information generated

by {xs : s≤ t}. An immediate implication of (8.3) is that
E
[
q∗
t+1rt+1 | ψt

] = 1. (9.4)

Suppose we add the assumption that the distribution of xt+1 conditional on
ψt is normal. Then (9.4) can be expressed equivalently as

1 = E
[
q∗
t+1rt+1

∣∣ ψt
] = exp

{
E
[
log

(
q∗
t+1rt+1

) ∣∣ ψt
]

+ 1
2
Var

[
log

(
q∗
t+1rt+1

) ∣∣ ψt
]}

.

(9.5)

Taking logarithms of (9.5) and rearranging gives

1 One motivation for including money directly in U is that agents receive utility from
the transactions services provided by money. Some have criticized this construction for being
imprecise about the economic reasons that such transactions services are valued by consumers.
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E
[
log rt+1

∣∣ ψt
] = −E[ log q∗

t+1
∣∣ ψt

] − 1
2
Var

[
log

(
q∗
t+1rt+1

) ∣∣ ψt
]
. (9.6)

This expression has several potentially strong implications about the
conditional mean of the return r . First, in this setting, the null hypothesis
that returns are unpredictable (expected returns are constants) amounts to
the hypothesis that the pricing kernel is unpredictable and the conditional
secondmoments of q∗ and r are constants. The former restriction implicitly
imposes substantial structure on agents’ marginal rates of substitution, as
we discuss in depth in Chapter 10. The assumption that the conditional
second moments are constant may also be strong in the light of the findings
in Chapter 7. If the second moments in (9.6) are constant, as would be
the case, for example, if the {xt } are jointly lognormal, then the returns on
all securities that are priced by q∗ and jointly lognormally distributed with
this kernel all share the same degree of predictability. Put differently, the
differences (log r it+1 − log r j

t+1) between the returns on any two securities
are unpredictable. This observation underlies some of our discussion of the
conditional means of bond returns later in this chapter.

An alternative log-linear model is obtained by combining the assump-
tions of exponential utility, normally distributed endowments, and lognor-
mal returns (Ferson, 1983).

As we proceed to explore the predictability of asset returns, we should
bear in mind that the mean of an asset return is one of the most diffi-
cult moments to reliably “pin down,” even with the large sample sizes that
are sometimes available (e.g., a century of returns). Heuristically, this is
a consequence of the fact that precision in estimation of means improves
with the length of the sample period, and not so much with the frequency
with which returns are measured over a given sample period (e.g., Merton,
1980). Though the effort expended over the past 40 years on estimating
mean returns has been enormous, substantial disagreement remains about
the temporal properties of this basic feature of return distributions. More-
over, in studying mean returns, one may reasonably be doubtful about the
reliability of the large-sample paradigm underlying much of statistical infer-
ence. Not surprisingly, then, it is this literature that has devoted the most
effort to exploration of the small-sample distributions of the tests being
implemented. We review some of the findings regarding the small-sample
properties of tests as part of our discussion.

9.2. Market Microstructure Effects

A direct way to explore the nature of serial correlation in returns is to exam-
ine projections of returns onto their own past histories and the histories of
other economic variables that might have predictive content for returns.
However, prior to undertaking such an analysis, it is desirable to assess
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whether measurement problems with the data might distort measured se-
rial correlations and, thereby, lead to the spurious rejection of an economic
hypothesis. One potentially important measurement issue, especially over
short measurement intervals of 1 day or less, is that securities do not trade
continuously in markets. Instead, trades take place at discrete intervals of
time and the time between orders for trades is not perfectly predictable.
Moreover, at the end of each day, when “closing prices” are being recorded,
these prices often do not represent the prices of actual at-close trades, but
rather of trades that took place some time before closing. Thirdly, trades
take place at the “bid” or “ask” price, and not a single “true” price and
the consequent “bid-ask bounce” can affect the predictability of measured
returns.

Concern about “nonsynchronous” trading dates back at least to Fisher
(1966). Subsequently Scholes and Williams (1977) and Lo and MacKinlay
(1990), among others, have proposed statistical models of the trade arrival
process and investigated the implications of these models for the auto-
correlation of returns. The Scholes-Williams model provides an instructive
environment for illustrating the implications of nonsynchronous trading for
the autocorrelation of returns. Suppose that the logarithm of the price of
the j th stock follows a Gaussian diffusion (see Chapter 5):

d log Pj (t) = µj dt + σj dBp(t). (9.7)

It follows that the (true) continuously compounded return over a time in-
terval of length n on security j , r nj t , is distributed as N (nµj ,nσ 2

j ). However,
with nonsynchronous trading, when measuring the price at date t , one is in
fact recording the price for the last actual trade that took place at time t−s j t ,
where s j t measures the residual time before date t of the actual trade. Conse-
quently, returns computed over one time interval (n=1) are not measured
over the interval [t−1, t], but rather over the interval [t−1−s j,t−1, t−s j t].

This distinction between measurement time and trading time is illus-
trated in Figure 9.1 for two different securities j and k. The solid dots rep-
resent trade times of these securities. In recording the price at the end of a
day, say date t , one is in fact recording the price at the last trade time before
the close. In the case of security j , the mismeasurement gap is s j t . A sim-
ilar, though typically different, gap would occur for security k. These mea-
surement errors induce biases in the population moments of the recorded
returns r sj t compared to the moments of the returns r j t implied by the
model (9.7).

To explore these biases we suppose, following Scholes and Williams
(1977), that the timing gap s j t is stochastic and independently and identi-
cally distributed over time. Then the length of the time interval over which
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r sj t is being computed at date t is (1− s j t + s j t−1). Therefore, the lognormal
model for price implies that

E
[
r sj t

] = E
[
E
(
r sj t

∣∣s j t , s j,t−1
)] = E[(1− s j t + s j,t−1)µj] = µj , (9.8)

where the last equality follows from the assumption that {s j t } is an i.i.d. pro-
cess. Nonsynchronous trading does not bias expected, continuously com-
pounded returns.

Turning to the autocovariance of returns,

Cov
[
r sj t , r

s
j,t−1

] = E
[
r sj t r

s
j,t−1

] − (µj )
2

= E
[
(1− s j t + s j,t−1)(1− s j,t−1 + s j,t−2)(µj )

2] − (µj )
2

= − Var[s j]
(σj/µj )2

σ 2
j , (9.9)

where the law of iterated expectations (conditioning on {s j t , s j,t−1, s j,t−2})
has been used to get to the second line of (9.9). It follows that non-
synchronous trading induces negative serial correlation in returns over short
measurement horizons. Similar reasoning can be used to show that vari-
ances computed from measured returns overstate the true variances of
returns,

Var
[
r sj t

] =
(
1+ 2Var[s j]

(σj/µj )2

)
σ 2

j . (9.10)

However, a not atypical value of the coefficient of variation (σj/µj) for
a common stock is in the range of 30+, so (9.9) and (9.10) imply that
the biases in the measured autocorrelations and variances of individual
common stocks are typically very small.

The implications for returns on portfolios of securities are somewhat
different. The variance of the return on a portfolio is dominated by the
covariances among the returns relative to the variances of the returns on
the component securities. In the Scholes-Williams model, the covariance
between two returns r sj t and r

s
kt is

Cov
[
r sj t , r

s
kt

] =
(
1− E

[
max{s j , s k} −min{s j , s k}

] + 2
Cov[s j , s k]

ρjk(σj/µj )(σk/µk)

)
σjk ,

(9.11)

where ρjk = σjk/(σjσk) and, as shown by Scholes andWilliams, the expected
length of the period of overlap between r sj t and r

s
kt is 1 − (E[max{s j , s k} −



Page 218 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

218 9. Linear Asset Pricing Models

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[218], (8)

Lines: 161 to 168

———
0.0pt PgVar
———
Normal Page

* PgEnds: Eject

[218], (8)

min{s j , s k}]). For typical magnitudes of the coefficients of variation of the
individual security returns the term involving Cov[s j , s k] in (9.11) con-
tributes a negligible amount to the covariance of returns and, therefore, one
should typically expect that Cov[r sj t , r

s
kt] < Cov[r j t , r kt]. Combining these

observations with the observation that the covariances are typically positive
among returns in an aggregate portfolio, we expect measurement errors
to imply that the variance of the measured market return understates the
variance of the actual market return. Furthermore, the latter result suggests
that the first-order autocorrelation of the measured return on the market
portfolio tends to be positive, even if the return on each individual security
is serially uncorrelated.

Lo and MacKinlay (1990), using a model of nonsynchronous trading
with features similar to those of the Scholes-Williams model, reached the
same conclusion about the signs of the biases in autocorrelations. They then
calibrated their model to the distributions of stock returns and found that
nonsynchronous trading does indeed lead to positive serial correlations in
portfolio returns. However, the magnitudes of their positive autocorrela-
tions weremuch smaller than what one sees in the data, unless they assumed
an implausibly large probability that the individual stocks do not trade in a
given period (probability of nontrading). They were led to conclude that
nonsynchronous trading, by itself, cannot explain the magnitudes of the
positive autocorrelations of portfolio returns.

Both the Scholes-Williams and Lo-MacKinlay models assume that the
probability of trading within any given time interval is constant over time.
Boudoukh et al. (1994) question the empirical plausibility of this assump-
tion and propose an extension of the Scholes-Williams model that accom-
modates temporal variation in the probabilities of nontrading. By relaxing
the Markov assumption in Lo-MacKinlay, Boudoukh et al. obtain autocorre-
lations that are approximately two-thirds higher than those implied by the
model with time-independent probabilities. Based on these, and other ex-
tensions of the model, Boudoukh et al. (1994) argue that nonsynchronous
trading can in principle explain the degree of positive estimated serial cor-
relation in portfolio returns.

Another potential source of autocorrelation in short-horizon returns,
explored by Niederhoffer and Osborne (1966), Blume and Stambaugh
(1983), and Roll (1984), is the bid-ask bounce. Roll’s model provides an
intuitive illustration of why bid/ask spreads may induce serial correlation.
Let Pt and P ∗

t denote the measured and “fundamental” value of a common
stock, respectively. Here fundamental value is interpreted as the economic
value that would be achieved in a hypothetical economy where the costs of
setting up a trading mechanism are zero. The prices of actual trades reflect
a spread, say BAt , earned by the market maker. Prices are assumed to differ
from fundamental value by the rule:
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Pt = P ∗
t + τt

BAt
2

, (9.12)

where τt indicates the order type,

τt =
{+1 with probability 1

2 buyer-initiated,

−1 with probability 1
2 seller-initiated.

(9.13)

It is assumed that {τt } is an i.i.d. process with E[τt] = 0 so that, on average,
Pt is equal to its fundamental value.

Price changes in this model are given by

�Pt = �P ∗
t + (τt − τt−1)

BA
2

, (9.14)

under the assumption that the bid-ask spread is constant over time. It follows
that

Cov[�Pt , �Pt−1] = Cov
[
�P ∗

t , �P ∗
t−1

] − BA2

4
= −BA2

4
, (9.15)

with the last equality being an implication of the assumption that fundamen-
tal returns follow an i.i.d. process. Thus, bid-ask bounce induces negative se-
rial correlation in returns. This is simply because if the last trade was at the
ask, then the effect of the bid/ask spread on price is either zero or negative,
whereas if the last trade was at the bid then this effect is zero or positive.

9.3. A Digression on Unit Roots in Time Series

For short holding periods (say a day or a week), stock returns have long
been known to exhibit very little serial correlation and, when present, it is
often attributed to the market-structure factors described in the previous
section. Yet we do not expect these “short-horizon” correlations to reflect
predictability resulting from business cycle factors. Such “long-horizon” de-
pendence would, it seems, be more likely to show up in correlations of re-
turns over longer holding periods. As we will see in the next section, it is
indeed these long-horizon regressions that have received most of the atten-
tion in the literature.

One motivation for examining these correlations among long-horizon
returns comes from a representation of asset prices in terms of permanent
and transitory shocks (Summers, 1986; Fama and French, 1988). Suppose
that log Pt can be represented as

log Pt = wt + z t , (9.16)

wt = µ + wt−1 + εt ,
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where εt is a mean-zero i.i.d. process and z t is any mean-zero stationary
stochastic process. Though some have interpreted wt as the “efficient mar-
kets” price and z t as temporary deviations from this price, we have already
seen that rational optimizing behavior of risk-averse agents may be consis-
tent with the presence of both components. Accordingly, we view (9.16) as
simply a convenient reduced-form means of capturing the possibility that
there is a stochastic trend in asset prices.

In this permanent/transitory model, the continuously compounded
return from purchasing a security at date t and holding the security for
n periods, r nt+n = ∑n

j=1 r
1
t+j , can be expressed as

r nt+n = (wt+n − wt ) + (z t+n − z t ) =
n∑

j=1
εt+j + (z t+n − z t ). (9.17)

Thus, the variance of r nt is

Var
[
r nt
] = nσ 2

ε + 2ρz(0) − 2ρz(n), (9.18)

where ρz(n) = E[z t z t+n], and its autocorrelation is

Corr
[
r nt , r nt−n

] = Cov[z t − z t−n, z t−n − z t−2n]
Var

[
r nt
] . (9.19)

Whereas the random-walk component of log Pt does not induce serial cor-
relation in r n [see (9.17)], the stationary component does. So long as ρz(n)

approaches zero as n → ∞ (a property that would hold for stationary au-
toregressive processes), the numerator of (9.19) approaches −σ 2

z as n gets
large.

Exactly how this negative serial correlation in z t+n − z t shows up in re-
turns depends on the horizon n. Summers (1986) noted that if z t is itself
highly persistent, then over short horizons Corr[r nt , r nt−n] may be approxi-
mately zero. In other words, any persistence in r nt induced by the compo-
nent z may be missed unless n is chosen to be sufficiently large. For inter-
mediate horizons, it may well be that the autocorrelation in z shows up in
(negatively) serially correlated returns. However, over long horizons (large
n), the contribution of wt to the variance of r n (nσ 2

ε ) dominates the station-
ary component and the autocorrelations of returns approach zero.

Whether or not you feel that this permanent/transitory model provides
sound conceptualmotivation for studying long-horizon returns, it does raise
a new, and as it turns out very important, econometric issue. Namely, stock
returns (and other macroeconomic variables) may well embody a random-
walk component. If so, or even if there is not literally a unit root component
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but one with very slowmean reversion, then the usual large-sample distribu-
tion theory underlying inference (see, e.g., Chapter 4) may be unreliable.

With these observations in mind, in this section we briefly digress and
discuss some new econometric issues raised by the presence of a unit root
in an economic time series.

9.3.1. Why Are Unit Roots a Problem?

By way of background, it is instructive at the outset of this discussion to
deal briefly with the potential nature of time trends in time series. One
possibility is that a process yt evidences a deterministic trend and follows the
trend-stationary (TrendS) process

yt = α0 + β0t + ut , (9.20)

where ut is a stationary stochastic process with mean zero. (The following
observations extend immediately the case of a polynomial trend in t .) In
this case, the unconditional mean of yt is α0 + β0t and, hence, the process
is nonstationary with constant variance σ 2

u = Var(ut ).
Another possibility is that yt embodies a stochastic trend, in which case

we have the difference-stationary (DiffS) process

yt = α0 + yt−1 + ut , (9.21)

where ut is again a mean-zero, stationary process. This process is referred
to as being difference-stationary, because �yt is a stationary time series.
Recursive substitution of the expression corresponding to (9.21) for lagged
y’s gives

yt = α0t + y 0 +
t−1∑
i=0

ut−i . (9.22)

Therefore, as in the case of a TrendS process, the mean of yt , E[yt] =
α0t + E[y 0], drifts with t . However, unlike in the case of a TrendS process,
the variance of a DiffS yt , Var( yt ) = Var( y 0) + Var(

∑t−1
i=0 ut−i), grows with t

without bound. For example, if {ut } is an i.i.d. process with variance σ 2
u , then

Var( yt ) = tσ 2
u . This is in contrast to the variance of the stationary process

yt = α0 +ρ0yt−1 +ut , with |ρ0| < 1, which is Var( yt ) = σ 2
u /(1−ρ2

0) when {ut }
is an i.i.d. process.

Which (if any) form of trend is present may fundamentally affect the
properties of tests of financial models. Most of standard testing theory car-
ries over to the case of TrendS processes. All that is required is that the
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scaling factor
√
T used to derive asymptotic distributions be adjusted to re-

flect the order of a polynomial trend. Similarly, the case of an exponential
trend, yt eβ0t , can typically be handled in the same manner as the case of
polynomial deterministic trends by working with log yt . Even in this simple
case, however, care must be taken to accommodate restrictions across the
trends of different economic series that are linked by equilibrium relation-
ships implied by a DAPM (see Chapter 10).

Similarly, if we know that we are dealing with a DiffS process, then one
simply works with�yt in evaluating financial models.2 Unfortunately, we are
often not sure whether y is just highly persistent or whether the coefficient in
the projection of yt onto yt−1 is literally one. This world of ignorance brings
with it numerous problems in inference. In particular, in the regression
model

yt = ρ0yt−1 + ut , (9.23)

we cannot use the standard (asymptotic) t -test for the null hypothesis ρ0 =
1. This is a consequence of the fact that, under the null, the variance of yt
is blowing up with t .

Equally important, working with the time difference of a process that
is in fact TrendS leads to the “overdifferencing” problem (see, e.g., Plosser
and Schwert, 1978). In (9.20), if ut is an i.i.d. process for instance, thenwork-
ing with �yt induces a moving-average error ut−ut−1. This error structure
should be accounted for in formal inference.

9.3.2. Testing for Unit Roots

Consider the problem of testing H 0 : ρ0 = 1 in (9.23) with ut an i.i.d.,
mean-zero process. Dickey and Fuller (1979) proposed working with the test
statistic T (ρT − ρ0) and derived its small-sample distribution. Subsequently,
Phillips (1987) showed that the limiting distribution of this statistic is3

T (ρT − ρ0) = T−1∑T
t=1 yt−1ut∑T

t=1 yt−1yt
⇒

∫ 1
0 B(r )dB(r )∫ 1
0 B(r )2 dr

, (9.24)

2 In fact, the situation in practice is not this easy, because we are often interested in the
relationships among several variables, not all of whichmay followDiffS processes. This situation
raises the issue of “co-integration” among time series. See Maddala and Kim (1998) for an
overview of the literature on co-integration.

3 The statistical theory required to derive Phillips’s results is outside of the frameworks
discussed in Chapters 3–6. What is typically involved is a functional central limit theorem (in
particular, Donsker’s theorem and the continuous mapping theorem). A useful overview of
the relevant statistical theory as applied to the unit root problem is found in Maddala and Kim
(1998).
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where B(r ) is a standard Brownian motion. Alternatively, a test can be based
on the usual t -statistic,

T (ρT − ρ0)√
T (1− ρ2

T )
⇒

∫ 1
0 B(r )dB(r )[∫ 1
0 B(r )2 dr

]1/2 . (9.25)

(If |ρ0| < 1, then
√
T (ρT − ρ0)/(1 − ρ0)

2 ⇒ N (0, 1), so (9.25) is in fact
the usual t -statistic.) The numerators of these statistics can be rewritten as
(1/2)[B(1)2 − 1], so they are a χ2(1) random variable minus its degree of
freedom. Though the numerator of (9.25) is skewed to the right, the t -ratio
is skewed to the left. It follows that using conventional critical values for a
t -test of ρ0 = 1 may lead to overrejection of H 0. Phillip’s results, as well as
those discussed subsequently, are summarized in Table 9.1.

A richer regression setting in which to test for ρ0 = 1 has

yt = α0 + β0t + ρ0yt−1 + ut (9.26)

(again with i.i.d. errors). Small-sample critical values for testing ρ = 1 in
(9.26)—the so-called Dickey-Fuller test—were tabulated in Fuller (1976)
and Dickey and Fuller (1981). Its asymptotic distribution depends on
whether the true data-generating process includes the deterministic com-
ponent α0 + β0t or not. If it does not, then the limiting distribution of the
t -ratio (9.25) is again given by a ratio of functions of a Brownian motion
B(r ). On the other hand, if α0 �= 0 (β0 may or may not be zero), then West
(1988) proved the rather striking result that the limiting distribution of the
t -ratio is N (0, 1), just as in the classical case. The reason for this result is
that the regressor yt is dominated by the trend term β0t , for large t , so the
estimator ρT behaves much as in the case of a least-squares estimator of the
coefficient on a linear trend.

Table 9.1. Asymptotic Distributions of t-Statistics for the Null Hypothesis
that ρ 0 = 1 in Various Special Cases of the Time-Series Model (9.26)

Regression DGP Asymptotic distribution

No deterministic trend α0 = β0 = 0 FCLT: (Phillips)
(α0 = β0 = 0)

Drift/no trend α0 = β0 = 0 FCLT: (Phillips)
(α0 �= 0, β0 = 0) α0 �= 0, β0 = 0 N(0,1) (West)

Deterministic trend α0 = β0 = 0 FCLT: (Phillips)
(α0 �= 0, β0 �= 0) α0 �= 0, β0 �= 0 N(0,1) (West)

Note: DGP is the true data-generating process and regression is the estimated model.
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Not only does the presence of nonzero drift (α0 �= 0) affect the lim-
iting distribution of the statistic (9.25), but Perron (1988) has shown that
omission of a trend from the regression model, when it is present in the
DGP, leads to the power of the test going to zero as T → ∞. His findings
suggest that failing to specify the order of, say, a polynomial deterministic
trend correctly may significantly affect the power of the test. This finding
is somewhat discouraging, because we often have little a priori information
about the exact nature of deterministic trends. Furthermore, specifying the
order to be larger than the true order may also decrease the power of the
test, owing to the inclusion of extraneous regressors.

The version of the Dickey-Fuller test discussed so far abstracts from any
persistence in the time series y as, underH 0 : ρ0 = 1,�yt is an i.i.d. process.
Dickey and Fuller (1979) and Said and Dickey (1984) extended the testing
framework to the case of autoregressive processes of order p:

yt = α0 + ρ0yt−1 +
p∑
i=1

βi�yt−j + ut . (9.27)

The t -statistic forH 0 : ρ0 = 0 in (9.27) is often referred to as the augmented
Dickey-Fuller test. This statistic has the same limiting distribution as the
t -statistic in the simplermodel with the βi =0, since ρT and {βiT , i=1, . . . , p}
are asymptotically independent.

9.4. Tests for Serial Correlation in Returns

There is now a substantial body of evidence suggesting that stock returns ex-
hibit some serial dependence, especially returns on portfolios of common
stocks. Broadly speaking, evidence on the degree of serial correlation in
stock returns has come from three different testing methodologies: (1) pro-
jections of stock returns on various candidate predictors measured at the
same sampling interval as the holding period over which the return is com-
puted; (2) prediction of long-horizon returns, sampled at daily or weekly
intervals, using information variables also measured at daily or weekly in-
tervals; and (3) comparison of the variance of a long-horizon return with
the variance of the one-period return scaled up by the length of the long
horizon. In this section we present an overview of the econometric methods
underlying these tests.

Suppose that the null hypothesis is that

E
[
r 1t+1

∣∣It ] = µ, (9.28)

with µ being a constant and It an information set that includes at least past
values of the price of the security, Pt . This is a much weaker hypothesis than
the hypothesis that returns are independent over time, though it is stronger
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than the hypothesis that r 1t+1 is serially uncorrelated. Consideration of the
stronger version is motivated by the economic discussions in Section 9.1.

Among the many possible strategies for testing (9.28), three have fig-
ured most prominently in the literature. Fama and French (1988) start with
the implication of (9.28) that r nt+n satisfies

E
[
r nt+n

∣∣ It ] = nµ, n = 1, 2, . . . . (9.29)

This restriction can be tested by projecting r nt+n onto a vector of information
variables xt ∈ It (including an intercept),

r nt+n = δ0(n) + δx(n)′xt + unt+n, (9.30)

and testing whether the slope coefficient δx(n) is zero. This inference prob-
lem was examined systematically in Hansen and Hodrick (1980) and falls
under Case ACh(n − 1) of our discussion of asymptotic distributions in
Chapter 3. Under our regularity conditions, the asymptotic covariance ma-
trix of δT (n)′ = (δ0T (n), δxT (n)′) is given by (3.81). This construction accom-
modates conditional heteroskedasticity of unknown form, consistent with
the fact that the null hypothesis (9.28) does not restrict higher-order con-
ditional moments. It maintains the assumption that under the alternative
δx(n) �= 0, the projection error unt+n continues to satisfy E[unt+n |It] = 0.

In some economic settings (e.g., the economic environment studied by
Hansen and Singleton (1983) and discussed in Chapter 10) (r nt , xt ) follow a
joint lognormal distribution. In this case, the conditional second moments
of the unt+n are constants, and ML estimation is feasible and gives the most
efficient estimator. However, in other settings, where the joint distribution
of xt and r nt+n is unknown, but the assumption of conditional homoskedas-
ticity of unt+n is maintained, least-squares projection is one feasible means of
testing for serial correlation. Under conditional homoskedasticity, if we let
x̃ ′
t = (1, x ′

t ), the asymptotic covariance matrix of δT (n) simplifies to

�LLP
0 = E

[
x̃t x̃ ′

t

]−1 n−1∑
j=−n+1

�u( j )E
[
x̃t x̃ ′

t−j

]E
[
x̃t x̃ ′

t

]−1
, (9.31)

where �u( j ) = E[unt u
n
t−j].

Fama and French (1988) investigated (9.28) by choosing xt to be the
long-horizon return r nt , the n-period return observed at date t . This
amounted to examining the correlations

γT (n) = (1/T )
∑

t

(
r nt+n − nµ̂

)(
r nt − nµ̂

)
(1/T )

∑
t

(
r nt − nµ̂

)2 , (9.32)

where µ̂ = (1/T )
∑

t r
1
t .
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The use of long-horizon returnsmeans having to accommodatemoving-
average errors unt+n of order n−1, and there is the possibility of small-sample
biases, biases that may well increase with the forecast horizon. With this
limitation of (9.30) in mind, Hodrick (1992) observed that, for scalar xt ,

Cov
[
r nt+n, xt

] = Cov


r 1t+1,

n−1∑
j=0

xt−j


 . (9.33)

Therefore, the same “economic” content of the long-horizon regression is
achieved by estimating the projection

r 1t+1 = δ0(1) + δx(1)


n−1∑

j=0
xt−j


 + u1t+1, (9.34)

and testing the null hypothesis that δx(1) = 0. Since this is a one-period-
ahead projection, under the alternative of (9.34) it is reasonable to assume
that E[u1t+1|It]= 0. This falls under the simpler Case ACh(0) of Chapter 3
and the asymptotic covariance matrix of (δ0T (1), δxT (1)) is given by (3.73).

In the context of projections of long-horizon returns on lagged returns,
Jegadeesh (1991) computed the correlations among one-period returns
and lagged n-period returns,

γ ∗
T (n) = (1/T )

∑
t

(
r 1t+1 − µ̂

)(
r nt − nµ̂

)
(1/T )

∑
t

(
r nt − nµ̂

)2 . (9.35)

By analogy to Hodrick’s analysis, this test can be reinterpreted as a Fama-
French-like long-horizon projection of r nt+n onto r 1t . It shares the property
of (9.34) that the projection error is a martingale difference sequence, and
hence (3.73) applies for inference.

An alternative test of (9.28) based on the variances of long-horizon re-
turns was studied by Cochrane (1988), Lo andMacKinlay (1988, 1989), and
Poterba and Summers (1988). As was discussed in Chapter 7, an implication
of (9.28) is that

Var
[
r nt+n

] = nVar
[
r 1t
]
. (9.36)

Therefore, a natural statistic to examine as a test of (9.36) is

τT (n) = (1/T )
∑

t

(
r nt+n − nµ̂

)2
n (1/T )

∑
t

(
r 1t − µ̂

)2 − 1. (9.37)
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Whether τT (n) is positive or negative depends on the alternative model and
possibly on the value of n. For the permanent/transitory alternative model
(9.16), the variance ratio can be written as

Var
[
r nt
]

nVar
[
r 1t
] = nσ 2

ε + 2ρz(0) − 2ρz(n)

n
(
σ 2

ε + 2ρz(0) − 2ρz(1)
)

→ 1− Var[�z t]
Var[� log Pt]

, n → ∞. (9.38)

Thus, we would expect τT (n) to be negative for this alternative, at least for
large enough n.

Richardson and Smith (1994) show that all three statistics γT (n), γ ∗
T (n),

and τT (n) can be expressed as linear combinations of the autocorrelations

ρT (i) = (1/T )
∑

t

(
r 1t − µ̂

)(
r 1t−i − µ̂

)
(1/T )

∑
t

(
r 1t − µ̂

)2 : (9.39)

γT (n) =
2n−1∑
i=1

min(i, 2n − i)
ρT (i)
n

(1/T )
∑

t

(
r 1t − µ̂

)2
(1/T )

∑
t

(
r nt − nµ̂

)2/n , (9.40)

γ ∗
T (n) =

n∑
i=1

ρT (i)
n

(1/T )
∑

t

(
r 1t − µ̂

)2
(1/T )

∑
t

(
r nt − nµ̂

)2/n , (9.41)

τT (n) = 2
n−1∑
i=1

(
n − i
n

)
ρT (i). (9.42)

Under our regularity conditions and H0,

(1/T )
∑

t

(
r 1t − µ̂

)2
(1/T )

∑
t

(
r nt − nµ̂

)2/n → 1, as T → ∞. (9.43)

It follows that the asymptotic distributions of these statistics (scaled by
√
T )

depend only on the joint asymptotic distribution of the
√
TρT (i).

Pursuing this further, we let yt ≡ (r 1t −µ) and suppose that E[yt+1|It] =
0, where It is the information set generated by current and past yt . The
asymptotic distribution of interest is that of the

√
TρT (i) a= (1/

√
T )

∑
t yt yt−i

σ 2
y

, (9.44)
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where σ 2
y = Var[yt]. For |i| > 0, | j | > 0, i �= j , the limiting joint distribu-

tion of
√
TρT (i) and

√
TρT ( j ) is normal with mean zero (the null is no

serial correlation) and

Var
[√

TρT (i)
]

= E
[
y2t y

2
t−i

]
(
E
[
y2t
])2 , (9.45)

Cov
[√

TρT (i),
√
TρT (j)

]
= E

[
y2t yt−|i|yt−| j |

]
(
E
[
y2t
])2 . (9.46)

In deriving the asymptotic distribution of the γ and τ statistics, it has
often been assumed that the covariance in (9.46) is zero for all i and j . To
explore the plausibility of this assumption, suppose that j > i > 0 and
consider the value of the numerator in (9.46) implied by the GARCH(1,1)
model [see (7.2) in Chapter 7]:

E
[
E
[
y2t
∣∣It−i]yt−i yt−j

] = E

{[
ω

(
i−2∑
k=0

(α + β)k

)
+ (α + β)i−1

× (
ω + αy2t−i + βσ 2

t−i−1
)]
yt−i yt−j

}

= (α + β)i−1αE
[
E
[
y3t−i

∣∣It−i−1]yt−j

]
. (9.47)

Thus, in this model, if E[y3t−i |It−i−1] = 0—that is, if the conditional distribu-
tion of yt is symmetric—then the covariance (9.46) is zero. While symmetry
is a property of the formulation of the GARCH model in Bollerslev (1986),
the empirical evidence reviewed in Chapter 7 suggests that equity return
distributions are in fact skewed. This view was further supported by the fit-
ted parameters of the continuous-time SVmodel with correlated return and
volatility shocks applied to equity return data.

Proceeding under the assumption of symmetry, as in much of the lit-
erature on testing for serial correlation, we find that the three test statis-
tics converge in distribution under the null to normals with mean zero and
variances:

�γ =
2n−1∑
i=1

(min(i, 2n − i))2
E
[
y2t y

2
t−i

]
n2E

[
y2t
]2 , (9.48)

�γ ∗ =
n∑
i=1

E
[
y2t y

2
t−i

]
n2E

[
y2t
]2 , (9.49)
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�τ =
n−1∑
i=1

(
2(n − i)

n

)2 E[y2t y2t−i]
E
[
y2t
]2 . (9.50)

Lo and MacKinlay (1989) examined the small-sample properties of the
statistic τT (n) for various values of T and n. They found that the perfor-
mance of this test deteriorates as n/T becomes larger. Indeed, they showed
that for n = 2T /3, τT (n)/

√
�τ is never less than −1.73. Recall from the

discussion of (9.38) that, for the alternative of the permanent-transitory
components model, τT (n) is expected to be negative. Consequently, this
lower bound implies that the statistic τT (n)/

√
�τ has essentially no power

against alternatives in which asset prices are driven by the sumof permanent
and transitory components.

To accommodate a large n relative to T formally as part of the asymp-
totic analysis, Richardson and Stock (1989) examined the limiting distribu-
tion of τT (n) under the assumption that n/T → δ as T → ∞. Their idea
is that researchers choose large n as sample size T grows in order to study
autocorrelations over longer horizons. They show that

τT (n) + 1 ⇒ 1
δ

∫ 1

δ

Yδ(λ)2 dλ, (9.51)

where

Yδ(λ) = B(λ) − B(λ − δ) − δB(1), (9.52)

and B(λ) is standard Brownian motion restricted to the unit interval. Note
that the limiting distribution is nonnormal even without scaling by

√
T . More-

over, the mean of the limiting distribution is

E [τT (n) + 1] → (1− δ)2, (9.53)

as T → ∞, n/T → δ. This may be very different from the value of 1
expected underH0. For instance, if δ = 2/3, then themean is only 1/9. Thus,
inference based on standard asymptotic arguments may be very misleading
when n is large relative to T .

Table 9.2 shows the asymptotic distributions of τT (n) + 1 for conven-
tional fixed-n asymptotic theory (first row), a fixed-n and bias-adjusted
distribution proposed by Lo and MacKinlay (1989) (second row), and
Monte Carlo derived small-sample distributions (remaining rows) under the
assumption that n/T →δ. The large-sample, n/T →δ distribution is approx-
imately given by the row T =2880. (It is obtained exactly by letting T →∞
while n/T → δ.) Clearly the fixed-n asymptotic distribution misrepresents
both the upper and lower tails of the actual small-sample distribution of
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Table 9.2. Asymptotic Distributions of τT (n) + 1 for δ = 1/3 for
Conventional Fixed-n Asymptotics, Bias-Adjusted Fixed-n Asymptotics,

and Monte Carlo Results Obtained Assuming That n/T → δ

Percentile

Mean 2.5% 5% 10% 50% 90% 95% 97.5%

Not bias-adjusted
fixed n 1.00 −0.31 −0.10 0.15 1.00 1.85 2.10 2.31

Bias-adjusted
fixed n 0.44 −0.14 −0.04 0.06 0.44 0.82 0.93 1.03

Monte Carlo
T = 360 0.44 0.09 0.11 0.14 0.35 0.86 1.09 1.29
T = 720 0.45 0.09 0.11 0.14 0.35 0.88 1.11 1.35
T = 2880 0.45 0.09 0.11 0.14 0.35 0.88 1.09 1.33

Source: Richardson and Stock (1989).

τT (n). The bias adjustment largely removes the distortion in the upper tail,
but the distribution of this statistic remains skewed substantially to the left
relative to the actual small-sample distribution of τT (n). Under the perma-
nent/transitory shock model, for example, we expect small values of τT (n)

if the alternative is true, so the bias in the fix-n tests would likely contribute
to overrejection of H0 of no serial correlation.

What is not fully clear from these Monte Carlo results is whether the
small-sample biases in tests are due to the long forecast horizon per se, or
whether they arise owing to the need to estimate the high-order autocorre-
lations underlying the standard errors in (9.48)–(9.50). Based on previous
studies of the small-sample properties of tests in the presence of serially
correlated errors, one may suspect that the latter plays a central role. In-
deed, it appears as though the large-sample paradigm for testing ismarkedly
more reliable (small- and large-sample distributions are more alike) when
standard errors are computed using averages of past forecast variables, as
proposed by Hodrick (1992), instead of averages of future forecast errors
(Hodrick, 1992; Boudoukh and Richardson, 1993). More precisely, instead
of using the asymptotic covariance matrix (3.81), the center matrix �0 is
replaced by

�0 = E


(u1t+1)2


n−1∑

j=0
xt−j




n−1∑

j=0
xt−j



′
. (9.54)

With these standard errors, an increase in the forecast horizon does not
add complexity because the order of the MA error structure is effectively
not changing.
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Table 9.3. Empirical Sizes of Tests of Predictability of Excess Returns
on Common Stocks, for a Regression Test with Nominal Size of 5%,
Using Newey-West, Hansen-Hodrick, and Hodrick Standard Errors

Horizon Newey-West Hansen-Hodrick Hodrick

1 0.045 0.042 0.042
4 0.112 0.077 0.044
20 0.226 0.230 0.043

Note: The sample size is 200 (quarters).
Source: Ang and Bekaert (2003a).

The potential importance of this observation for the small-sample prop-
erties of regression tests is illustrated by the Monte Carlo analysis in Ang
and Bekaert (2003a) of the predictability of excess returns on stocks using
the dividend/price ratio. Using data generated from a simple present value
model, Ang and Bekaert compared the empirical sizes of regression tests
based on the “Hodrick,” robust Hansen and Hodrick (1980), and Newey
andWest (1987a) standard errors. A representative set of empirical sizes for
the case of a nominal size of 5% and sample size of 200 quarters is shown
in Table 9.3. Note that the empirical sizes of the tests based on Newey-West
and Hansen-Hodrick standard errors increase substantially with increasing
forecast horizon (given in the first column). That is, consistent with the
analysis in Richardson and Stock, regression tests tend to reject too often.
In contrast, the tests based on the Hodrick standard errors show no deteri-
oration in test reliability as the forecast horizon increases. Thus, the need
to compute standard errors based on moving-average error structures of
increasingly large order does indeed appear to contribute to the poor small-
sample properties of conventional tests of return predictability.

9.5. Evidence on Stock-Return Predictability

The empirical evidence shows that both the degree of stock-return pre-
dictability and its statistical significance depend on the nature of the con-
ditioning variables used for prediction. Focusing solely on the use of past
returns to forecast returns, Fama and French (1988) and Poterba and Sum-
mers (1988) regressed long-horizon returns on their historical counterparts
and found a pronounced U-shaped pattern to the first-order autocorrela-
tion coefficients. For instance, using data on the value-weighted return on
the NYSE, Fama and French report autocorrelations near zero for small n
that reach about −0.35 at n = 48 months, and then decline toward zero
again as n increases.

Numerous studies have questioned the statistical reliability of these find-
ings. Richardson (1993), for example, simulated stock price data under the
null hypothesis that stock returns are unpredictable (the logarithm of the
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stock price follows a random walk) and generated U-shaped patterns in
autocorrelations, much like those in Fama and French, as a consequence
of small-sample bias. Additionally, he argued that the relevant test is not
the t -test for each individual autocorrelation, but rather the test of the joint
null hypothesis that all of the autocorrelations considered are zero. When
he implemented this joint test for a variety of equity portfolio returns, he
found little evidence against the random-walk hypothesis.

Lo and MacKinlay (1988) implemented the variance ratio test for small
values of n with r 1t equal to the 1-week return on various stock portfo-
lios. They found that the portfolio returns examined exhibited positive se-
rial correlation and that τ(n) was often significantly different from zero at
conventional significance levels. Evidence on whether their short-horizon
results using variance ratio tests extend to long horizons is reported in
Table 9.4, from Singleton (1990). The τ statistics displayed are calculated
using the same yt as in Lo and MacKinlay (1988) except with t indexing
months (i.e., ynt denotes the n-month portfolio return deviated from its sam-
plemean). Below each τ statistic in square brackets is the sample estimate of
the corresponding Corr[ynt , y

n
t−n]. Consistent with the findings of Fama and

French (1988), the sample autocorrelation of {y60t } is negative and quite

Table 9.4. Tests of the Random-Walk Hypothesis
Based on the Variances of Multiperiod Stock Returns

Decile n = 3 n = 6 n = 12 n = 36 n = 60

January 1926–December 1985
1 1.870 1.026 0.877 0.371 0.194

[−0.047] [0.028] [0.049] [−0.121] [−0.174]
4 1.830 0.816 0.712 −0.001 −0.394

[−0.072] [0.029] [−0.032] [−0.336] [−0.527]
7 1.615 0.856 0.797 −0.270 −0.771

[−0.036] [0.041] [−0.096] [−0.432] [−0.474]
10 1.097 0.235 0.428 −0.421 −0.867

[−0.072] [0.067] [−0.099] [−0.401] [−0.291]
January 1936–December 1985
1 0.469 0.454 −0.021 −0.169 −0.061

[0.028] [−0.057] [0.004] [0.012] [−0.179]
4 0.930 1.100 0.422 −0.616 −0.758

[0.074] [−0.053] [−0.139] [−0.177] [−0.418]
7 0.572 0.914 0.260 −1.014 −1.095

[0.083] [−0.064] [−0.220] [−0.169] [−0.240]
10 −0.287 0.255 −0.085 −1.348 −1.275

[0.062] [−0.044] [−0.245] [−0.059] [0.036]

Source: Singleton (1990).
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large in absolute value for the sample period 1926–1985. However, the τ

statistics do not lead to rejection at conventional significance levels of the
null hypothesis of no autocorrelation in returns. On the other hand, the
estimates of Corr[y3t , y

3
t−3] are relatively small and yet the significance levels

of the τ statistics are less than 6% for deciles 1, 4, and 7.
The sample period 1936–1985 does not include the Great Depression

in the analysis. Interestingly, this omission results in much less evidence of
serial correlation in the Fama-French data. In particular, the estimates of
|Corr[y60t , y60t−60]| are uniformly smaller than the corresponding estimates
for the sample period 1926–1985. Moreover, the τ statistics provide much
less evidence against the null hypothesis of serially uncorrelated returns
when n = 3.

In addition to conditioning on past returns, the literature has explored
the predictive content of several other conditioning variables including:
short-term interest rates (Singleton, 1990; Campbell, 1991; Hodrick, 1992),
the aggregate dividend yield (Campbell and Shiller, 1988; Fama and French,
1988), the spread between yields on long- and short-term bonds (Fama
and French, 1989), and the credit spread between high- and low-grade
corporate bonds (Keim and Stambaugh, 1986). The evidence that other
conditioning variables predict returns together with the universal nature of
these findings across OECD economies are often cited to reassure skeptics
that predictability is not a spurious phenomenon.

Nevertheless, much of the evidence supporting predictive content for
these variables comes from regressions in which long-horizon returns are
the dependent variables. The Monte Carlo evidence in Richardson and
Stock (1989), Richardson and Smith (1991), and Hodrick (1992) suggests
that the small-sample distributions of the usual “t -tests” in these regressions
are shifted substantially to the right, leading to overrejection of the null that
returns are unpredictable. Motivated by this observation, Ang and Bekaert
(2003a) reassessed the degree to which stock returns are predictable, using
both U.S. and European stock returns and price/dividend ratios and inter-
est rates as predictors. Their findings support the view that only short-term
interest rates have predictive content for stock returns across countries. In
particular, there was little evidence for predictability of earnings or dividend
yields.

Stronger evidence that monthly returns are predictable using the div-
idend yield is reported in Lewellen (2004). He exploits the information
in the auxiliary equation describing the autocorrelation of the predictor
variable itself (in his case, the dividend yield) to show that, under certain
circumstances, one can substantially increase the power of tests of stock re-
turn predictability.

Though not often exploited in the literature, these tests for predictabil-
ity can be adapted to allow for conditioning information. Specifically, (9.28)
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implies not only that (r 1t −µ) is unpredictable, but also that y1t ≡(r 1t −µ)z t−1
satisfies E[y1t | It−1] = 0 for any variable z t−1 in agents’ information set at
date t − 1. We examined the predictability of returns using this stronger
implication of (9.28) for three choices of z: the constant unity (i.e., the
conventional approach), the 1-month U.S. Treasury bill rate (Tbill), and
the monthly index of consumer sentiment (InConSent). The returns were
industrywide indices for “consumer durables,” “basic industries,” “capital
goods,” and “services,” and the sample period was July 1963 though Decem-
ber 1999.4

The panel labeled γT (n) in Table 9.5 is the statistic (9.40). Three differ-
ent standard errors are reported for this statistic: AsyUnc assumes that the
sample correlations are asymptotically uncorrelated, giving rise to standard-
based (9.48), GMM allows for asymptotic correlation among the sample
correlations as described by (9.46), and Hodrick are the standard errors
computed using the ideas in Hodrick (1992). The panel labeled γ ∗

T (n) is the
statistic (9.41), and the standard errors given by (9.49) are for the asymp-
totically uncorrelated case.

With z t−1 = 1, there is little evidence for predictability of returns in
the “basic” and “capital goods” industries. However, there is evidence of
predictability for returns in the “consumer durables” and “services” indus-
tries. When Tbill is used as an instrument, there is stronger evidence of
predictability, for basic industries over short horizons and the other three
industry groupings over longer horizons. Finally, the instrument InConSent
leads to evidence of predictability for all four industry groupings, with the
evidence being particularly strong for consumer durables and services. All
of these findings seem consistent with economic intuition.

Comparing the standard errors used in testing based on γT (n) shows
the GMM standard errors to be uniformly larger than the Hodrick standard
errors. Though the differences are typically not large, this implies that there
is more evidence against the null hypothesis of unpredictable returns using
the Hodrick standard errors.

Instead of using regression tests, one can assess predictability by adapt-
ing the variance ratio tests to allow for conditioning information. By the
same logic that underlies the tests reported in Table 9.5, it follows that the
variance of ynt = ∑n−1

j=0(r
1
t−j − µ)z t−1−j is n times the variance of y1t and

so the mean-independence of y1t from past information can be examined
using the τ(n) statistic. Table 9.6 displays the τ(n) statistics obtained with
z t−1 = DTB1t−1 [= (r ft−1 − r ft−2), where r

f
t is the 1-month return on the

bill issued at date t − 1 and maturing at date t] and z t−1 = 1 for the sam-
ple period January 1959–December 1985. With z t−1 = DTB1t−1 there is a
tendency for the value of the τ(n) statistics to increase as n increases from 2

4 I am grateful to Joe Chen for providing these data.
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Table 9.6. Tests of the Random-Walk Hypothesis Based on the Variances of Products of
Multiperiod Stock Returns and Treasury Bill Returns, December 1959–December 1985

z t−1 = 1 z t−1 = DTB1t

Decile n = 2 n = 3 n = 6 n = 12 n = 2 n = 3 n = 6 n = 12

1 1.365 1.037 0.443 −0.489 0.843 1.314 1.650 1.992
[−0.001] [−0.029] [−0.177] [−0.098] [0.165] [0.136] [0.109] [0.025]

4 2.462 1.854 1.471 0.628 1.115 1.621 1.791 2.074
[0.020] [0.049] [−0.059] [−0.077] [0.261] [0.184] [0.114] [−0.078]

7 2.394 1.868 1.612 0.674 1.118 1.376 1.624 1.837
[0.039] [0.073] [−0.067] [−0.211] [0.183] [0.165] [0.101] [−0.150]

10 0.107 −0.196 0.230 −0.155 0.895 0.932 1.324 1.467
[−0.034] [0.067] [−0.070] [−0.318] [0.127] [0.163] [0.069] [−0.177]

Source : Singleton (1990).

to 12, and the random-walk hypothesis is rejected at the 5% level for deciles
1, 4, and 7. In contrast, there is more evidence against the null hypothesis
(9.28) with z t = 1 when n is small.5 Another difference between the results
is that returns are more negatively autocorrelated than the products of re-
turns and DTB1t−1 for large values of n.

Taking all of this evidence together appears to support the view that
stock returns are predictable, particularly when one incorporates informa-
tion about the business cycle. Nevertheless, it is difficult to overlook the
econometric challenges in assessing whether or not there is predictability.
What one ultimately concludes may well depend on one’s priors from eco-
nomic or psychological studies of investor behavior.

Under risk neutrality, (9.3) must be satisfied for all securities with ad-
missible payoffs. This observation is especially problematic for proponents
of (9.3) when attention is focused on bonds, which we turn to next.

9.6. Time-Varying Expected Returns on Bonds

Fama (1984a,b) and Fama and Bliss (1987) present evidence of rich pat-
terns of variation in expected returns across time and maturities that “stand
as challenges or stylized facts” (Fama, 1984b: p. 545) to be explained by
dynamic term structure models. A large literature subsequently elaborated
on the inconsistency of these patterns with the implications of the tradi-
tional expectations hypothesis—there is compelling evidence from yield

5 These tests are all based on standard large-sample distribution theory. It would be
interesting to examine whether they inherit some of the small-sample biases of tests based
on long-horizon regressions.
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(Campbell and Shiller, 1991) and forward-rate (Backus et al., 2001) regres-
sions for time-varying risk premiums. This section examines the economic
underpinnings of the null hypothesis that expected excess returns on bonds
should not be forecastable and reviews the evidence.6

To fix notation, we let D(t ,T ) denote the price of a (default-free) zero-
coupon bond issued at date t , with maturity date T . Its corresponding (con-
tinuously compounded) yield is yT−t

t ≡ − logD(t ,T )/(T − t); equivalently,
D(t ,T ) = e−y

T−t
t (T−t). Letting rt ≡ y1t , from this basic price-yield relation, we

can express the conditional mean of the excess return

ERn
t+1 = ln(D(t + 1, t + n − 1)/D(t , t + n)) − rt ,

e n
t ≡ Et[ERn

t+1], as

ent = −(n − 1)Et
[
yn−1
t+1 − ynt

] + (
ynt − rt

)
, (9.55)

where E t denotes expectation conditioned on date t information, It . There
is no economic content to (9.55) as it holds by definition. Economic content
is added by linking ent to the risk premiums implied by an economic model.
Toward this end, we introduce two related notions of “term premiums” that
have played prominent roles in the literature on expected bond returns:
the yield term premium,

cnt ≡ ynt − 1
n

n−1∑
i=0

E t[rt+i], (9.56)

and the forward term premium,

pnt ≡ f nt − E t[r t+n], (9.57)

where f nt ≡ − ln(D(t , t + n + 1)/D(t , t + n)) denotes the forward rate for
1-month loans commencing at date t+n. Since ynt ≡(1/n)

∑n−1
i=0 f it , the term

premiums pnt and c
n
t are linked by the simple relation

cnt ≡ 1
n

n−1∑
i=0

pit . (9.58)

These variables are assumed to be stationary stochastic processes with finite
first and second moments.

6 This section draws heavily upon the analysis in Dai and Singleton (2002). This material
is reprinted with permission from Elsevier.
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The realized excess return ERnt+1 can be decomposed into a pure “pre-
mium” part, ER∗n

t+1, and an “expectations” part7:

ERnt+1 = ER∗n
t+1 +

n−1∑
i=1

(E t r t+i − E t+1r t+i), (9.59)

where

ER∗n
t+1 = −(n − 1)

(
cn−1
t+1 − cn−1

t

) + pn−1
t . (9.60)

Since the (E t r t+i−E t+1r t+i) have zero date-t conditional means, ent depends
only on the premium term ER∗n

t+1:

ent = E t
[
ER ∗n

t+1
] = −(n − 1)E t

[
cn−1
t+1 − cn−1

t

] + pn−1
t . (9.61)

Thus, expected excess returns on bonds are time varying (excess returns
have a predictable component) if the term premiums cnt and pnt are time
varying.

While numerous studies, going back at least to Fama (1984b), have
examined the properties of term premia by studying excess returns, at least
as much attention has been given to the following rearranged version of
(9.55)8:

E t

[
yn−1
t+1 − ynt + 1

n − 1
ERn

t+1

]
= 1
n − 1

(
ynt − rt

)
. (9.62)

In light of (9.61), we can replace ERnt+1 in (9.62) by ER
∗n
t+1 to obtain

E t

[
yn−1
t+1 − ynt + 1

n − 1
ER∗n

t+1

]
= 1
n − 1

(
ynt − rt

)
. (9.63)

An immediate implication of (9.63) is that projections of the premium-
adjusted changes in bond yields,

7 Some of the intermediate steps in this derivation are: ERnt+1 ≡ nynt − (n− 1)yn−1
t+1 − rt =

ncnt − (n − 1)cn−1
t+1 +∑n−1

i=1 (Et rt+i − Et+1rt+i) = −(n − 1)(cn−1
t+1 − cn−1

t ) +∑n−1
j=0 p

j
t −∑n−2

j=0 p
j
t +∑n−1

i=1 (Et rt+i − Et+1rt+i ).
8 Expression (9.62) is formally equivalent to equation (11) of Fama and Bliss (1987),

which, in our notation, is

Et

[
yn−1
t+1 − yn−1

t + 1
n − 1

ERnt+1

]
= 1
n − 1

(
f n−1
t − rt

)
.

We focus on (9.62) because it is more directly linked to the yield regressions in Campbell and
Shiller (1991).
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yn−1
t+1 − ynt − (n − 1)

[
cn−1
t+1 − cn−1

t

] + pn−1
t ,

onto the scaled slope of the yield curve, (ynt − r t )/(n − 1), should give
coefficients of one (for all n). We exploit this observation in Chapter 13 to
assess the goodness-of-fit of several term structure models by computing the
premiums c and p implied by thesemodels and estimating these projections.

One widely studied special case is that of the expectations hypothesis
(EH), which maintains that term premiums are constant (or, in its strongest
form, are zero). In this case, (9.63) implies that the projection of (condi-
tional expectation of ) yn−1

t+1 − ynt onto ( ynt − rt )/(n − 1) gives a coefficient
equal to one, for all n:

E t
[
yn−1
t+1 − ynt

] = αn1 + 1
n − 1

( ynt − r t ). (9.64)

Defining S (nm)
t ≡ ynt −ymt , Campbell and Shiller (1991) derived the following

more general version of (9.64) under the EH:

E t
[
yn−m
t+m − ynt

] = αnm + m
n − m

S (nm)
t . (9.65)

While the assumption of constant term premia is surely strong, it does
arise in equilibrium as a special case of the models examined in Hansen
and Singleton (1983) and Breeden (1986) (see also Dunn and Singleton,
1986). To see this, we first note that f nt = (n + 1)yn+1

t − nynt . Assuming
that {q∗

t+1}Tt=1 is a series of jointly lognormally distributed variables, we see
that the kernel for pricing n-period-ahead payoffs, q∗n

t+n = ∏n
j=1 q

∗1
t+j , is

also lognormal. Therefore, using the fact that ynt ∈ It , for all n, we have
[analogously to (9.6)]

nynt = −E t
[
ln q∗n

t+n
] − 1

2
Vart

[
ln q∗n

t+n
]
. (9.66)

Subtracting the version of (9.66) for n from that for n + 1 gives

f nt = −E t
[
ln q∗,n+1

t+n+1
] + E t

[
ln q∗n

t+n
]

− 1
2

(
Vart

[
ln q∗,n+1

t+n+1
] − Vart

[
ln q∗n

t+n
])

= E t[rt+n]+ pn, (9.67)

where the last equality follows from the fact that r t+n satisfies a version of
(9.66) with conditioning dated at t + n. The forward term premium pn

is constant in this setting because the conditional variances of the pricing
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kernels are constants under the conditional lognormality assumption. It
follows that (from the definition of ynt in terms of forward rates) under this
version of the EH

ynt = 1
n
E t


n−1∑

j=0
r t+j


 + δn, (9.68)

where δn is a constant, and [from (9.63)]

E t
[
yn−1
t+1 − ynt

] = αn1 + 1
n − 1

(
ynt − rt

)
. (9.69)

Projections of changes in bond yields onto the slope of the yield curve
should give a coefficient of one, for all n.

Formally, this motivating argument pertains to returns on bonds with
payoffs denominated in the numeraire good underlying q∗. If q∗ is agents’
marginal rate of substitution, then these expressions do not apply directly to
the returns on nominal bonds (those we most often observe). Nevertheless,
they are equally applicable to an economy with nominal bonds (bonds that
pay off in the numeraire money), so long as they are priced by q∗n

t+n after
dividing their nominal returns by the n-period inflation rate and, further,
that the conditional secondmoments of inflation are constants. In this case,
we can reinterpret ynt in (9.64) as the nominal yield, since the expected
inflation rates implicit in the real returns cancel from this relation.9

Over the past decade, considerable attention has been focused on test-
ing the null hypothesis that the coefficient in the projection of yn−m

t+m − ynt
onto (m/(n − m))S (nm)

t , say φnm , is unity. Table 9.7 displays a representative
set of projection coefficients from Backus et al. (2001), for the case ofm = 1
(so we suppress the subscript m from φn). The data are U.S. Treasury zero-
coupon bond yields computed monthly by Fama and Bliss for the sample
period February 1970 through December 1995. Not only are the estimated
φnT not unity, they are often statistically significantly negative, particularly
for large n (measured in months). The basic intuition of the EH is that an
increase in the slope of the yield curve (ynt −rt) reflects expectations of rising
short-term rates in the future. In order for the “buy an n-period bond and
hold it to maturity” investment strategy to match, on average, the returns

9 Expression (9.68) is not the traditional formulation of the EH, since yn is the logarithm
of the total return. If we instead define the yield as the ynt satisfying D(t , t + n) = 1/(1+ ynt )n ,
then, under the approximation ln(1 + ynt ) ≈ ynt ,

ynt = 1
n

n−1∑
j=0

E t
[
y1t+j

]
+ φn .
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from rolling over short rates in a rising short-rate environment, the yield on
the long bond must rise (yn−1

t+1 − ynt must be positive). The projection coef-
ficients suggest that the slope does not even get the direction of changes in
the long-bond yield correct.

The analogous forward-rate projections computed by Backus et al.
(2001) are also shown in Table 9.7. The coefficients ψnT are all less than
one, their value predicted by the EH. Though the findings for the latter
might seem to provide relatively less evidence against EH compared to the
yield projections, Backus et al. (2001) show that under a simple one-factor
AR(1) model for r , this is misleading. The small deviations from unity of
ψnT translate into the large negative values of φnT in the yield projections.

Using U.S. data, we find that these violations of the EH are most pro-
nounced (and statistically significant) for sample periods that include the
change in monetary operating procedures during 1979–1983. However, no-
tably, φnT is consistently negative across sample periods including prior
and subsequent to this monetary “experiment,” though (no doubt owing
in part to the shorter sample period) the standard error bands are also
larger (see Table 9.8). Looking outside the United States, the tendency for
φnT to be substantially less than zero is not nearly so pronounced. Among
the studies that document different patterns, primarily for European coun-
tries, are Hardouvelis (1994), Gerlach and Smets (1997), Kugler (1997),
Evans (2000), and Bekaert and Hodrick (2001). Taken together, these find-
ings suggest that the economic policy environment and investors’ attitudes
toward the associated risks may be key factors underlying cross-country and
cross-time differences in the pattern of the φnT .

It is natural to inquire at this juncture whether small-sample biases ex-
plain these findings. After all, short-term interest rates are highly persistent

Table 9.8. The Estimated Slope Coefficients φnT in
the Regression of y(n−1)t+1 − ynt on ( ynt − rt )/(n − 1)

Slope coefficients

Maturity: 12 24 36 48 60 120

Campbell-Shiller (1991) −0.672 −1.031 −1.210 −1.272 −1.483 −2.263
1952–1978 (0.598) (0.986) (1.187) (1.326) (1.442) (1.869)

Campbell-Shiller (1991) −1.381 −1.815 −2.239 −2.665 −3.099 −5.024
1952–1987 (0.683) (1.151) (1.444) (1.634) (1.749) (2.316)

Backus et al. (2001) −1.425 −1.705 −1.910 −2.147 −2.433 −4.173
1970–1995 (0.825) (1.120) (1.295) (1.418) (1.519) (1.985)

Backus et al. data 0.206 −0.001 −0.295 −0.478 −0.566 −0.683
1984–1995 (0.527) (1.013) (1.358) (1.610) (1.811) (2.593)

Note : The maturities n are given in months, and estimated standard errors of the φnT are given
in parentheses.
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and, therefore, the asymptotic distributions may be poor approximations
for the actual small-sample distributions. Bekaert et al. (1997) and Backus
et al. (2001) examine this issue for the case of m = 1, under the assump-
tion that

y1t+1 = µ + ρy1t + vt+1. (9.70)

Citing Kendall (1954), they note that the least-squares estimate ρT of ρ is
downward biased and that the bias is larger the larger the magnitude of ρ:

E[ρT ]− ρ ≈ −1+ 3ρ
T

. (9.71)

Moreover, they show these biases translate into a positive bias for φnT ;E[φnT ]
− φn > 0. They conclude that taking account of small-sample biases and
their effects on the small-sample distributions of standard test statistics for
the null hypothesis φn = 1 only heightens the puzzle related to the failure
of the EH.

At the heart of this strong statistical evidence against the EH is the un-
derlying predictability of excess returns. Equivalently, as seen by the expres-
sion (9.61) for e nt , there is evidently time variation in the term premiums
cn and pn . Cochrane and Piazzesi (2005) have recently revisited the fore-
casting regressions of Fama and Bliss using the term structure of forward
rates instead of just one forward rate. One of their most notable findings
is that the coefficients in the projections of excess returns over 1-year hold-
ing periods on the 1-year forward rates, f 0→1 (spot), f 1→2, f 2→3, f 3→4, and
f 4→5, out to 5 years exhibit a tentlike pattern. This pattern is replicated
in Figure 9.2a for the unsmoothed Fama-Bliss data (UFB), obtained from
CRSP, over the sample period 1970–2000. The similarity in these tentlike
responses suggests that there might a single common factor underlying the
predictability of excess returns on bonds of all maturities.

However, as illustrated by Figure 9.2b for the smoothed Fama-Bliss data
(SFB), this is not a robust feature of zero-coupon bond yields. For these data
sets, a “wave” pattern emerges. In the case of the SFB data, for example,
the wave pattern loads positively on the 2- and 4-year forward rates and
negatively on the 3- and 5-year forward rates. The difference between the
UFB and SFB data sets is in how the zero-coupon bond yields are extracted
from the underlying observed coupon bond yields. The former method
assumes a piecewise constant term structure of forward rates, whereas the
SFB data are computed by smoothing out the UFB zero rates using a Nelson
and Siegel (1987) exponential spline.

At a minimum, this comparison illustrates that some of the key proper-
ties of the spline-implied zero-coupon bond yields are not invariant to the
spline method used to compute the zero yields. One interpretation of the
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(a) UFB Data (b) SFB Data

Figure 9.2. Slope coefficients from the projections of 1-year excess returns on the
1-year forward rates over the sample period 1970–2000. The legend refers to the
maturity of the zero-coupon bond used to compute excess returns.

relatively choppy pattern for the SFB data is that the smoothing inherent
in the construction of these data effectively amplifies the contribution of
measurement errors. The UFB series also seems problematic in that almost
surely the piecewise constant term structure of forward rates used to con-
struct these data is counterfactual. In the light of these differences in re-
sults, it seems prudent to explain one’s choice of spline methodology when
studying zero-coupon bond yields.

Another intriguing feature of the results in Cochrane and Piazzesi
(2005) is the relatively high degree of predictability of 1-year excess returns
using the five annual forward rates. For the sample period 1970 through
2000, the R 2’s from these regressions range between 36 and 39% for the
UFB data. The R 2’s are only slightly smaller for the smoothed SFB data,
ranging between 30 and 32%. This is substantially more predictability than
was originally obtained by Fama and Bliss using a single forward rate. It
serves to underscore the failure of the EH, which presumes no predictability
in excess returns.

The question of which economic models of interest rate behavior give
rise to term premiums consistent with these empirical findings is addressed
in depth in Chapter 13.
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10
Consumption-Based DAPMs

The conceptual foundations for econometric analyses of preference-
based, intertemporal asset pricing relations can be traced back to Rubin-
stein (1976), Lucas (1978), Breeden (1979), and Cox et al. (1985a). They
deduced general equilibrium relations among consumption decisions, asset
prices, and production decisions in the context of dynamic models under
uncertainty. Typically, agents had common information sets and identical
preferences, access to a complete set of contingent claims markets, and
equal access to all production technologies.

Grossman and Shiller (1981) were the first to study empirically the re-
lation between consumption and asset returns implied by the representa-
tive agent models of Rubinstein (1976), Lucas (1978), and Breeden (1979).
They focused on the co-movements of consumption and returns in the con-
text of a model in which consumers were risk averse and had perfect fore-
sight about the future. Subsequently, Hansen and Singleton (1982, 1983)
developed methods for estimating the parameters of asset pricing relations
implied by stochastic dynamic models that incorporate fairly general speci-
fications of concave preference functions.

The primary objectives of this chapter are to provide an overview of the
specifications of preference-based DAPMs and to summarize the large body
of empirical evidence on the goodness-of-fit of these models. We begin in
Section 10.1 with a presentation of the key challenges facing preference-
based models using a log-linear setting. This is followed in Section 10.2 by
a discussion of alternative methodological approaches to assessing the fit of
preference-based models.

The strengths and limitations of time-separable, single-good models in
representing the historical co-movements of consumption and real returns
on stocks and bonds are explored in Section 10.3. Among the issues ad-
dressed are the autocorrelation properties of the disturbances, the sensi-
tivity of the results to the length of the holding period of the investments,

246
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and the relation between the average growth in consumption, the average
real returns, and the estimated parameters for the postwar period. The find-
ings from this analysis strongly suggest that the single-good, representative
agent models are incapable of explaining several important features of asset
return data.

A possible explanation for the poor performance of models based on
a single nondurable consumption good is that utility is not separable over
time with regard to the acquisition of goods. Two motivations for non-time-
separability are: (1) some goods are durable in that they provide services
over time, and (2) agents exhibit “habit formation” in their consumption
choices. Section 10.4 discusses multigood models in which preferences are
not separable across consumption goods and at least one of these goods is
durable in character. Models based on habit formation, both of the “inter-
nal” and “external” varieties, are discussed in Section 10.5.

We then turn, in Section 10.6, to models in which agents are not max-
imizers of expected utility. The particular departure examined is one in
which agents are not indifferent to the timing of the resolution of uncer-
tainty in the economy (Kreps and Porteus, 1978). Section 10.7 briefly dis-
cusses recent efforts at assessing the consequences of loss or disappointment
aversion, or different belief structures, into preference-based models.

Finally, Section 10.8 discusses bounds on the second moments of mar-
ginal rates of substitution proposed by Hansen and Jagannathan (1991)
and others. These bounds provide an informative means of assessing the
goodness-of-fit of consumption-based models, or indeed of any specifica-
tion of a pricing kernel in a DAPM. We draw upon this material again in
Chapter 11.

10.1. Empirical Challenges Facing DAPMs

We begin, following discussions in Hansen and Singleton (1983) and
Campbell (1999), by using the log-linear model of marginal rates of sub-
stitution and returns to introduce some of the empirical challenges facing
representative-agent, preference-based models, and to motivate some of the
specifications that have been proposed in the literature to address these
challenges.

Letmn
t+n denote the marginal rate of substitution between consumption

at date t and date t + n and let r n�,t+n, � = 1, . . . ,L, denote L n-period
holding-period returns on feasible investment strategies.1 Further, let x ′

t+n =
(lnmn

t+n, ln r n1,t+n, . . . , ln r nL,t+n) and ψt denote the information generated
by {xs : s ≤ t}, and suppose that the distribution of xt+n given ψt is normal.

1 Examples of investment strategies are: buy and hold an n ′-period security for n periods
(n ′ > n), or roll over a sequence of short-term securities for n periods.
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Then, using reasoning similar to that in Section 9.1, the n-period version of
(1.3) conditioned on ψt ,

E
[
mn
t+nr

n
�,t+n

∣∣ ψt ] = 1, (10.1)

implies that

E
[

ln r n�,t+n
∣∣ ψt ] = −E[ lnmn

t+n
∣∣ ψt ]− 1

2
Var

[
ln
(
mn
t+nr

n
�,t+n

) ∣∣ ψt ]. (10.2)

This derivation presumed lognormality without linking this assumption
to more fundamental features of an economy. There are surely many eco-
nomic environments that are consistent with the distributional assumptions
underlying (10.2). Rubinstein (1976) and Brock (1980) provide examples,
though under admittedly strong assumptions about individual endowment
streams. We get a long ways toward rationalizing this setup by assuming that
agents have constant relative risk-averse (CRRA) preferences for a single
consumption good:

U (ct ) = c γt − 1
γ

, γ < 1, (10.3)

where ct is the level of consumption and α ≡ 1 − γ is the coefficient of rela-
tive risk aversion. The marginal rate of substitution for the j th agent,mn

j,t+n ,
is βn(cj,t+n/cj t )−α . If we are also in an endowment economy in which claims
to the endowments of the consumers are traded assets, then in this econ-
omy prices are set such that mn

j t can be replaced in (1.3) by the marginal
rate of substitution expressed in terms of aggregate consumption, mn

t (see
Chapter 8). Furthermore, aggregate consumption equals the aggregate en-
dowment (�cj t = �yj t), the price of a claim to the aggregate endowment
flow from period t forward is proportional to �j yj t , and the price of an
n-period pure discount bond is E t[mn

t+n].2 Therefore, the lognormality of
mn
t is implied by lognormality of the aggregate endowment.

For one-period (n = 1) returns:

E
[

ln r 1
t+1

∣∣ ψt ] = −E[ lnm1
t+1

∣∣ ψt ]− 1
2

Var
[

lnm1
t+1

∣∣ ψt ]

− 1
2

Var
[

ln r 1
t+1

∣∣ ψt ]− Cov
[

lnm1
t+1, ln rt+1

∣∣ ψt ].
(10.4)

If we assume that there is a traded, one-period riskless asset with return r ft ,
a special case of (10.4) is

2 The equilibrium prices for this economy can be derived using arguments similar to
those in Brock’s (1980) discussion of a production economy with log utility.
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ln r ft = −E[ lnm1
t+1

∣∣ ψt ]− 1
2

Var
[

lnm1
t+1

∣∣ ψt ]. (10.5)

Subtracting (10.5) from (10.4) gives the following expression for the ex-
pected one-period excess returns on risky assets:

E
[

ln r 1
t+1 − ln r ft

∣∣ ψt ]+ 1
2

Var
[

ln r 1
t+1

∣∣ ψt ] =

− Cov
[

lnm1
t+1, ln r 1

t+1

∣∣ ψt ].
(10.6)

According to (10.6), the expected (log) excess return on a risky asset is
determined by the asset return’s covariance with the representative agent’s
marginal rate of substitution. An asset is relatively risky when its return is
high at the same time that an agent’s ability to consume is high (owing to
high financial wealth or labor income) and low when wealth is low.3 That
the signs in (10.6) support this interpretation is perhaps most easily seen
by considering the special case of constant relative risk-averse preferences
(10.3) for which

lnm1
t+1 = lnβ + (γ − 1)( ln ct+1 − ln ct ). (10.7)

Since γ <1, (γ −1)<0. Also, lnβ<0. A larger value of ln ct+1 tends to make
lnm1

t+1 smaller (and, typically, in a growing economy, more negative). If,
at the same time, ln rt+1 is large, then there is a large negative covariance
between lnm1

t+1 and ln r 1
t+1. With the minus sign in (10.6), this pattern

induces a relatively large positive excess return on the risky asset.
The challenge for preference-based models is to induce sufficient cor-

relation between consumption growth and returns to generate the levels
of excess returns observed on average in the risky financial markets. If this
covariance is small, then we see from (10.6) and (10.7) that the risk-aversion
parameter γ must be correspondingly large in order to match the expected
excess return. As we will see, consumption growth and asset returns do in-
deed tend to have low correlations, so the requisite value of γ is typically
(implausibly) large. This finding has come to be called the “equity premium
puzzle” (e.g., Mehra and Prescott, 1985).

Hansen and Singleton (1983) tested the log-linear model with constant
conditional variances by examining the implied restrictions on the bivari-
ate vector-autoregressive representation of the logarithms of stock index
returns and ln(ct+n/ct ). These restrictions were tested for various combi-
nations of returns and the results provided substantial evidence against

3 The presence of the conditional variance of the return is due to Jensen’s inequality and
our expressing the Euler equation in logarithms.
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their models using monthly data on real returns for aggregate and industry-
average stock portfolios and Treasury bills. Ferson (1983) also provides ev-
idence against this model using quarterly data. Together, these findings
suggest that to explain the behavior of the conditional means of asset re-
turns, we must relax some or all of the restrictions that: (1) agents have
constant relative risk-averse preferences over a single good, (2) returns and
consumption growth are jointly lognormal, or (3) conditional variances of
returns and the pricing kernel are constants.

Note that within this lognormal setting, tests based on the difference be-
tween the logarithms of returns accommodate certain types of unobserved
shocks to preferences. Let preferences be given by

U (ct ) = (ctεt )γ − 1
γ

, (10.8)

where εt is a taste shock that may be serially correlated. For this model,
mn
t+n = βn[(ct+nεt+n)/(ctεt )]γ−1 is a nonlinear function of the unobserved

taste shocks. However, under the assumption of lognormal shocks, lnmn
t+n

cancels from the difference E[ln r n�,t+n − ln r nk,t+n |ψt]. Therefore, the con-
clusions reached by Hansen and Singleton (1983) also apply to this model.

Corresponding to the equity premium puzzle is the “riskfree rate puz-
zle” first emphasized by Weil (1989). The logarithm of the riskless rate is

ln r ft = − lnβ + (1 − γ )E[ln(ct+1/ct ) | ψt]

− (1 − γ )2

2
Var[ln(ct+1/ct ) | ψt].

(10.9)

In a growing economy, the expected (log) consumption growth is positive.
Therefore, a high level of risk aversion is consistent with the historically ob-
served low levels of the riskless interest rate only if either β is very near unity
(agents are unwilling to substitute intertemporally) or, with large variability
in consumption growth, the precautionary savings captured by the last term
is high enough to offset the positive effects of expected growth on riskfree
returns.

Campbell (1999) sheds further light on these issues by connecting this
log-linear pricing relation with the linear present-value model of Campbell
and Shiller (1988), obtained by linearizing the logarithm of the sum of
the price Pt and dividend Dt of a common stock. Letting lower case letters
represent the corresponding logarithms of these variables, Campbell and
Shiller obtained

pt − dt = k
1 − ρ

+
∞∑
j=0

ρ jE t
[
�d t+1+j − rt+1+j

]
, (10.10)
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where rt ≡ ln[(Pt+Dt )/Pt] and k and ρ are constants with 1>ρ>0, the latter
being measured as the exponential of the difference between the average
dividend growth rate and the stock return. Focusing on the “aggregate
wealth” portfolio with dividend dct = φct , substituting the corresponding
version of (10.5) into (10.10), and using (10.7), gives

pct − dct = kc

1 − ρ
+ (φ − α)

∞∑
j=0

ρ jE t
[
�ct+1+j

]
, (10.11)

where α ≡ (1 − γ ) is the coefficient of relative risk aversion. From (10.11)
we see that the volatility of the (logarithm of ) the price-dividend ratio is
induced, within this model, by volatility of a smoothed average of expected
future consumption growth. Using the descriptive statistics in Campbell
(1999), we find that postwar volatility in quarterly consumption growth
in the United States has been about 0.005, and that volatility in expected
consumption growth has necessarily been lower, perhaps much lower. By
comparison, volatility of quarterly ( pt−dt ), as measured by the MSCI index,
is 0.265. Clearly, in this model, to achieve this level of volatility in (pt − dt )
requires either a very large multiplier φ (with low risk aversion) or a very
high level of risk aversion (with a small multiplier). This observation is
sometimes referred to as the “volatility puzzle.”

10.2. Assessing Goodness-of-Fit

Researchers have pursued a variety of different approaches to testing the
restrictions implied by consumption-based DAPMs. Among the differences
in these approaches is the amount of information about the structure of
the economy that is called upon to restrict the distribution of asset returns.
To set up our subsequent discussion of the empirical literature we briefly
introduce two of the most widely followed strategies.

10.2.1. Euler Equation-Based Tests

Perhaps the most widely used approach to testing preference-based models
is to construct estimators and tests of overidentifying restrictions using the
conditional moment restrictions (1.3) or (10.1) implied by the first-order
conditions of agents’ intertemporal optimization problems.

Assuming that mn
t is specified parametrically as a function of observed

state variables and an unknown parameter vector, GMM estimation is fea-
sible. For instance, Hansen and Singleton (1982), Dunn and Singleton
(1983), and Brown and Gibbons (1985) investigated single-good economies
in which agents have CRRA preferences over a single consumption good as
in (10.3). For an n-period investment horizon the stochastic Euler equation
underlying these studies is
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E
[
βn(ct+n/ct )γ−1r nt+n

∣∣ At ] = 1. (10.12)

Interpreting the variable

ut+n = βn(ct+n/ct )γ−1r nt+n − 1 (10.13)

as the disturbance for an econometric analysis, Hansen and Singleton(1982)
show how to use the fact that E[ut+n | At] = 0 to construct instrumen-
tal variables estimators of the unknown parameters (β, σ ) and to test over-
identifying restrictions implied by (10.12).

Specifically, (10.12) implies that E[ut+nwt] = 0, for all wt ∈ It , and
therefore elements of agents’ information set at date t that are also observed
by the econometrician (the information set It) can be used as instrumental
variables for the disturbance ut+n . The dimension of the parameter space
� in this case is K = 2 and θ ′

0 = (β0, γ0). After selecting an s × 1 instrument
vector wt , s ≥ 2, to be used in estimation, h(z t , θ) in (2.32) is set to h(z t , θ) =
ut+nwt and θT is chosen by minimizing the quadratic form (2.36). The
distance matrixWT is typically chosen optimally as discussed in Chapter 3, in
this case according to Case ACh(n). If s>2, then there are s−2 independent
linear combinations of the s orthogonality conditions that are not set to zero
in estimation, but that should be close to zero if the model is true. These
overidentifying restrictions can be tested using the chi-square goodness-of-
fit statistic discussed in Section 4.1 and it is this test to which we refer when
reporting test results later in this chapter.

These tests of (10.12) accommodate heterogeneity across consumers
in the sense that agents may have different endowment processes, yet, so
long as they have identical preferences, pricing can proceed as if there is
a representative agent consuming aggregate consumption. (See the discus-
sion of aggregation in Chapter 8.) These analyses are also robust to certain
econometric difficulties. In particular, the model accommodates geomet-
ric growth in real per-capita consumption over time, since only the ratio
(ct+n/ct) appears in (10.12). Moreover, the disturbance ut+n may be condi-
tionally heteroskedastic; that is, Var[ut+n |At] may be an essentially arbitrary
function of the elements of agents’ information set At . Thus the model al-
lows for the possibility that the volatilities of stock and bond returns vary
across different stages of the business cycle.

Essentially the same steps can be followed to construct GMM-based
tests of more complicated models, say in which mn

t depends on multiple
state variables, so long as there is an observable counterpart to the entire
state vector. The resulting tests are robust in the important sense that very
little structure is being imposed on the joint distribution of mn

t and returns.
One need only be certain that sufficient regularity is imposed to ensure
consistency and asymptotic normality along the lines of the discussion in
Chapter 3.
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10.2.2. Toward a More Complete Model

Many researchers have gone beyond the Euler equations and imposed ad-
ditional structure on the distributions of the exogenous forcing variables,
the production process, or agents’ budget constraints that underlie the de-
termination of consumptions and asset returns. A primary goal in working
with more fully specified models is to understand better how equilibrium
consumptions and returns are affected by different assumptions about these
features of an economy. There has been considerable interest, for example,
in the implications of highly persistent components of exogenous factors
for the joint distributions of consumptions and returns, particularly when
agents are risk averse.

As we illustrated in Chapter 6, with a sufficiently completely specified
economic model, SME estimation is feasible. Sample moments computed
using data simulated from a DAPM can be compared to their counterparts
computed using historical data to formally estimate and test the model of
interest. Heaton (1995) and Bansal et al. (2004) are examples of studies that
have used an SME to study preference-based models.

More often, however, those studies that have reached beyond Euler
equations have stopped short of formal implementation of GMM or ML
methods in estimation or testing. Rather, the parameters are often calibrated
to the data by matching certain moments in the data to their counterparts in
the model by choice of the model’s parameters. Researchers have included
many of the key moments underlying the empirical challenges outlined
in Section 10.1. But they often stop short of matching the richer sets of
moments that would emerge from standard auxiliary models underlying
“efficient” SME estimation (see Section 6.6).

Furthermore, researchers have often worked with what are surely over-
simplified specifications of the exogenous risk factors in the economies be-
ing examined. As a consequence, the co-dependence among key variables
in the models may be exaggerated. An extreme example of this last point
is a model with CRRA preferences (10.3) in which the nature of uncer-
tainty impinging on the economy is such that the ratio of consumption to
wealth is constant. [Parametric examples of such economies are examined
in Brock (1980), Michner (1984), and Bakshi and Chen (1996).] In such
an economy, the growth rate in aggregate consumption and the return on
the aggregate wealth portfolio are perfectly correlated. Yet, as we discussed
in Section 10.1, one of the major puzzles facing preference-based models
is the relatively weak historical correlation between consumption growth
and returns. A related recurring example is the tendency for there to be
excessive volatility in some asset returns in models that do give rise to more
plausibly low correlations between consumption growth and returns.

Regardless of how the unknown parameters are initially calibrated, an
advantage of working with relatively completely specified models is that
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researchers can explore how changes in an economic environment affect
the joint distributions of asset returns and consumptions. In particular, one
can easily examine parameterizations that are outside those supported by
available data. This may be particularly informative when the sample period
available for empirical analysis is not fully representative of the cyclical or
secular patterns in the economy being investigated. In such circumstances,
dependence on formal, within-sample econometric tests alone may give rise
to misleading conclusions about the joint distribution of mn

t and returns.
Taken together, these observations point to strengths and weaknesses

of both approaches to model assessment. Euler equation-based tests are in
principle more robust but, by their nature, reliable inference is highly de-
pendent on having a representative historical sample. More fully specified
models allow experimentation with alternative formulations of economies
and, perhaps, analysis of processes that are more representative of history
for which data are not readily available. They also lead to more efficient
estimators under the null hypothesis of a correctly specified model. On
the more cautionary side, working with parametric specifications of the risk
factors may lead to counterfactual co-dependence among the variables in
a model. The oversimplification imposed by either the limitations of eco-
nomic theory or the demands of computational tractability could leave re-
searchers with misleading impressions about what economic factors are key
to understanding the weaknesses of extant models.

Up to this point we have presumed that all of the state-dependent
components of mn

t are observed by the econometrician undertaking the
empirical analysis. If in fact there are unobserved taste shocks, then Euler-
equation methods for analyzing DTSMs are typically no longer feasible.4

This is because the moment conditions that would be used in estimation
involve unobserved variables. Estimation is nevertheless still feasible if one
is willing to impose additional structure on the exogenous variables in the
model, including the latest shocks to preferences. In particular, the SME
estimator described in Chapter 6 is well suited to this estimation problem.

The empirical literature on preference-based DAPMs involving state-
dependent preference shocks is quite limited. Most of the work that has
been done has been based on calibrations or, even more commonly, on
simulations from hypothetical economies. We briefly discuss this research
in Section 10.7.

10.3. Time-Separable Single-Good Models

We begin our empirical assessment of preference-based DAPMs with the
case of a single-good economy in which the consumption good is non-

4 As we have already seen, there are exceptions to this statement. Such exceptions most
often arise when sufficient structure is imposed on the joint distribution of consumptions and
taste shocks to allow the researcher to substitute out for the latent variables.
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durable. This environment is sufficiently rich to gain substantial insight into
the degree to which representative agent models of intertemporal consump-
tion and investment decisions are consistent with the historical time paths
of aggregate consumption and real returns.

Assuming a representative agent with CRRA preferences, Hansen and
Singleton (1984) found that relation (10.12) is generally not supported
by the data on aggregate stock and Treasury bill returns for the period
January 1959 through December 1978. When consumption was measured
as National Income and Product Accounts (NIPA) “nondurables plus ser-
vices” and the monthly return (n = 1) was either the value-weighted or
equally weighted return on the NYSE, the probability values of the chi-
square test statistics were typically larger than 0.1. However, for several
return-instrument pairs, the estimate of the parameter γ was outside the
concave region of the parameter space (i.e., γT >1). Much more evidence
against the model was found with combinations of returns (several stock
returns or stock and bill returns). The probability values of the test statistics
were typically less than 0.01 and γT was again greater than unity.

Similar findings are reported in Dunn and Singleton (1986) for real
returns on several investment strategies using Treasury bills. The principal
difference is that they also find substantial evidence against the model for
individual returns on bills, as well as combinations of returns. Finally, using
a different approach, Mehra and Prescott (1985) calculate the equity pre-
miums implied by their equilibrium model for a range of plausible values
for the riskfree rate and with the second moments of consumption fixed at
the values of the sample second moments for the period 1889–1978. They
find that their model does not produce an average excess return (over the
riskfree return) on an equity-type security that is as large as the average
excess returns observed historically in equity markets.

There are, of course, many possible explanations for these findings,
including the misspecification of the agents’ objective function and con-
straint set, mismeasurement of consumption, misspecification of the deci-
sion interval and associated problems with temporal aggregation, and the
omission of taxes. If there is mismeasurement of aggregate consumption,
then estimates of the autocorrelation function of nondurable goods and
the correlations between consumptions and returns may be severely biased.
This in turn may explain why sample versions of the orthogonality condi-
tions E[ut+nwt] = 0,wt ∈ It , cannot be made close to zero for values of
(β, γ ) in the admissible region of the parameter space. This bias can be
alleviated somewhat by working with monthly data point sampled at long
intervals. That is, instead of using monthly returns one would use longer-
term securities so thatmn

t+n = βn(ct+n/ct )γ−1 involves monthly consumptions
sampled at widely separated points in time. Singleton (1990) explored this
possibility for the returns VWRn and TBILLn, with the former computed by
rolling over n 1-month investments in the value-weighted NYSE index and
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the latter being the (real) return on the n-month Treasury bill. He found
that, for Treasury bill returns, the fit of the model tended to improve as
the maturity was lengthened. Not only did the test statistics decline, but the
coefficient of relative risk aversion increased to a value closer to logarithmic
utility (γ =0). In spite of this improvement in fit, the goodness-of-fit statistic
remained large for TBILL12.

The pattern of results for the stock returns was altogether different. For
the 1- and 6-month returns, γT was well outside the concave region of the pa-
rameter space. Correspondingly, the chi-square statistics were very small rel-
ative to their degrees of freedom. In contrast, for VWR12, γT was within the
concave region of the parameter space, though again there was no strong
evidence against the model. Overall, there was no systematic improvement
in fit across stock and bill returns as n was increased, which suggests that
mismeasurement that distorts primarily the low-order autocorrelations of
consumption growth is not the explanation for previous findings.

This analysis does highlight several systematic differences in the esti-
mates when either the holding period n or the type of security (stock or
bond) is varied. In an attempt to gain some insight into these differences,
we examine the autocorrelation properties of the variables comprising this
single-good model. An immediate implication of (10.12) is that the distur-
bance (10.13) follows a moving average process of order (n−1) [see Hansen
and Singleton (1982) and the discussion of Case ACh(n) in Chapter 3]. This
is an implication of the fact that ut+n is in agents’ information set at date
t+n and E[ut+n |It]=0. It follows that if the model is correct, then the auto-
correlation properties of βn(ct+n/ct )γ−1 and rt+n must interact in a manner
that leads to an MA(n−1) representation for their product.

The moving average representations of (ct+6/ct ), TBILL6, VWR6, and
the corresponding versions of the disturbance (10.13) (uT6

t+6 and uV 6
t+6 for

TBILL6 and VWR6, respectively) reported in Singleton (1990) are shown
in Table 10.1. The coefficients in the MA representation for uT6

t+6 are signifi-
cantly different from zero at the 2% level out to lag 7.5 Thus, the implication
of the theory that this disturbance follows an MA(5) process seems contrary
to the evidence. Moreover, disturbance uT6

t+6 is inheriting the autocorrela-
tion properties of TBILL6; compare the coefficients in the third and fourth
columns of Table 10.1 to each other and to those for the consumption ratio
in the second column.

Next, consider the results for VWR6. Again, uV 6
t+6 seems to be inheriting

the autocorrelation properties of the return (in this case VWR6) and not

5 The standard errors displayed in Table 10.1 should be interpreted with caution for at
least two reasons. First, the disturbances uT6

t+6 and uV 6
t+6 involve estimated parameters and the

standard errors have not been adjusted for the randomness in the first-stage estimates. (See
Section 4.4 for a discussion of this issue.) Second, the shocks underlying the MA representation
may be conditionally heteroskedastic.
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Table 10.1. Moving Average Representations of Variables
in the Single-Good Models (August 1963–December 1978)

Dependent variable

Lag (ct+6/ct ) TBILL6 uT6
t+6 VWR6 uV 6

t+6 uT12
t+12

1 0.7883* 1.023* 1.005* 1.020* 1.086* 1.015*

(0.085) (0.081) (0.079) (0.079) (0.080) (0.083)
2 0.7823* 1.015* 0.966* 0.911* 1.124* 0.948*

(0.101) (0.114) (0.111) (0.115) (0.119) (0.118)
3 1.118* 1.114* 1.062* 0.209 0.430* 1.052*

(0.129) (0.137) (0.131) (0.137) (0.150) (0.141)
4 1.030* 0.974* 0.944* 0.160 0.279 0.952*

(0.127) (0.146) (0.140) (0.136) (0.153) (0.164)
5 0.072* 0.932* 0.891* 0.265 0.319 0.919*

(0.131) (0.146) (0.140) (0.138) (0.153) (0.179)
6 0.143 0.451* 0.458* 0.149 0.129 0.734*

(0.122) (0.137) (0.132) (0.137) (0.151) (0.180)
7 0.336* 0.284** 0.279** −0.284 0.131 0.534*

(0.130) (0.115) (0.111) (0.115) (0.120) (0.190)
8 0.252* 0.067 0.087 −0.199** −0.167 0.446**

(0.085) (0.081) (0.079) (0.080) (0.082) (0.179)
9 0.277

(0.164)
10 0.244

(0.141)
11 0.187

(0.117)
12 0.013

(0.082)
Constant 1.021 1.003 0.0015 1.003 0.0009 −0.0013

(0.0017) (0.0018) (0.0016) (0.012) (0.016) (0.0042)
R2 0.724 0.847 0.851 0.678 0.732 0.877

Note: Standard errors are displayed in parentheses. A *(**) denotes a coefficient that is signif-
icantly different from zero at the 1% (2%) level based on a two-sided test and the standard
normal distribution. The variables uT6

t+6,u
V 6
t+6, and uT12

t+12 are the versions of the disturbance
(10.12) for the returns TBILL6, VWR6, and TBILL12, respectively.
Source: Singleton (1990).

that of the consumption ratio. Though, in contrast to the results for TBILL6,
the return VWR6 and uV 6

t+6 exhibit only low-order serial correlation, much
less correlation than is implied by an MA(5) process.

The findings that the disturbances are inheriting the autocorrelation
properties of the returns may well explain why the probability value of the
test statistic for TBILL6 is much larger than the test statistic for VWR6—
the disturbance uT6

t+6 exhibits too much autocorrelation, whereas the distur-
bance uV 6

t+6 exhibits less autocorrelation than might be expected from the
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theory. Additional evidence consistent with this interpretation appears in
the last column of Table 10.1. The MA representation for the disturbance
uT12
t+12 associated with TBILL12 indicates that there is not significant autocor-

relation beyond lag 8, whereas the theory accommodates correlation out to
lag 11. At the same time, the probability value of the chi-square statistic for
TBILL12 is relatively small. In sum, it is the autocorrelation properties of
the returns that largely explain the differences in test statistics both across
maturity, holding fixed the type of security, and across types of securities.
In part, this is a reflection of relatively low volatility of consumption growth
and its low correlation with returns.

It is instructive to relate these findings to the consumption/return puz-
zles discussed in the context of Hansen and Singleton’s (1983) log-linear
DAPM. Recall that key to matching historical (conditionally) expected ex-
cess returns on risky securities is having sufficient covariation between the
risky returns and agents’ marginal rates of substitution [see (10.6)]. There is
an analogous expression for the conditional mean of ut+n given by (10.12).
Specifically, we let ynt denote the yield to maturity on an n-period riskless
zero-coupon bond, (10.12) can be rewritten as6

(
1 + ynt

)nE t[ut+n] = (
1 + ynt

)nCovt

(
βn
(
ct+n
ct

)γ−1

, r nt+n

)

+ E t
[
r nt+n

]− (
1 + ynt

)n
.

(10.14)

The finding that ut+n is inheriting the autocorrelation of the return sug-
gests that most of the variation on the right-hand side of (10.14) is due
to variation in E t[r nt+n]. In other words, the findings in Table 10.1 are ev-
idently a manifestation of the failure of this single-good model to generate
sufficient variation in mn

t+n and covariation Covt (mn
t+n, r nt+n) to explain the

mean excess returns on the securities examined.7 For example, during the
sample period August 1963 through December 1978, (ct+6/ct ) showed little
tendency to deviate from its average value. While in principle β and γ can
be chosen to match the excess mean return on one particular portfolio, the
evidence suggests that this model particularly has difficulty matching the ex-
cess returns on different equity portfolios simultaneously. The persistence
in bond returns raises additional challenges for this single-good model.

Singleton (1990) also found striking differences in the point estimates
of (β0, γ0) across bills and stocks. Whenever βT exceeds unity, γT is less than

6 Here we are using the fact that E t [mn
t+n] = 1/(1+ ynt )n is the price of a riskless n-period

zero-coupon bond.
7 We formalize this intuition about insufficient volatility in mn

t in Section 10.8, where we
derive bounds on the volatility of mn

t .
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unity and vice versa. The results in the previous studies of this model display
a similar pattern. Heuristically, this finding can be interpreted as follows.
Taking the unconditional expectation of (10.12) gives

E
[
βn(ct+n/ct )γ−1r nt+n

] = 1. (10.15)

The estimation algorithm selects estimates of β0 and γ0 so as to make sample
versions of the moment conditions, including (10.15), as close to zero as
possible. Suppose then that estimates of β0 and γ0 are chosen as if (ct+n/ct )
is fixed at its mean value, say µcn . Then, in order to satisfy (10.15), β and
γ should be chosen such that δn =βn(µcn)γ−1E[rt+n] approximately equals
unity. For his sample period, µc 6 = 1.0133. The mean of TBILL6 is 1.0035
and the estimated value of β̂6 = 1.0012. Thus, a value of γT less than unity
is required to make δn close to unity. Similarly, the mean of VWR6 is 1.0047
and the estimated value of β̂6 is 0.9564, which is consistent with a value of
γT that is much larger than unity.

These observations do not explain why there is a pattern of βT be-
ing less than unity for the value-weighted return on the NYSE and βT being
greater than unity for returns on Treasury bills. The correlations between
consumption growth and the log dividend-price ratio reported in Campbell
and Shiller (1989) provide one possible explanation. In all of their vector
autoregressions, a high log dividend-price ratio at the beginning of a year
predicted low consumption growth over the year. The association of low
consumption growth with a high one-period discount rate on common
stocks requires γ to be larger than unity.

All of these studies presume that consumption is being reliably mea-
sured. With the imposition of some additional structure on agents’ prefer-
ences, some of the potential measurement problems with consumption can
be avoided.8 Specifically, Rubinstein (1976) showed that if agents have log-
arithmic utility, then for certain production and exchange economies, the
intertemporal marginal rate of substitution of consumption is proportional
to the inverse of the total return on the aggregate wealth portfolio. In these
economic environments, agents’ first-order conditions for their optimal in-
vestments decisions include

E
[
r nt+n

/
r wnt+n

∣∣ It ] = kn, (10.16)

8 An altogether different approach to avoiding the need for consumption data is to
use a linearization of agents’ intertemporal budget constraint to derive an expression for
consumption in terms of wealth and the conditional moments of asset returns. In this manner
Campbell (1993) obtained an (approximate) DAPM in which agents have CRRA preferences
and the testable restrictions are expressed in terms of market returns.
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where r wnt+n is the n-period return on the wealth portfolio and kn is a con-
stant that depends on n.9 Conveniently, (10.16) depends on returns alone;
in particular, a measure of consumption is not needed for estimation or
inference.

Hansen et al. (1982) and Brown and Gibbons (1985) studied relation
(10.16) empirically using the value-weighted return on the NYSE (VWRn)
as a measure of r wnt+n . The former study tested the implication of (10.16)
that the ratios of returns r nt+n/r wnt+n are serially uncorrelated using returns
on individual stocks. For an economy in which there is a single nondurable
good and VWRn is an accurate measure of the return r wnt+n , this test avoids
the problems of temporal aggregation, and measurement of consumption
or the deflator (to compute real returns) as (r nt+n/r wnt+n) can be formed as
the ratio of two nominal returns. Their results also suggest that the model
underlying (10.16) is not consistent with the data.

Another consideration is taxes. Their omission works in favor of, not
against, the model. If r nt+n is replaced by an after-tax real return, then on
average this return is lower than the unadjusted return. This in turn means
that, for a given mean µcn, β has to exceed unity by an even wider margin
for the condition (10.15) to be satisfied in the sample. In the context of a
model with leisure, Eichenbaum et al. (1988) estimated the parameters of
the corresponding Euler equations using before and after tax real returns
on Treasury bills. Consistent with this discussion, they found that in both
cases βT exceeded unity and βT was much larger when after tax real returns
were used.

10.4. Models with Durable Goods

A potentially important source of misspecification in the models examined
so far is the omission of goods that are durable (provide services over time).
Durability may be an issue for two reasons. First, the misclassification of
goods in the NIPA as being nondurable on a monthly basis is potentially
important, because it may distort both the autocorrelation properties of
consumption growth, as well as the mean and variance of consumption. In
the NIPA, goods are classified as nondurable if they have a typical lifetime
of less than 3 years. Clearly, many of the goods called nondurable should be
considered durable for the purpose of analyses of models with monthly or
quarterly decision intervals. Second, there is an important second category
of goods labeled “durable” in the NIPA, and utility from these goods has
so far been assumed to be separable from the utility from nondurable goods.

9 The assumption of logarithmic utility can be replaced by the more general assumption
of constant relative risk-averse utility, but at the expense of assuming independently and iden-
tically distributed growth rates in consumption over time.



Page 261 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

10.4. Models with Durable Goods 261

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[261], (16)

Lines: 360 to 405

———
-2.13983pt PgVar
———
Normal Page
PgEnds: TEX

[261], (16)

The nonseparability of preferences across these two categories of goods may
also affect the time-series properties of mn

t .

10.4.1. Durability in Single-Good Models

A convenient parameterization of preferences that accommodates the pos-
sibility of durability is

U (st ) = [
sγt − 1

] /
γ, st = A(L)et , γ < 1, (10.17)

where A(L) = ∑∞
τ=0 a τL

τ is a scalar lag polynomial with a 0 = 1, and, in
equilibrium, ct equals the aggregate endowment of the good, et . Positive
values of the a τ imply that acquisitions of goods in the past continue to
provide services in the current period; that is, the good is durable. Tests of
the overidentifying restrictions implied by this model have been based on
the Euler equation

E

[ ∞∑
τ=0

a τ βτ (st+τ )γ−1
∣∣At

]
= E

[( ∞∑
τ=0

a τ βτ+1(st+τ+1)
γ−1

)
rt+1

∣∣At
]
. (10.18)

Dunn and Singleton (1986) and Eichenbaum and Hansen (1990) con-
sidered the similar case of durable goods with st = ct +ψct−1. Consumption
was measured as monthly NIPA nondurables plus services over the period
1959:1–1985:12. Exponential growth was accommodated in this economy by
scaling both sides of (10.18) by c γ−1

t , which led to the econometric MA(1)
disturbance

ut+2 =
1∑

τ=0

a τ βτ (st+τ /ct )γ−1 −
[

1∑
τ=0

a τ βτ+1(st+τ+1/ct )γ−1

]
r 1
t+1. (10.19)

The estimated value of a 1 was positive, consistent with the presumption
that “nondurables plus services” provide consumption services over time.
However, the probability value of the chi-square statistic for this model
was 0.001 indicating that the introduction of nontime separability did not
markedly improve the fit.

Additional evidence on the goodness-of-fit of single-good models with
durability is presented in Gallant and Tauchen (1989). They considered a
flexible approximation to a general, scaled period utility function of the
form

U (ct /ct−1, ct−1 /ct−2, . . . , ct−� /ct−�−1) . (10.20)

Their point estimates were consistent with a positive value of a 1 (durability
of goods). However, as in previous studies, when stock and bond returns
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were studied simultaneously they found that the overidentifying restrictions
implied by the Euler equations were not supported by the data.

10.4.2. Incorporating Durable and Nondurable Goods

There are notable co-movements in durable goods purchases and the lev-
els of interest rates. Accordingly, if we introduce the services from durable
goods into the model explicitly and assume that utility from the services of
NIPA nondurable and durable goods are not separable, the model may bet-
ter represent the “consumption risk” inherent in asset returns. Preference
specifications that allow for this possibility were studied by Dunn and Sin-
gleton (1986), Eichenbaum and Hansen (1990), Ferson and Constantinides
(1991), and Heaton (1995), among others. Their models are nested within
the following specification of utility defined over two service flows:

U (s j t ) =
(
c∗
t

)γ δ(d∗
t

)γ (1−δ) − 1
γ

, (10.21)

where c∗ and d∗ are the service flows from nondurable and durable con-
sumption goods, and the service technologies are given by[

c∗
t

d∗
t

]
=
[
A11(L) 0

0 θ(1 − θL)−1

] [
ct

dt

]
, (10.22)

where ct and dt are the endowments of nondurable goods plus services and
durable goods, respectively, as defined in the NIPA of the United States, and
A11(L) is a polynomial in the lag operator.

Substituting (10.22) into (10.21) gives an indirect period utility func-
tion defined over acquisitions of goods. Define the marginal utilities with
respect to the services as

MN∗
t = β tδ

(
c∗
t

)γ δ−1(d∗
t

)γ (1−δ) (10.23)

MD∗
t = β t (1 − δ)

(
c∗
t

)γ δ(d∗
t

)γ (1−δ)−1
. (10.24)

Then the partial derivatives of
∑∞

t=0 β
tU (c∗

t , d
∗
t ) with respect to ct and dt ,

respectively, are given by

MNt = E
[
A11

(
L−1)MN∗

t |At
]
, (10.25)

MDt = E
[
A22

(
L−1)MD∗

t |At
]
. (10.26)

The first-order conditions of the representative agent’s intertemporal
optimum problem imply that equilibrium acquisitions of goods and their
relative price wt (price of durables in terms of nondurable goods) satisfy



Page 263 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

10.4. Models with Durable Goods 263

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[263], (18)

Lines: 471 to 528

———
-3.00998pt PgVar
———
Normal Page
PgEnds: TEX

[263], (18)

wtMNt = MDt . (10.27)

Substituting (10.25) and (10.26) into (10.27) and rearranging gives

E
[
wt
{
A11

(
βL−1){δ[A11(L)ct

]γ δ−1[A22(L)d t
](1−δ)γ }}

− A22
(
βL−1){(1 − δ)

[
A11(L)ct

]γ δ[A22(L)d t
](1−δ)γ−1}∣∣At] = 0.

(10.28)

While versions of this intratemporal pricing relation have been studied in
the literature on consumption-leisure choices,10 this relation among optimal
purchases of goods and their relative prices has received little attention in
the asset pricing literature.

Most of the attention has been focused on the implied relations be-
tween consumptions and asset returns. If the consumer can trade an n-
period asset with a price of one unit of ct and with a random payoff of r nt+n
units of ct+n at date t + n, then utility maximization also implies that

E
[
r nt+nMNt+n

∣∣At ] = MNt . (10.29)

Substituting for MN gives

E
[
r nt+nβ

n{A11
(
βL−1){δ[A11(L)ct+n

]γ δ−1[A22(L)d t+n
](1−δ)γ }}

− A11
(
βL−1){[A11(L)ct

]γ δ−1[A22(L)d t
](1−δ)γ }∣∣At] = 0.

(10.30)

Focusing on (10.30) and assuming that A11(L) = 1 + ψL, to construct
moment conditions to be used in constructing a GMM estimator of this
model, we define

ut+n+1 =
[
c∗δγ−1
t d∗(1−δ)γ

t + ψβc∗δγ−1
t+1 d∗(1−δ)γ

t+1

− βn
(
c∗δγ−1
t+n d∗(1−δ)γ

t+n + ψβc∗δγ−1
t+n+1d

∗(1−δ)γ
t+n+1

)
r nt+n

]
/c∗δγ−1
t d∗(1−δ)γ

t .

(10.31)

The dating of ut+n+1 is due to the combination of the n-period invest-
ment horizon and the fact that agent’s marginal utility of consumption of

10 Mankiw et al. (1985) and Eichenbaum et al. (1988) examined models in which utility
is represented as a nonseparable function of nondurable goods and leisure plus a separable
function of the services from durable goods. The former study adopted a CES form of the
utility function, while the latter adopted a version of the utility function (10.21) and (10.22)
with c∗

t denoting services from NIPA nondurables plus services and d ∗
t denoting leisure services

(durable goods were excluded from the analysis). The empirical results from these studies show
that many of the limitations of models with single or multiple consumption goods carry over
to models that incorporate leisure in a nonseparable way.
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the numeraire good involves consumption one period ahead owing to the
short-term durability of ct . An immediate implication of the Euler equation
(10.30) is that E[ut+n+1|At]=0. Following Dunn and Singleton (1986) and
Eichenbaum et al. (1988), the scaling factor in (10.31) is included to control
for possible trends in the acquisitions of goods.

To construct a GMM estimator of the parameters governing preferences
and the service technologies, we suppose that there are J assets and inter-
pret ut+n+1 as the J -dimensional vector of errors associated with these as-
sets. Additionally, we let xt denote a vector of instruments in At and base
estimation on theM [equal to the product of J and dim(xt )] orthogonality
conditions

E
[
ut+n+1 ⊗ xt

] = 0. (10.32)

The optimal distance matrix for GMM estimation is a consistent estimator
of the inverse of

�0 =
n∑

j=−n
E
[
ut+n+1u′

t+n+1−j ⊗ xt x ′
t−j
]
. (10.33)

Dunn and Singleton (1986) and Eichenbaum and Hansen (1990) con-
sidered the special case of the service technology (10.22) with A11(L) =
(1 +ψL). Upon estimating the model for the period January 1959 through
December 1978, they found that overidentifying restrictions were typically
not rejected at conventional significance levels for individual returns. The
returns considered were the 3-month real holding-period returns on U.S.
Treasury bills for buy-and-hold and roll-over investment strategies (Dunn
and Singleton) and 1-month holding-period returns on 1-month bills and
an aggregate stock portfolio (Eichenbaum and Hansen). On the other
hand, when the Euler equations for two different returns were examined
simultaneously, there was substantial evidence against the overidentifying
restrictions.

Eichenbaum and Hansen (1990) also investigated a quadratic utility
function with the linear technology (10.22). Specifically, the functionU (sj t )
was chosen to be

U (sj t ) = −
{[
s1
j t − α1

2

(
s1
j t

)2
]

+
[
α2s2

j t − α3

2

(
s2
j t

)2
]

+ α4s1
j t s

2
j t

}
, (10.34)

α1, α2, α3 > 0.A potentially important difference between the specifications
(10.21) and (10.34) is that the quadratic model does not restrict the sub-
stitution elasticity between the service flows from nondurable and durable
goods to unity. Eichenbaum and Hansen report substantial evidence against
the null hypothesis that utility is separable across the two consumption
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services [α4 = 0 in (10.34)]. However, in spite of its more flexible substi-
tution possibilities, chi-square statistics with probability values of 0.004 and
0.006 are obtained using TBILL1 (Eichenbaum and Hansen, 1990) and
VWR1 (Singleton, 1985).

Three patterns of results emerge from these empirical studies of asset
pricing models with multiple goods. First, for power utility, the introduction
of durable goods seems to improve the fit of the models when individual
returns are examined, perhaps with the exception of the 1-month Treasury
bill. For quadratic utility, the p-values remain small for both TBILL1 and
VWR1. Second, the fit of the consumption-based models is typically better
for aggregate stock indexes and long-term bonds than for real Treasury
bill returns. Third, there is substantial evidence against the overidentifying
restrictions in models with and without durable goods, and for power and
quadratic utility, when two or more returns are studied simultaneously.

To link these findings back to the opening remarks in this chapter, it is
instructive to summarize the findings in Dunn and Singleton (1986) regard-
ing the implications of changing γ for the “unconditional” risk premiums
implied by the utility functions (10.21). The difference between the mean
returns on any two n-period investment strategies can be written, using the
Euler equation (10.29), as

E
[
r 1
t+n
]− E

[
r 2
t+n
] = −Cov

[
r 1
t+n − r 2

t+n, M̂Ut+n
]/
E
[
M̂Ut+n

]
, (10.35)

where M̂Ut is the marginal utility MNt+n scaled by [(c∗
t )
δγ−1(d∗

t )
(1−δ)γ ] (in

order to allow for real growth in acquisitions of goods). Letting n = 3
and choosing r 1

t+3 and r 2
t+3 to be the returns TBILL3 and the 3-month real

return on a 6-month bill (TB6H3), Dunn and Singleton found that the
sample estimate of (E[r 1

t+3]−E[r 2
t+3]) was −0.0012, whereas the estimate

of the right-hand side of (10.35) (calculated at their point estimate γT =
−1.66) was 1.37 × 10−7. The estimated risk premium is much too small
and has the wrong sign. Again, we find that consumption growth is not
sufficiently correlated with historical returns to explain measured excess
returns. Moreover, decreasing γT , holding all of the other parameters fixed
at their estimated values, leads to a larger positive value of the sample
unconditional premiums. Thus, as risk aversion is increased the difference
between the sample excess return and the premium (which according to
the theory should be equal to the excess return) actually increases.

10.5. Habit Formation

A quite different form in nonseparability of preferences over time arises
when agents exhibit habit formation, by which we mean that an increase
in consumption at date t increases the marginal utility of consumption at
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adjacent dates relative to the marginal utility of consumption at distant
dates. Consumptions at adjacent dates are therefore complementary. Two
quite different formulations of habit formation have been pursued in the
literature: internal habit models in which the past own consumptions of an
agent influence the marginal utility from current consumption, and external
habit models in which the past aggregate consumptions influence today’s
consumption choice.

10.5.1. Models with Internal Habit Formation

The implications of internal habit formation for asset pricing has been ex-
plored by Sundaresan (1989), Constantinides (1990), Ferson and Constan-
tinides (1991), and Heaton (1995). Referring once again to (10.17), we see
that internal habit formation is present when the a τ , for τ ≥1, are negative.
The construct −∑∞

τ=1 a τ ct−τ can be interpreted as agent’s subsistence level
of consumption services, with large acquisitions of goods in the past increas-
ing this subsistence level. Consumption is habitual in that, as ct approaches
−∑∞

τ=1 a τ ct−τ , the marginal utility of st becomes infinite if γ <0.
Ferson and Constantinides (1991) estimated the restricted version of

(10.17) with A(L) = 1 + a 1L, using postwar quarterly data and annual data
for the period 1929–1986. To accommodate real growth they scaled (10.18)
by one over (ct + a 1ct−1)

γ−1, which gives the econometric disturbance

ut+2 =
1∑

τ=0

a τ βτ
(
ct+τ + a 1ct+τ−1

ct + a 1ct−1

)γ−1

−
[

1∑
τ=0

a τ βτ+1
(
ct+τ+1 + a 1ct+τ
ct + a 1ct−1

)γ−1
]
rt+1.

(10.36)

As instruments they used dividend yields, nominal Treasury bill returns, in-
dustrial production, and measures of nominal term and default premiums.
The best fit of the model for real returns on Treasury bonds and NYSE
decile portfolios was obtained with a 1 < 0, indicating that preferences ex-
hibit internal habit formation. Furthermore, they did not reject the implied
overidentifying restrictions at conventional significance levels. With quar-
terly data and ct measured as nondurable consumption expenditures, the
estimate of a 1 obtained by Ferson and Constantinides was −0.95, suggest-
ing a very high level of habit formation. Moreover, when durable goods
expenditures were substituted for nondurable expenditures, the estimates
continued to suggest habit formation; â 1 = −0.65.

Conceptually, the appeal of an internal habit is that the presence of the
threshold habit level xt ≡ ∑∞

j=1 aj ct−j increases the variability of agents’
marginal rate of substitution, without necessarily increasing the variability
of consumption growth. As argued by Constantinides (1990), it is in part this
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Table 10.2. Analysis of Single-Good Models with Habit
Formation Using Quarterly Data from 1959:1 to 1986:4

Returns β̂ γ̂ â 1 χ2 DF

VWR3 and TBILL3 1.004 −0.2980 0.0 28.95 12
(0.0021) (0.4024) (0.004)

VWR3 and TBILL3 0.9906 0.4492 −0.5 10.66 12
(0.0019) (0.1426) (0.559)

VWR3 and TBILL3 0.9947 0.0274 −0.9 7.835 12
(0.0025) (0.0161) (0.798)

Autocorrelations of {ut+2} in (10.36) with β = 0.99 and γ = 0

a 1 = −0.9 uVWR −0.5864 −0.0477 0.1622 0.1296 −0.3312 0.1737
uTB3 −0.5836 −0.0565 0.1684 0.1254 −0.3447 0.2002

a 1 = −0.5 uVWR 0.0896 −0.1420 −0.0683 −0.0062 −0.0307 −0.1445
uTB3 −0.4312 −0.0094 0.2082 −0.1286 −0.2539 0.2172

a 1 = 0.0 uVWR 0.1323 −0.1677 −0.0612 −0.0250 −0.0451 −0.1056
uTB3 0.6512 0.5764 0.5577 0.4460 0.4104 0.4263

a 1 = 0.5 uVWR 0.1316 −0.1696 −0.0588 −0.0261 −0.0493 −0.0990
uTB3 0.7824 0.6799 0.6098 0.5207 0.5194 0.4610

a 1 = 0.9 uVWR 0.1315 −0.1698 −0.0585 −0.0262 −0.0499 −0.0983
uTB3 0.7819 0.6845 0.6109 0.5256 0.5137 0.4621

Source: Singleton (1993).

mechanism that allows the presence of internal habit to resolve the equity
premium puzzle. Similarly, Dai (2001) shows that a generalized version of
Constantinides’s model with internal habit also resolves the expectations
puzzles in the term structure literature (see Chapter 12).

Constantinides found that xt/ct ≈ −0.8 for parameter values that re-
solved the equity premium puzzle. For models that set xt = a 1ct−1, this
means that a 1 must be a large negative number for the habit model to be
consistent with historical return and consumption data. This was indeed
what Ferson and Constantinides obtained with quarterly data.

Examination of the properties of the disturbances in a model with habit
formation for various values of a 1 reveals why the goodness-of-fit improves as
a 1 approaches −1. The top part of Table 10.2, from Singleton (1993), shows
the estimates of the model (10.36) using quarterly data over the sample pe-
riod 1959:1 through 1986:4. Estimates were obtained for the real return on
3-month Treasury bills and the real 3-month holding-period return on the
value-weighted NYSE portfolio, using the constant unity and two lagged val-
ues of consumption growth and the real returns as instruments.11 Estimates

11 In choosing instruments, this analysis follows previous studies rather than Ferson
and Constantinides. The model and instrument set correspond most closely to the model
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were also obtained for three different fixed values of a 1 in order to evaluate
the effects on the other preference parameters and test statistics of changes
in a 1. When a 1 = 0, there is substantial evidence against the model, which
is consistent with the results in Hansen and Singleton (1982) for the anal-
ogous monthly model. Consistent with the results in Ferson and Constan-
tinides, the test statistic declines markedly as a 1 decreases to −0.9.

The second part of Table 10.2 shows the first six autocorrelations of
{uVWR
t } and {uTB3

t } given by (10.36) with VWR3 and TBILL3 as returns,
respectively, for various values of a 1. The disturbances were all computed
with β = 0.99 and γ = 0 (log utility). Consider first the correlations for
a 1 = 0. Though under the null hypothesis of this model the disturbances are
serially uncorrelated, the autocorrelations of {uTB3

t } are in fact substantially
larger than zero and decay relatively slowly. This is a manifestation of the
positive persistence in TBILL3.

When a 1 �= 0, the disturbances follow MA(1) processes under the null
hypothesis. The computed autocorrelations of both {uVWR

t } and {uTB3
t } are

much closer to an MA(1) autocorrelation structure for a 1 = −0.5 and −0.9.
In particular, the second and third autocorrelations, which are aligned in
time with the instruments, are quite small. On the other hand, positive
values of a 1 tend to increase the autocorrelations of the disturbances and
thereby lead to larger departures from the null of zero autocorrelations.

The reason for this pattern can be seen immediately from (10.36), in
which terms of the form (c∗

t+j /c
∗
j ) are raised to the power γ−1, where c∗

t ≡
ct +a 1ct−1. As noted by Hansen and Jagannathan (1991) and Cochrane and
Hansen (1992), when a 1<0, (c∗

t+1 /c
∗
t ) is more volatile than (ct+1 /ct ). As a 1

approaches −1, the consumption term increasingly dominates the volatility
of {ut }, while the autocorrelation of {c∗

t+1 /c
∗
t } declines. Thus, for a 1 near

−1, {ut } is approximately a quasi-difference of a nearly serially uncorrelated
process. As such, the time-series properties of {ut } are determined almost
entirely by the terms involving (c∗

t+1 /c
∗
t ) and not by r 1

t+1. As {ut } becomes
increasingly dominated by the consumption term, the test statistics decline.
This pattern is what would be expected from the discussion of Table 10.1.
Positive values of a 1, on the other hand, increase the autocorrelation of
[(1+a 1βL)(c∗

t+1 /c
∗
t )
γ−1], but have relatively little effect on the volatility of

the disturbances.
Further confirmation of this interpretation is provided by the corre-

lation matrix of (uVWR
t ,uTB3

t ): when a 1 = −0.9, the correlation between
uVWR
t and uTB3

t is 0.994 and the corresponding standard deviations and auto-
correlations of these shocks are essentially equal. In contrast, when a 1 = 0,

underlying the second part of Table 4, Panel 3 in Ferson and Constantinides (1991). They
used the return on the largest decile portfolio instead of VWR3 and the 3-month return from
rolling over the 1-month Treasury bill instead of TBILL3.
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Corr(uVWR
t ,uTB3

t ) = 0.04, the standard deviation of uVWR
t is more than ten

times larger than the standard deviation of uTB3
t , and as in Table 10.1, the

properties of these disturbances are determined largely by the returns.
The role of (internal) habit formation was examined in more depth by

Heaton (1995) using the following special case of (10.17) in which goods
are durable in character and agents’ preferences exhibit habit persistence:

A(L) = 1 − φL
(1 − ψL)(1 − θL)

, (10.37)

where φ = θ + ϕ(1 − θ). If ψ = 0, then this model exhibits pure (internal)
habit persistence in that

st = ct − ϕ(1 − θ)

∞∑
k=0

θ k ct−1−k , 0 < ϕ < 1, 0 < θ < 1. (10.38)

If in addition θ= 0, then the one-period habit persistence model of Ferson
and Constantinides (1991) is obtained with st = ct − ϕct−1. If, on the other
hand, ϕ = 0, then

st =
∞∑
k=0

ψk ct−k , 0 < ψ < 1, (10.39)

with c acting like a durable good in that it provides positive utility over time.
To implement this model, consumption and dividend growths were as-

sumed to follow a bivariate autoregressive process, and the parameters were
estimated using the simulated method of moments (Chapter 6). Among
other things, the SME allowed Heaton to accommodate time aggregation
in measured consumption. He found that goods are locally durable, but that
over long horizons there is evidence of significant habit formation. Further-
more, allowing for both local durability and habit persistence over longer
horizons substantially improved the fit of the model compared to both the
simple time-additive model and the nested special case of pure habit persis-
tence (no local durability).

Heaton also documents the fact that the high level of volatility in mn
t

induced by the pure habit persistence model [ψ= 0 in (10.37)] gives rise to
implausibly large standard deviations of the riskfree rate. This result, along
with the preceding observation that the correlation between uVWR

t and uTB3
t

approaches unity for high degrees of habit persistence, suggests that the
good fit of pure-habit models along some dimensions comes at the expense
of notable counterfactual implications along other dimensions. We revisit
the implications of these models for the second moments ofmn

t and returns
in Section 10.8.
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10.5.2. Models with External Habit Formation

An alternative, external form of habit has been explored by Abel (1990),
Campbell and Cochrane (1999, 2000), and Wachter (2005), among others.
Habit is external in these models in the sense that each agent’s subsistence
level xt is a function of aggregate quantities that are not directly under the
agent’s control. Abel specifies preferences as U (ct/xt ) so that it is consump-
tion relative to the habit that affects preferences, whereas Campbell and
Cochrane assume that the difference matters, U (ct −xt ). The choice makes
a difference and, in particular, with Abel’s ratio formulation the excess re-
turns on equities (the equity risk premiums) are unaffected by the presence
of an external habit (Campbell, 1999). Accordingly, we follow Campbell and
Cochrane and focus on the difference formulation.

Campbell and Cochrane (1999) assume an economy of identical agents
each with preferences given by

E

[ ∞∑
t=0

β t
(ct − xt )γ − 1

γ

]
, (10.40)

where xt is the external habit. Letting st = (ct − xt )/ct denote the propor-
tional distance between current consumption and the external habit gives
the local curvature of the utility function as

− ctUcc (ct , xt )
Uc (ct , xt )

= 1 − γ

st
. (10.41)

Thus, the smaller ct −xt (the closer the current consumption is to the habit
subsistence level), the larger the curvature in preferences.

To close the model, the habit is assumed to depend on aggregate
consumption,

sat = cat − xt
c at

, (10.42)

so, in particular, xt is not affected by the decision of any individual agent.
Since identical agents choose the same level of consumption, we can drop
the superscript a in the following discussion, bearing in mind that xt is taken
as fixed when computing marginal utilities.

The underlying technology is chosen such that

� ln ct+1 = g + vt+1, vt+1 ∼ i.i.d.N (0, σ 2). (10.43)

Viewing this economy as an endowment economy, we can interpret ct as
aggregate consumption that equals the aggregate endowment.
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The surplus ratio st is assumed to evolve according to the process

ln st+1 = (1 − φ) ln s̄ + φ ln st + λ(ln st )(ln ct+1 − ln ct − g ), (10.44)

where λ(ln st ) is a sensitivity function. So that st “behaves like a habit,” the
sensitivity function was chosen so that xt is predetermined at and near the
steady state st = s̄ and increases in consumption do not lead to declines in
the habit xt .

Additionally, in order avoid a riskfree rate puzzle, Campbell and Coch-
rane fixed the riskless rate at a constant. The marginal rate of substitution
of consumption is given by

m1
t+1 = β

(
st+1

st

ct+1

ct

)γ−1

. (10.45)

Therefore, the logarithm of the riskless interest rate is

ln r ft = − lnβ + (1 − γ )g − (1 − γ )(1 − φ)(ln st − s̄ )

− (1 − γ )2σ 2

2
[1 + λ(ln st )]2 .

(10.46)

They chose λ(·) to set the left-hand side of (10.46) to a historically plausible
constant. Risky assets are priced by substituting (10.45) into the standard
intertemporal Euler equation.

To complete their specification, parameter values were chosen to match
several moments of the distributions of historical macroeconomic data.
In particular, the parameters of the consumption process were chosen to
match the mean and volatility of consumption growth. Serial correlation
in ln st , governed by φ, was chosen to match the serial correlation in the
logarithm of the price/dividend ratio.12 Finally, the risk-aversion parameter
γ was chosen to match the ratio of the unconditional mean excess return
on equities to its standard deviation.

Figure 10.1 displays the model-implied expected returns on claims to
the future aggregate consumption and dividend streams, as well as the
riskless interest rate. As st declines (consumption approaches the level of
external habit), the equity premium grows substantially. (The behavior of
the return on the consumption and dividends claims is similar.) Underlying
this resolution of the equity premium puzzle is the fact that the Sharpe ratios
on risky claims are proportional to the curvature of utility. The relative risk-
aversion parameter (γ ) and the steady-state surplus ratio (s̄) are chosen to

12 This involves solving numerically for the price/dividend ratio implied by agents’ Euler
equation and the laws of motion of the state variables in their economy.
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Figure 10.1. Expected returns and the riskless rate. Source: Campbell and Cochrane
(1999), copyright by the University of Chicago.

be −1.0 and 0.057, respectively. Therefore, utility curvature at the steady
state [from (10.41)] is 35, and it becomes much larger at low values of st .
Put differently, low values of surplus consumption lead to large Sharpe ratios
for risky claims in their model.

What makes this high level of curvature in utility less problematic (from
the perspective of the puzzles outlined at the beginning of this chapter) is
that the constant interest rate in the Campbell-Cochrane model is r ft =
− lnβ + (1 − γ )g − [(1 − γ )/s̄]2σ 2/2. By keeping relative risk aversion
(1 − γ ) at the moderate value of 2, a high level of the curvature in utility
does not distort the level of the short rate in the same way that it would in a
model with constant relative risk-averse preferences. In the latter case, the
equity premium puzzle is resolved by a large γ and this inflates the term γ g ,
thereby introducing the “riskfree rate puzzle.”

From Figure 10.2 it is seen that the standard deviations of returns also
increase with declining surplus consumption. Since st , as parameterized in
their model, is highly persistent, so is the conditional variance of returns.
This is consistent with the empirical evidence reported in Chapter 7. More-
over, a declining s is associated with a simultaneous decline in the prices
of risky securities (increase in expected returns) and increase in volatility.
So the model reproduces the “leverage” effect that was also discussed in
Chapter 7. Finally, this figure suggests that volatility is countercyclical.

Another implication of Figures 10.1 and 10.2 together is that the means
and standard deviations of returns respond differently to changes in s. This
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Figure 10.2. Stock return volatility and the surplus consumption ratio. Source:
Campbell and Cochrane (1999), copyright by the University of Chicago.

implies a time-varying Sharpe ratio (expected excess return per unit of
standard deviation), indeed a ratio that moves countercyclically.

Wachter (2005) extends this framework to allow for stochastic inter-
est rates in order to investigate some of the expectations puzzles related to
holding-period returns on bonds (see Section 13.2.1). This is accomplished
by relaxing the constraint imposed by Campbell and Cochrane that the in-
tertemporal substitution and precautionary savings effects offset each other
to get a constant riskless rate. Wachter lets the data determine the effect of
st on r ft . We explore the economic mechanisms underlying her analysis in
more depth in Chapter 13.

A formal econometric implementation of an extended Campbell-
Cochrane habit model is undertaken in Bansal et al. (2004). Agents’ en-
dowment followed the process (10.43), and dividends were assumed to be
co-integrated with consumption: dt = µdc + ct + ηt , where ηt is a stationary
ergodic process. This representation of dividends, which extends that in
Campbell and Cochrane, implies that consumption and dividends share a
common stochastic trend (see Section 9.3) and, hence, that (dt − ct ) is a sta-
tionary process. Their goal in letting dt and ct share a common trend, while
being less than perfectly correlated, is an empirical analysis of the effects of
long-run “macro” risks on asset prices. The model is estimated using a sim-
ulated method-of-moments (Chapter 6) based on an auxiliary model con-
structed from a vector autoregressive model of the exogenous shocks. Using
annual data for the period 1929–2001, the authors find that this model does
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a good job of matching the moments of consumption and dividend growth.
However, it does not resolve the volatility puzzle—the price/dividend ratio
is more volatile historically than what is implied by this formulation of habit
formation (and long-run risks). Further, there is excessive co-dependence
(Section 10.2.2) in that the model predicts a much tighter link between the
price/dividend ratio and consumption growth than is seen in the data.

10.6. Non-State-Separable Preferences

The preferences examined so far are in the class of von Neuman-Morgen-
stern preferences. Epstein and Zin (1989) and Weil (1989) proposed a
particular class of non-state-separable preferences for which agents are not
indifferent to the timing of the temporal resolution of uncertainty (see Sec-
tion 8.2). The Euler equations implied by their models may be fundamen-
tally different than those, for example, implied by state-separable prefer-
ences, say of the CRRA form, in that the representative agent’s marginal
rate of substitution is a function of the return on the aggregate wealth port-
folio. In this section we briefly describe the models in these papers and then
assess the extent to which they fit the consumption and return data better
than state-separable models.

Following Epstein and Zin (1989), we assume that agents maximize the
recursive utility function leading to the pricing kernel (8.23) and associated
pricing relations

βθE
{
[ct+1 /ct]−(θ/ψ) r θM,t+1

∣∣At} = 1, (10.47)

βθE t
{
[ct+1 /ct]−(θ/ψ) r θ−1

M,t+1rt+1
∣∣At} = 1, (10.48)

where rM,t+1 and rt+1 are the one-period holding-period returns on the
wealth portfolio and any security in the agent’s choice set, respectively.13

Note that the return on the wealth portfolio appears in (10.47) and (10.48)
as part of the pricing kernel. In light of the significant correlation between
the returns on common stocks and typical measures of the return rM, the
marginal rate of substitution in (10.48) may have very different properties
than those that are functions of consumption variables alone.

The empirical results in Epstein and Zin (1991) for this model were
mixed, however. The nested expected utility model [α ≡ (1 − γ ) = 1/ψ ⇒
CRRA preferences] was strongly rejected. At the same time, Euler equation-
based tests indicated rejecting the overidentifying restrictions for the un-
constrained model for most instrument sets when returns on a common

13 In practice, the budget constraint is often expressed as wt+1 = rM,t+1(wt − ct ), where w
denotes wealth. Therefore, rM is the return on a claim to the aggregate consumption stream.
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stock and a U.S. Treasury bond were studied simultaneously. There was less
evidence against the model when common stock returns were studied in-
dividually. (Recall that in state-separable CRRA models, the test statistics
exhibited a similar pattern.)

The point estimate of γ indicated that risk preferences were close to
logarithmic. With logarithmic risk preferences, the asset return equations
(10.48) reduce to those tested by Hansen et al. (1982) and Brown and Gib-
bons (1985), which were generally not supported by the data. Furthermore,
(10.47) simplifies to a log-linear version of the Euler equation for the return
on the wealth portfolio (Epstein and Zin, 1991):

E
[
− 1
ψ

ln(ct+1 /ct )+ ln rM,t+1 + lnβ
∣∣∣At

]
= 0. (10.49)

This equation is nearly identical to the log-linear relation studied by Hansen
and Singleton (1983), but here it is obtained without assuming lognormality
of returns or consumption growth. The difference is in the constant term;
in the expected utility models under lognormality, a constant conditional
variance term also appears in the intercept. After freeing up this constraint,
there is still substantial evidence against the log-linear model (Hansen and
Singleton, 1996). Moreover, (10.49) holds only for the return on the wealth
portfolio, so these two models are not observationally equivalent for all
returns.

Though these Euler equation-based tests cast doubt on the view that a
representative agent with Epstein-Zin preferences determines asset prices,
the recursive structure of (8.22) and its separation into risk aversion and
intertemporal substitution make it an attractive construct for exploring
how exogenous shocks affect asset returns. For instance, Bansal and Yaron
(2004) introduce a small (i.e., low conditional volatility) but persistent ex-
pected growth component in the consumption and dividend growth series
into a model in which agents have Epstein-Zin preferences. In the presence
of this persistent component, shocks to future expected growth rates lead to
large changes in equity returns. Under the assumptions that the intertem-
poral elasticity of substitution ψ is greater than one and the risk aversion
parameter α = 10, they show that the model can generate an equity pre-
mium roughly consistent with its historical value.

Bansal et al. (2004) undertake a more formal econometric analysis
of the Bansal-Yaron model, generalized to accommodate somewhat richer
state dynamics. Fixingψ = 2 and with an estimated αT = 7.1, they show that
the model is capable of matching the first and second moments of a variety
of macroeconomic time series as well as the equity premium. Importantly,
when they examined the special case of CRRA preferences (θ=1), the over-
identifying restrictions were strongly rejected at conventional significance
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levels. Thus, critical to the success of this model is the balancing of intertem-
poral substitution and risk aversion with α �= 1/ψ and ψ>1. Both of these
studies focus primarily on the moments of macroeconomic aggregates and
an equity index return. So the overidentifying restrictions implied by the
models’ pricing of multiple equity indices and bond yields examined by
Epstein and Zin (which were found to challenge the model) are not being
tested.

10.7. Other Preference-Based Models

A wide variety of other models have been explored for their potential to
resolve the asset pricing puzzles outlined in Section 10.1. These include
models with state-dependent preferences, heterogeneity across agents with
limited access to financial markets, and preferences that exhibit loss or
disappointment aversion. Most of the studies exploring these issues rely on
calibration to certain moments, including in some cases microeconomic
data on individual consumptions and incomes, rather than a formal analysis
of the conditional distribution of asset returns. This is in part because of the
limited available information about asset holdings and investment decisions
at the micro level.

Within the first group of models are those with state-dependent risk
preferences (e.g., Gordon and St-Amour, 2004, and Kogan et al., 2006), un-
foreseen contingencies (Kraus and Sagi, 2004), and time-varying subjective
probability assessments (e.g., Mulligan, 2004). A representative pricing ker-
nel from these models with state-dependent preferences has a discrete state
space with S possible realizations of returns and Epstein-Zin preferences:

q∗
t+1(s) = αt (s)

π(s)
βθ[ct+1(s)/ct]−(θ/ψ)r θ−1

M,t+1(s), s = 1, . . . , S , (10.50)

where αt (s)/π(s) is the ratio of the agents’ subjective to the objective prob-
ability. This term adds sufficient flexibility so that essentially any pattern
of asset returns can be matched after imposing no-arbitrage restrictions.
Mulligan (2004) explores a particular parametric model with the implica-
tion that the volatility of asset returns may be largely driven by αt (s)/π(s),
in which case these returns may show little correlation with consumption
growth. Thus, these models provide a potential explanation for the failings
of standard time-separable models that depend on this correlation to ex-
plain excess returns.

Pursuing a different generalization of representative agent models, Tel-
mer (1993), Heaton and Lucas (1995), and Marcet and Singleton (1999),
among others, explored the implications of models with heterogeneous
agents and incomplete markets for asset prices. Of particular interest was
the issue of whether market incompleteness, transaction costs, or limitations
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on borrowing can explain the magnitude of the equity premium. Overall,
these models were largely unable to fit the historical magnitude of the equity
premium, at least without introducing implausibly large frictions through
the transaction and borrowing technologies. Essentially, through trading in
a limited number of securities, agents are able to nearly replicate the first-
best consumption plan. In a related paper, Alvarez and Jermann (2001)
assume complete markets but, unlike the preceding papers, the solvency
constraints are derived endogenously in the model. They are able to gener-
ate equity premia that are more in line with the historical magnitudes.

Finally, researchers have recently been exploring different departures
from the standard expected utility model that draws upon the literature in
psychology on human behavior. Barberis and Huang (2001) explore the im-
plications of loss aversion and narrow framing for asset returns. Under loss
aversion, agents get utility from gains and losses in wealth and, in particular,
are more sensitive to their losses than to their gains (Kahneman and Tver-
sky, 1979). Narrow framing is the behavioral trait of paying attention to nar-
rowly defined gains and losses. Barberis and Huang show that their model
matches many of the empirical observations in Section 10.1 and Chapter 9,
including a high mean and volatility of equity returns in the presence of a
low interest rate and a moderately predictable aggregate stock index return.
In a complementary study, Ang et al. (2005a) argue that disappointment
aversion (Gul, 1991) is another motivation for agents to give more weight
in their portfolio decisions to outcomes that are relatively bad. Their model
can generate sizable equity premia and the phenomenon of investors with
sufficiently strong disappointment aversion choosing not to invest in equity
portfolios.

10.8. Bounds on the Volatility of mn
t

We conclude this chapter with a brief overview of a bound on the volatil-
ity of a pricing kernel q∗. By way of motivation, we refer back to the puzzle
introduced at the outset of this chapter, namely that marginal rates of substi-
tution do not co-vary sufficiently with returns on risky assets to explain their
historical returns. Intuitively, it seems that there must be a minimal level of
the volatility of mn

t in order for mn
t to have sufficient co-variability with risky

returns. Indeed, this is the case, and derivations of such bounds date back at
least to the work of Shiller (1982) and Hansen (1982a), and the empirical
applications in Dunn and Singleton (1986). However, the focus on volatility
bounds onmn

t as a diagnostic tool for examining DAPMs blossomed with the
formalization of these bounds in Hansen and Jagannathan (1991), leading
to the HJ bound. Consistent with the preceding motivation, we use the no-
tation mt to denote the pricing kernel in the following discussion. However,
nothing in the subsequent derivations requires that the pricing kernel be a
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marginal rate of substitution from a preference-based model. The bounds
apply to any conjectured pricing kernel.

We begin by selecting a set of N asset payoffs at date t + 1, xt+1, from
among those that are priced by our candidate pricing kernel m. In general
the larger the set xt+1, the more demanding the derived lower bound on
the volatility of m. The reason for fixing xt+1 is that we seek an observable
bound on the volatility of any m that prices x, and this is accomplished
by using the observed payoffs x. We define the associated payoff space
Pt+1 ≡{c · xt+1 : c ∈ RN }, and, for now, assume that x includes the riskless
payoff equal to one with probability one.

An implication of (8.11) is that any pricing kernel mt+1(≡ m1
t+1) that

prices the payoffs xt+1 satisfies

E[mt+1xt+1] = E[πt (xt+1)], (10.51)

where πt (xt+1) is an N -dimensional vector of prices of the payoffs xt+1. We
refer to (10.51) as Restriction UP.

A lower bound on σ(mt+1), the (unconditional) volatility of any candi-
date mt+1, is obtained by projecting the family of pricing kernels satisfying
Restriction UP onto Pt+1, and then examining the volatility of this projec-
tion. The payoff m∗

t+1 = xt+1 · α0 ∈ Pt+1 satisfies (10.51) for the payoffs
xt+1 if

E
[
xt+1x′

t+1

]
α0 = E[πt (xt+1)]. (10.52)

Solving (10.52) gives α0 = E[xt+1x′
t+1]−1E[πt (x)]. Furthermore, any mt+1

(not necessarily in Pt+1) satisfying Restriction UP satisfies E[mt+1] =
E[πt (1)] = E[m∗

t+1], and E[xt+1(mt+1 − m∗
t+1)] = 0. It follows that m∗ is

the least-squares projection of mt+1 onto Pt+1 and

σ(mt+1) ≥ σ
(
m∗
t+1

)
, E[mt+1] = E

[
m∗
t+1

]
. (10.53)

As noted by Hansen and Jagannathan (1991), this lower bound is as tight as
possible, because m∗ satisfies Restriction UP. That is, m∗ represents the best
(in the sense of least-squares projection) approximation to m by random
variables in Pt+1.

When the payoff space does not include a unit payoff (a riskless return is
not among the set of returns considered), then we no longer know E[mt+1].
Accordingly, Hansen and Jagannathan proceed by augmenting the payoff
vector to xat+1, which includes xt+1 and 1, and defining the corresponding
payoff space Pat+1 in terms of this xa . In this augmented payoff space, we
can assign the value ν to the πt (1), an unknown number in circumstances
where P does not include a unit payoff. Then, replicating the preceding
discussion, we can construct an mν

t+1 ∈ Pat+1 that satisfies
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E
[
xt+1mν

t+1

] = E[πt (xt+1)], E
[
mν
t+1

] = ν. (10.54)

The volatility bound is then

σ(mt+1) ≥ σ
(
mν
t+1

)
, (10.55)

for any m that satisfies Restriction UP and has mean ν.
The region

S ≡ {
(ν, ω) ∈ R2 : ω ≥ σ

(
mν
t+1

)}
(10.56)

summarizes the implications of Restriction UP for the volatility of agents’
m. To derive a simple expression for σ(mν

t+1), note that

E
[
(xt+1 − E[xt+1])

(
mν
t+1 − ν

)] = E[πt (xt+1)] − νE[xt+1], (10.57)

and mν
t+1 can be expressed as

mν
t+1 = (xt+1 − E[xt+1])′ βν + ν, βν ∈ RN . (10.58)

This last expression follows from the fact that mν is the projection of m onto
Pa and the mean of mν is ν. Substituting (10.58) into (10.57) and solving
for βν gives

βν = �−1
x (E[πt (xt+1)] − νE[xt+1]) , (10.59)

where �x is the variance/covariance matrix of xt+1. Using this expression,
we obtain

σ
(
mν
t+1

) = [
β ′
ν�xβν

]1/2
. (10.60)

Drawing upon Gallant et al. (1990), Hansen and Jagannathan (1991)
report the region S , along with the mean/standard deviation pairs implied
by the single-good model (10.17) with A(L) = 1 + θL for various values of
γ and θ (Figure 10.3).14 Thus, the candidate m is given by

mt+1 = s γ−1
t+1 + βθE t+1

[
s γ−1
t+2 |At+1

]
s γ−1
t + βθE t

[
sγ−1
t+1 |At

] . (10.61)

The specification of A is based on an underlying time-series model for
aggregate consumption of nondurables plus services, as discussed in Gallant
et al. (1990).

14 This figure actually displays a region S+ that is derived under the additional restriction
that E[mt+1] is strictly positive. However, Hansen and Jagannathan (1991) note that the regions
S and S+ are nearly identical for this example.
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Figure 10.3. Hansen-Jagannathan bounds for a single-good model with U (st ) =
[(ct + θct−1)γ − 1]/γ . Source: Hansen and Jagannathan (1991), copyright by the
University of Chicago.

The region S is displayed as a shaded cone, and was computed using
the same data as in Hansen and Singleton (1982), revised and updated to
cover the period March 1959 through December 1986. For a fixed value of
θ , the entries—starting from left to right—represent the means and volatil-
ities of m, computed from (10.61), for values of γ ranging from 2 to 15.
This figure captures, in mean-variance space for m, the essence of much
of our preceding discussion of the goodness-of-fit of models with durabil-
ity or (internal) habit formation. When θ > 0, increasing agents’ relative
risk aversion gradually increases the volatility of m, but at the expense of
introducing a riskfree rate puzzle (a mean of m that is too low). Even for
very large γ , the mean/volatility pair for m is far from the region S . On the
other hand, when θ < 0, large values of γ induce sufficient variability in m
[as given by (10.61)], while keeping the mean of m sufficiently large for the
mean/volatility pair to satisfy the HJ bound (fall within the region S).

We can incorporate conditioning information by using “scaled payoffs”
as follows. Define a new payoff space
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PZt+1 ≡ {
c · Z txt+1 : c ∈ RN }, (10.62)

where Z t is an N ×N matrix with elements in an information set It . Since
E[mt+1Z txt+1|It] = Z tπt (xt+1), we can replicate our preceding discussion
and obtain a new bound by replacing E[πt (xt+1)] with E[Z tπt (xt+1)] and
defining βZν accordingly:

σ
(
mν
t+1

) =
[
βZ

′
ν �xβ

Z
ν

]1/2
. (10.63)

Gallant et al. (1990), Ferson and Siegel (2003), and Bekaert and Liu
(2004) have examined related “optimal instrument” problems. Following
Bekaert and Liu, we consider the case of an N ×1 vector zt ∈ RN and the
payoff space

P zt+1 ≡ {
c z ′
txt+1 : N × 1, c ∈ R}, (10.64)

with an associated HJ volatility bound on mt+1 with E[mt+1] = ν, say
σ(ν, z ′

txt+1). The question of interest is which zt in some given information
set It gives the highest HJ bound; that is, which z solves the optimization
problem

σ 2(ν, z∗′
t xt+1

) = sup
zt∈ It

σ 2(ν, z ′
txt+1

)
. (10.65)

Letting�x t ≡ E[xt+1x′
t+1|It] and µx t ≡ E[xt+1|It], we arrive at the solution

z∗
t = �−1

x t (πt (xt+1)− ωµx t ), (10.66)

where ω = (ν− b)/(1 − d), b = E[µ′
x t (µx tµ

′
x t + �x t )

−1πt (xt+1)], and d =
E[µ′

x t (µx tµ
′
x t + �x t )

−1µx t]. When the relevant conditional moments are
known, this bound coincides with that derived by Gallant et al. (1990).
A potential advantage of the bound σ 2(ν, z∗′

t xt+1) derived by Bekaert and
Liu over the one derived by Gallant et al. is that the former is robust to
misspecification of the conditional moments �x t and µx t . That is, even if
we use an incorrect model in estimating these moments, a valid HJ bound
is obtained.

Hansen et al. (1995) discuss the large-sample properties of the condi-
tional HJ bound derived in Gallant et al. (1990). Ferson and Siegel (2003)
examine the small-sample properties of HJ bounds that use conditioning in-
formation and find that, typically, there is a small-sample bias toward over-
stating the bound (rejecting specifications of pricing kernels too often).
The bias was found to be relatively small for the optimal bound based on z∗.
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11
Pricing Kernels and Factor Models

What is the relationship between the DAPMs that start from an expres-
sion like E[m1

t+1rt+1|At] = 1 [see, e.g., (10.1) in Chapter 10] and those that
focus on beta relations that express expected returns in terms of covariances
of these returns with a benchmark return? Such a beta relation is implied by
the celebrated static capital asset pricing model (CAPM) of Sharpe (1964)
and Lintner (1965), where the return on a “market portfolio” serves as a
benchmark. However, from Merton (1973) and Long (1974), we know that
the market return is not in general a benchmark return in intertemporal
asset pricing models. This chapter explores in depth the nature of beta or
factor models for excess returns implied by DAPMs.1

Starting from a general DAPM with pricing in terms of a pricing ker-
nel q∗ (see Chapter 8), we derive a “single-beta” representation of expected
excess returns on traded assets. Among the aims of this chapter are: (1)
linking the beta relations with time-varying betas studied in the literature
to the preference-based DAPMs reviewed in Chapter 10, (2) characterizing
the set of returns that can serve as benchmarks for beta relations, (3) identi-
fying, where possible, observable members of this set, and (4) assessing the
empirical support for factor models.

In addressing these issues, we answer the questions: (1) What is the
link between conditional mean-variance efficiency and conditional single-
beta models? (2) How does reducing the conditioning information set from
agents’ set to that of an econometrician affect the set of admissible bench-
mark returns for beta representations? (3) Do single-beta representations
capture all of the restrictions on returns implied by DAPMs? (4) What are
the implications of the answers to these questions for recent econometric
studies of CAPMs with time-varying conditional moments? The answer to
the second question, in particular, is central to the feasibility of econometric

1 The approach to beta models taken in this chapter is based on Hansen et al. (1982).
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analysis of beta relations implied by preference-based models because of
the inherent difficulty of constructing empirical counterparts to benchmark
returns.

11.1. A Single-Beta Representation of Returns

Given the central role of q∗ in pricing, it is natural to inquire whether the
associated benchmark return r ∗t = q∗

t /E[(q∗
t )

2|At−1] [see (8.5)] plays a role
analogous to the role of the market return in the CAPM. The answer is yes
in that a single-beta representation of the conditional moment restriction
(8.6) can be derived using the fact that r ∗ is the globally minimum second-
moment return.

To proceed with this construction we return to the concept of a payoff
space (Pt , πt−1,At−1) discussed in Chapter 8, and suppose that there is a
unit payoff in Pt and that the pricing operator πt−1 does not admit arbi-
trage opportunities on Pt . Under these assumptions, we conclude that the
associated return spaceRt (of payoffs with unit prices) contains the riskfree
return r ft−1 = 1/E[q∗

t |At−1].2 From (8.8) it follows that

E
[
r ∗t rt

∣∣ At−1
] = r ft−1E

[
r ∗t
∣∣ At−1

]
, rt ∈ Rt , (11.1)

where

r ft−1 = E[r ∗2
t

∣∣ At−1
]/
E
[
r ∗t
∣∣ At−1

] = 1/E
[
q∗
t

∣∣ At−1
]
. (11.2)

Expanding (11.1) in terms of conditional means and covariances gives

E[rt | At−1] − r ft−1 = −Cov
[
rt , r ∗t

∣∣ At−1
]

E
[
r ∗t
∣∣ At−1

] , rt ∈ Rt . (11.3)

Finally, evaluating (11.3) at rt = r ∗t and substituting back into (11.3) gives
rise to the single-beta pricing relation

E
[
r xt
∣∣ At−1

]− r ft−1 = βx,t−1
{
E
[
r ∗t
∣∣ At−1

]− r ft−1

}
, (11.4)

where

βx,t−1 = Cov
(
r xt , r

∗
t

∣∣ At−1
)

Var
(
r ∗t
∣∣ At−1

) , (11.5)

for all r xt ∈ Rt .
2 Adding these assumptions is not necessary to derive a beta representation for returns,

but we nevertheless make them so that the resulting excess returns can be expressed relative to
r ft−1. Also, the ensumption of no arbitrage opportunities is used here to ensure that Pr{πt (1) >
0} = 1; the price of the unit payoff is positive.
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The beta representation (11.4) is equivalent to the inner product pric-
ing relation (8.3)—just retrace the steps backward. There are, however, im-
portant practical and conceptual differences between these two represen-
tations as they are commonly studied in the literature. Suppose we have a
candidate q∗ to use in pricing (e.g., a model of q∗ we want to test). Even if the
econometrician does not observe all of the variables generating A, the law
of iterated expectations can be used to construct tests based on the relation

E
[
q∗
t+1rt+1

∣∣ Jt ] = 1, rt+1 ∈ Rt , (11.6)

for an information set Jt observed by the econometrician. Given a candi-
date q∗ for pricing returns in Rt+1, we can test (11.6) using the methods
outlined in Chapter 10.

In contrast, we cannot simply “condition down” the beta representa-
tion (11.4), since the law of iterated expectations does not apply to central
second moments. (Later we explore whether a similar beta representation
conditioned on J ⊂ A obtains.) Equally importantly, in empirical studies
of beta representations, researchers often focus on (11.4) and (11.5), but
ignore (11.2); they do not impose the pricing relation r ft−1 = 1/E[q∗

t | At−1].
This is because the goal in studying beta relations is typically to express ex-
cess returns in terms of a benchmark return, without having to take a stand
on the nature of the underlying pricing kernel q∗. A practical implication of
this observation is that, whereas the return r ∗t is the unique element of Rt
satisfying (8.8), there are an infinite number of returns that can substitute
for r ∗ in (11.4) and (11.5) with this beta relation continuing to hold. It
follows that tests of intertemporal CAPMs (ICAPMs) based on beta repre-
sentations focus on a subset of the restrictions on the joint distributions of
returns implied by equilibrium DAPMs.

While the goals in studying pricing relations based on pricing kernels
versus benchmark returns may be different, they share the common chal-
lenge of identifying a pricing kernel q∗ that satisfies (11.6) or a benchmark
return that satisfies a beta relation like (11.4) and (11.5). In preference-
based models, one candidate for q∗ is an agent’s marginal rate of substitu-
tion. The associated minimum conditional second moment, and candidate
benchmark, return is r ∗t = m1

t /E[(m1
t )

2|At−1]. To implement tests based
on these constructs requires knowledge of both the functional dependence
of m1

t on the state of the economy and the conditional distribution of the
state. When such information is available, tests based on the pricing rela-
tions expressed in terms of q∗ allow the incorporation of more of this known
economic structure. For Euler-equation-based tests, there is also the con-
venience of conditioning down to the econometrician’s information set.
These considerations motivate in part the continued focus on pricing ker-
nels in the empirical analysis of consumption-based DAPMs.
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On the other hand, when exploring beta relations, there is a long-
standing tradition of positing a candidate benchmark return r βt and then
testing the conditional moment restrictions

E
[
r xt
∣∣At−1

]− r ft−1 = βx,t−1

(
E
[
r βt
∣∣At−1

]− r ft−1

)
, r xt ∈ Rt , (11.7)

where βx,t−1 = Cov(r xt , r
β
t |At−1)/Var(r βt |At−1). While (11.7) looks like a con-

ditional version of the static CAPM, neither that nor standard preference-
based DAPMs provides concrete guidance as to which benchmark returns
r β should satisfy (11.7), other than r ∗t = m1

t /E[(m1
t )

2|At−1].
Given the attention received by the market return r Mt —the return on

a broadly diversified set of equities like the NYSE securities—in the static
CAPM, one might conjecture that it is a benchmark for a conditional beta
relation. However, this choice does not have the same economic underpin-
nings as it does in the static environment of the CAPM. In particular, we
cannot set r ∗ = rM , because then (11.7) is not an economically meaningful
model. The reason is that from substitution of r ∗t for rt in (11.3) and using
the fact that Var(r ∗t |It−1)>0, we set

E
[
r ∗t
∣∣At−1

]− r ft−1 = −Var
(
r ∗t
∣∣At−1

)
E
[
r ∗t
∣∣At−1

] ⇒ E
[
r ∗t
∣∣At−1

]
< r ft−1; (11.8)

and r ∗ must have a lower mean than the riskless interest rate. In light of
the substantial magnitude of the “equity premium” on diversified equity
portfolios (see Chapter 10), clearly we cannot have r ∗ and rM as the same
return. This observation does not rule out a more flexible model, say, with
r ∗t = φ 0,t−1 + φM ,t−1r Mt , for φ 0,t−1 and φM ,t−1 in A. However, we see no
simple way of imposing the requirement (11.8) outside of the derivation of
φ 0 and φM from an equilibrium economic model.

Of course, the fact that r ∗ �= r M does not mean that r M cannot serve
as one of the risk factors comprising an admissible benchmark return for
a conditional beta relation. Indeed, such beta relations have been studied
by Jagannathan and Wang (1996) and Ferson and Harvey (1999), among
others. Rather, these observations are intended simply to highlight the chal-
lenge in providing an economic foundation for this or any other choice of
r β that is not r ∗.

11.2. Beta Representations of Excess Returns

With these observations in mind, we turn next to a more general discussion
of beta representations and the concept of conditional mean-variance effi-
ciency (MVE). For the purpose of this discussion, we continue our focus on
a conditionally complete payoff space P ⊂ P+, defined relative to agents’
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information set A, satisfying HR regularity. A return r βt ∈ Rt is said to be
on the mean-variance frontier conditioned on A if it satisfies the following
property:

Property 11.1: MVE. r βt ∈ Rt satisfies
Var

(
r βt
∣∣ At−1

) ≤ Var
(
r xt
∣∣ At−1

)
, (11.9)

for all r xt ∈ Rt such that E(r xt | At−1) = E(r βt | At−1).

Note that r ∗t in (8.5) (constructed with A) satisfies Property MVE, because
it is the global minimum second-moment return among all returns in Rt
and, as such, its conditional variance is at least as small as that of any other
return in Rt with the same mean. In representative agent, consumption-
based models r ∗ is the return on security that pays off the representative
agent’s marginal rate of substitution. Though mean-variance efficient, for
the reasons outlined earlier, this return must lie on the lower portion of the
conditional mean-variance frontier.

A key result in the literature on mean-variance efficiency is that the set
of all returns satisfying Property MVE is a two-dimensional set in the sense
that two returns span all of the returns with this property. More precisely,
suppose (P , π) is HR-regular and that there exist returns r xt and r yt in Rt
such that Pr {E(r xt − r yt |At−1)= 0}= 0 (which rules out risk-neutral pricing
on Pt). Then there exists a return r #

t in Rt satisfying Property MVE such
that every r βt ∈ Rt satisfying Property MVE can be represented as

r βt = (
1 − ω

β

t−1

)
r ∗t + ω

β

t−1r
#
t , (11.10)

for some ωβ

t−1 ∈ At−1, where r ∗t = q∗
t /πt−1(q∗

t ). This result is the conditional
counterpart of Roll’s (1977) two-fund theorem.3 It allows us to characterize
completely the mean-variance frontier conditioned on A by characterizing
two returns that are on the frontier. The return r ∗t is one such return.

If Pt contains a unit payoff and there are no arbitrage opportunities on
Pt , then Rt contains the riskfree return r ft−1 =1/E(q∗

t |At−1). In this case, r #
t

can be shown to be4

r #
t =

(
1 − 1

r ft−1

)
r ∗t +

(
1

r ft−1

)
r ft−1. (11.11)

3 It follows immediately from Lemma 3.3 in Hansen and Richard (1987), which implies
that r βt = r ∗t +ω∗

t−1z
∗
t , where z∗t satisfies πt−1(z∗t ) = 0. Their expression is equivalent to (11.10)

with r #
t = r ∗t + z∗t ∈ Rt .

4 When there is a unit payoff inPt , z∗ in the preceding footnote is given by z∗t = 1−r ∗t /r ft−1.
Substituting into r #

t = r ∗t + z∗t and rearranging gives (11.11).
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This return is in Rt since it is a weighted average of r ∗t and r ft−1 with weights
in At−1. Substituting (11.11) into (11.10) leads to the following alternative
characterization of the mean-variance frontier in Rt :

r βt =
(

1 − ω
β

t−1

r ft−1

)
r ∗t +

(
ω
β

t−1

r ft−1

)
r ft−1, ω

β

t−1 ∈ At−1. (11.12)

Hence, when there is a unit payoff in Pt , the mean-variance frontier is
spanned by r ∗t and r ft−1.

In practice, tests of mean-variance efficiency of a portfolio are typically
conducted in the context of a beta representation of returns. Accordingly,
we next explore the relation between the property of being on the condi-
tional mean-variance frontier and the property of being a benchmark re-
turn for a single-beta representation of returns, which follows:

Property 11.2: SβB. r βt ∈ Rt satisfies Pr{Var(r βt | At−1) > 0} = 1 and

E
[
r xt
∣∣ At−1

]− µt−1 = βx,t−1
{
E
[
r βt
∣∣ At−1

]− µt−1
}
, (11.13)

where

βx,t−1 = Cov
(
r xt , r

β
t

∣∣ At−1
)

Var
(
r βt
∣∣ At−1

) ,

for some µt−1 ∈ At−1 and all r xt ∈ Rt .

Suppose (P, π) is HR regular, π has no arbitrage opportunities on P , Pt
does not admit risk-neutral pricing, and P contains a unit payoff. Let r βt be
the frontier return in (11.10). Then r βt satisfies Property SβB if and only if
r βt =(1 −ω

β

t−1)r
∗
t +ω

β

t−1r
f
t−1, where ωβ

t−1 ∈ At−1, and there exists a return r 0
t

such that Var(r 0
t | At−1) < Var(r βt | At−1). This result, which is a conditional

counterpart to Roll’s (1977) Corollary 6, is an immediate implication of
Lemma 3.5 in Hansen and Richard (1987). The assumption that there is a
return r 0

t ∈Rt with smaller variance than r βt guarantees that there is zero
probability that r βt is the minimum conditional variance return.

It follows that the entire mean-variance frontier conditioned on A can
be characterized in terms of the pricing kernel for this economy. If there is
a representative agent, then q∗ = m1, and the frontier can be characterized
in terms of agents’ marginal rate of substitution.

11.3. Conditioning Down and Beta Relations

On the other hand, a primary motivation for testing CAPMs using beta
representations is that the restrictions are expressed entirely in terms of
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returns. In this manner, possibly serious measurement problems with such
macroeconomic variables as consumption may be avoided. This reason
alone may be sufficient motivation for imposing only a subset of the re-
strictions implied by an ICAPM. However, tests based on beta representa-
tions in environments where conditioning information is important also
present challenging measurement problems. Specifically, the set of returns
on mean-variance frontiers conditioned on the econometrician’s informa-
tion set J must be characterized. In particular, specific benchmark returns
that are in the information set Jt must be identified for use in econometric
analyses. Following Hansen and Richard (1987), we next address this issue
of conditioning down to a smaller information set.5

Let

P J
t = {

qt ∈ Pt : E
[
q 2
t

∣∣ Jt−1
]
< ∞}

, (11.14)

where Jt ⊆ At , and let

RJt = Rt ∩ PJt . (11.15)

If we assume that there exists a return r 0
t in RJt , the return r ∗t ∈ Rt is in RJt

since r ∗t is the minimum conditional second-moment return inRt .6 Hence,
r ∗t satisfies Property MVE in any return space RJt with Jt ⊆ At . It turns out
that the returns r ∗t and r #

t underlying (11.10) continue to span the mean-
variance frontier conditioned on Jt−1, with the weights being in Jt−1.

More precisely, under HR regularity of P J, if r βt satisfies Property MVE
in the return space R J

t , then7

r βt = (
1 − ω

β

t−1

)
r ∗t + ω

β
t r

#
t , ω

β

t−1 ∈ Jt−1. (11.16)

It follows immediately that returns on the mean-variance frontier condi-
tioned on J are on the mean-variance frontier conditioned on A. The con-
verse is not true in general, however.

More generally, using arguments similar to those in the preceding sec-
tion, for any information set J and conditionally complete payoff space PJ,
under HR regularity, we can conclude that the family of benchmark returns
in RJ satisfies the beta relation

E
[
r xt
∣∣ Jt−1

]− µ
J
t−1 = β

J
x,t−1

{
E
[
r βJt

∣∣ Jt−1
]− µt−1

}
, (11.17)

5 Hansen and Richard (1987) provide the conceptual foundations for this section. The
presentation here draws upon their analysis and the analysis in Hansen et al. (1982).

6 If E[r ∗2
t | At−1] ≤ E[r 2

t | At−1], for all rt ∈Rt , then E[r ∗2
t | Jt−1] ≤ E[r 2

t | Jt−1], for all
rt ∈ RJ

t , by the law of iterated expectations.
7 This result is an implication of the law of iterated expectations and the arguments used

to prove Lemma 3.3 in Hansen and Richard (1987).
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where

β
J
x,t−1 = Cov

(
r xt , r

βJ
t

∣∣ Jt−1
)

Var
(
r βJt

∣∣ Jt−1
)

for someµJt−1 ∈ Jt−1 and all r xt ∈ RJt . The constructµJt−1 is often interpreted
as the expected return (conditioned on J ) of the “zero-beta” portfolio (see
Black, 1972). The reason is that any r xt ∈ RJt that has a zero beta with r βJt
has mean µ

J
t−1.

In the context of the ICAPM with q∗
t = m1

t , r
∗
t is on the frontier for the

return space RAt , and hence remains on the frontier for all return spaces
RJt , as long as Jt−1 ⊆ At−1. The analogous statement cannot be made
with respect to r ft−1. If r ft−1 is not in the information set Jt−1, then r ft−1 is
not in general on the frontier conditioned on Jt−1 and, hence, this fron-
tier cannot be represented as in (11.12) with ω

β

t−1 ∈Jt−1. Nevertheless, in
this case, there is a return that is a function of r ∗t and r ft−1 that does remain
on the frontier forRJt . Specifically, consider the counterpart to r #

t in (11.11)
for the ICAPM:

r #
t =

(
1 − 1

r ft−1

)
r ∗t +

(
1

r ft−1

)
r ft−1. (11.18)

The assumption that E[(r ∗t )2 |Jt−1]<∞ implies that r #
t ∈ RJt . Furthermore,

r #
t satisfies Property MVE in RJt .8

This discussion leads to a useful characterization of the mean-variance
frontier for RJt implied by the ICAPM. Yet we have not avoided measure-
ment of the representative agent’s marginal rate of substitution as r ∗t and
r #
t both depend on m1

t and its conditional moments. Can we identify other
returns on the mean-variance frontier that are admissible benchmark re-
turns for single-beta representations conditioned on the econometrician’s
information set? The ICAPM does not provide an answer to this question.

If we define the payoff space analogously to the payoff space implic-
itly used in many formulations of the CAPM, then there is a constructive
solution to the problem of finding a benchmark return. Let r̄t denote an
n-dimensional vector of returns in RJt , ιn denote an n-dimensional vector
of ones, and consider the return space:

C Jt = {
rt ∈ RJt : rt = ωt−1 · r̄t ; ωt−1 · ιn = 1, ωt−1 ∈ Jt−1

}
. (11.19)

The space C Jt is the set of returns on portfolios of the n assets underlying
r̄t with portfolio weights in Jt−1. If, for example, r̄ includes returns on all

8 See Hansen et al. (1982) for details.
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stocks listed on the NYSE and the values of the outstanding shares for these
firms are in the information set J, then the equally- and value-weighted
returns on the NYSE are in C Jt .

An implication of HR regularity is that there exists an element r̃ Jt of C Jt
of the form r̃ Jt = ω̃t−1 · r̄t satisfying

E[(ιnω̃t−1 · r̄t − r̄t )r̄t · ω̃t−1 | Jt−1] = 0. (11.20)

Suppose�t−1 ≡ E[r̄t r̄ ′
t | Jt−1] is nonsingular almost surely. Then the unique

choice of ω̃t−1 that satisfies (11.20) is

ω̃t−1 = �−1
t−1ιn

/(
ι ′n�

−1
t−1ιn

)
. (11.21)

By construction the return r̃ Jt = ω̃t−1 · r̄t , with ω̃t−1 given in (11.21), is on
the conditional mean-variance frontier in the space C Jt and hence serves as
a benchmark return for this space. Therefore, using the definition of r̃ J in
terms of the pricing kernel q̃ for PJ , it follows that

q̃t = ι ′n�
−1
t−1r̄t . (11.22)

Of course, there are no testable restrictions implied by this analysis as r̃ J

satisfies a beta relation by construction.
This discussion leaves us with the following practical dilemma: we can

condition down to an econometrician’s information set J and fully charac-
terize the family of returns that serve as benchmarks for single-beta repre-
sentations of excess returns (conditional on J ). However, in the absence of
guidance from an economic model, the only known candidate for a bench-
mark return is the marginal rate of substitution return, because it remains
on the conditional mean-variance frontier as we condition down from the
agents’ to the econometrician’s information set. Faced with this dilemma,
several researchers have proposed the imposition of a “factor structure” on
the pricing kernel q∗ as a means of deriving testable multibeta representa-
tions of excess returns. Depending on the context, these factor models are
sometimes interpreted as reduced-form representations of agents’ marginal
rate of substitution, and sometimes viewed more restrictively as a represen-
tation of the pricing kernel for a subset of payoffs on tradable securities. We
turn next to a discussion of this modeling strategy.

11.4. From Pricing Kernels to Factor Models

We have already seen that specifying r ∗ as a weighted sum of portfolio re-
turns leads to potential inconsistencies in that r ∗ is on the lower, inefficient
part of the mean-variance frontier, whereas the portfolios that researchers
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have used as benchmarks are on or closer to the efficient part of the fron-
tier. In an alternative modeling approach, which preserves the tradition of
working with a finite set of risk factors and ensures that (11.8) is satisfied,
we can work directly with a factor representation of q∗. Such factor models
have been discussed by Dybvig and Ingersoll (1982) and Cochrane (1996)
(based on unconditional moments) and by Lettau and Ludvigson (2001b)
(using conditioning), among others. Initially, we proceed with our general
conditional framework, starting with a payoff space P defined relative to
agents’ information set A.

We suppose that q∗
t has the “factor” representation

q∗
t = φ0

t−1 + φ
f
t−1

′ft , (11.23)

where φ̃ ′
t−1 = (φ0

t−1, φ
f
t−1

′)∈ At−1 and ft is a vector of K risk factors. Letting
f̃ ′
t = (1, f ′

t ), in this case, we get

r ft−1 = 1
E
[
q∗
t |At−1

] = 1

E
[
f̃t |At−1

]′
φ̃t−1

, (11.24)

and, from (11.3) and the definition of r ∗,

E
[
r xt
∣∣At−1

]− r ft−1 = −Cov
[
r xt , q

∗
t

∣∣ At−1
]

E
[
q∗
t

∣∣ At−1
] , r xt ∈ Rt . (11.25)

Substituting (11.23) into (11.25) and rearranging gives

E
[
r xt
∣∣At−1

] = 1 − Cov
(
r xt , f

′
t

∣∣At−1
)
Cov

(
ft , f ′

t

∣∣At−1
)−1Cov

(
ft , f ′

t

∣∣At−1
)
φ
f
t−1

E
[
f̃ ′
t

∣∣At−1
]
φ̃t−1

= r ft−1 + β ′
x,t−1λt−1, (11.26)

where r xt ∈ Rt and

βx,t−1 = Cov
(
ft , f ′

t

∣∣At−1
)−1 × Cov

(
ft , r xt

∣∣At−1
)
, (11.27)

λt−1 = −r ft−1E
[
q∗
t

(
ft − E

[
ft
∣∣At−1

])∣∣At−1
]
. (11.28)

As discussed previously, the conditional moment restrictions (11.26) and
(11.24), together, are equivalent to the moment condition E[q∗

t r
x
t |At−1]=1.

The j th element of λt−1 is

λj,t−1 = −r ft−1

(
E
[
q∗
t f j t

∣∣At−1
]− E[q∗

t

∣∣At−1
]
E
[
f j t
∣∣At−1

])
= E

[
f j t
∣∣At−1

]− r ft−1E
[
q∗
t f j t

∣∣At−1
]
. (11.29)
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If f j is an excess return, then E[q∗
t f j t |At−1] = 0 and λj,t−1 is the conditional

mean of the excess return factor f j . Alternatively, if f j is a return, then
E[q∗

t f j t |At−1] = 1 and (11.29) gives the expected excess return on the j th
factor. Common terminology is that “factor j is priced” if λj,t−1 is nonzero,
the idea being that the risks from this factor are reflected in excess returns
according to (11.26). From (11.29) we see that λj,t−1 = 0 when q∗

t and
f j t are uncorrelated or, equivalently, when the price of the payoff ( f j t −
E[ f j t |At−1]) is zero (hence we say that factor j is not priced).

As noted by Cochrane (1996), whether a factor is priced is distinct from
whether the j th factor f j is useful in pricing other assets; that is, whether
φ
f
j,t = 0, for all t . Substituting (11.23) into (11.28) gives

λt−1 = −r ft−1Cov
(
ft , f̃ ′

t

∣∣At−1
)
φ̃t−1. (11.30)

Therefore, the hypotheses φ fj,t−1 = 0 and λj,t−1 = 0 are equivalent only if
the factors are uncorrelated.

To illustrate the ideas behind these calculations, suppose thatK =1 and
q∗
t = φ0

t−1+φMt−1(r
M
t −r ft−1), where r Mt is the return on some market portfolio

(analogously to the static CAPM). Then substitution first into (11.29) and
then into (11.26) gives (11.7) with r βt = r Mt .

More generally, if q∗ is a conditional affine function of a vector of excess
returns, constructed from the factor benchmark returns (r p1 , . . . , r pN ), then
we get multifactor models such as those studied by Ferson and Harvey
(1999) and Moskowitz (2003): for any r xt ∈ Rt ,

E
[
r xt

∣∣At−1
]− r

f

t−1 = β1
x,t−1

(
E
[
r p1
t

∣∣At−1
]− r ft−1

)

+ . . .+ βNx,t−1

(
E
[
r pNt

∣∣At−1
]− r ft−1

)
.

(11.31)

Note that the weights on the underlying risk factors, the φ
f
t−1 in (11.23),

do not appear in (11.31). Therefore, when the factors are returns or excess
returns we can, in principle, study (11.31) without having to model the de-
pendence of φ ft−1 on the state vector for this economy (on elements ofAt−1).

There are two important qualifications to this observation. First, not
needing to know φ

f
t−1 does not overcome the need to know agents’ infor-

mation set A. This is because all of the moments in (11.31) depend on
A. Second, in studying (11.31), we are not imposing the relation r ft−1 =
1/(E[f̃ ′

t |At−1]φ̃t−1), so (11.31) does not embody the same economic con-
tent as (8.3).

The former of these qualifications in particular generally makes the
study of (11.31) infeasible without further simplifying assumptions. Substan-
tial simplification is achieved if we impose the additional assumption that
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φ̃t−1 ∈Jt−1, where J is the econometrician’s information set. This assump-
tion has been made (explicitly or implicitly) in most studies of time-varying
beta models in the literature on dynamic CAPMs. Proceeding under this
assumption we begin again with the supposition that

q∗
t = φ̃ ′

t−1 f̃t , φ̃t−1 ∈ Jt−1. (11.32)

Retracing our steps we get the following beta relation conditioned on J 9:

E
[
r xt
∣∣Jt−1

] = µ
0J
t−1 + β

J ′
x,t−1λ

J
t−1, (11.33)

µ
0J
t−1 = 1/E

[
q∗
t

∣∣Jt−1
]
, (11.34)

β
J
x,t−1 = Cov

(
ft , f ′

t

∣∣Jt−1
)−1 × Cov

(
ft , r xt

∣∣Jt−1
)
, (11.35)

λ
J
t−1 = −µ0J

t−1Cov
(
ft , f̃ ′

t

∣∣Jt−1
)
φ̃t−1. (11.36)

If r ft−1 ∈ Jt−1, then µ
0J
t−1 = r ft−1 and excess returns are relative to the riskfree

rate. More generally, µ0J
t−1 is the return on a zero-beta (conditional on J )

portfolio.
There are at least two views on the scope of the applicability of the beta

model (11.36) to returns r xt . One view is that q ∗
t = φ̃ ′

t−1 f̃t , with φ̃t−1 ∈ Jt−1, is
the pricing kernel for a payoff space PAt conditioned on A (where Jt ⊂ At
and ft ∈ At). In this case q∗

t must price all of the payoffs (and in particular
all returns) inPA. It seems that pricing kernels with this special property are
what some researchers had in mind when studying factor specifications of
q∗. For instance, Lettau and Ludvigson (2001b) motivate their factor model
by starting with constant relative risk-averse preferences for a representative
agent [see (10.3)] and then linearizing the implied marginal rate of substi-
tution m1

t = β(ct/ct−1)
γ−1 to obtain

q∗
t = m1

t ≈ φ0
t−1 + φmt−1� ln ct . (11.37)

Furthermore, they presume that φ̃ ′
t−1 = (φ0

t−1, φ
m
t−1) is a known function

of a vector z t−1 ∈ Jt−1. Since the representative agent’s marginal rate of
substitution is fully characterized, if we maintain an economic environment
that admits aggregation (see Chapter 10), then all securities that agents
trade and that are priced by their marginal rates of substitution are priced
by this q∗.

In cases like this, we can defineJt to be the information set generated by
the z t that determines the factor weights defining q∗. The zero-beta return

9 We use the assumption that φ̃t−1 ∈Jt−1 to factor out φ̃t−1 in (11.38).
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µ
0J
t−1 and the conditional betas βJx,t−1 can then be computed relative to this

narrowly defined information set Jt−1. Of course, unless r ft−1 is included
explicitly in Jt−1, µ0J

t−1 is typically not equal to r ft−1. Therefore, excluding
r ft−1 from zt−1 and centering excess returns around r ft−1 essentially amounts
to assuming that r ft−1 is redundant in φ̃t−1.

An alternative interpretation of a factor model for q∗ with the factor
weights φ̃t−1 ∈J is that q∗ is the pricing kernel for (PJ ,RJ ) and it is hypoth-
esized to have the form (11.32). Once one parameterizes the weights φ̃t−1

as functions of elements of Jt−1, then econometric analysis can proceed as
discussed later. However, left unspecified in this approach is the connection
between the “reduced-form” representation of q∗ and any specific economic
model.

Finally, before turning to empirical analyses of factor models, we exam-
ine when conditional factor models imply a corresponding unconditional
formulation. As we set out to address this issue, it is instructive to distinguish
between two, very different, interpretations of an implied unconditional
model. First, we inquire under what circumstances a K -factor conditional
beta model specializes to a K -factor unconditional beta model of expected
excess returns. Second, we show that any conditional model in which the
factors f are excess returns and the factor weights φ̃t−1 in the definition of
q∗
t are affine functions of a state vector zt−1 naturally leads to an uncondi-

tional beta representation of unconditional expected returns. No additional
assumptions are required; the unconditional model represents a subset of
the restrictions implied by the conditional model. We elaborate on each
of these versions in turn. To simplify notation, we focus on the case of a
single factor (K = 1) that is the excess return on a benchmark portfolio,
ft = r βt − r ft−1.

One special case that gives rise to an unconditional single-beta model
is when φ̃, the factor weights determining q∗

t , are constant (state indepen-
dent). In this case we can again retrace the steps followed to derive (11.32)–
(11.36), but now with Jt being the null information set. This leads to

E
[
r xt
]− µ0 = βxE

[
ft
]
, (11.38)

where µ0 = 1/E[q∗
t ] and βx = Cov[r xt , ft]/Var[ ft]. Of course the assump-

tion that the factor weights φt−1 = φ are state independent is not generally
consistent with dynamic economies.

More generally, to examine the case of dynamic economies with state-
dependent factor weights, we fix an information set Jt and assume that
r ft−1 ∈ Jt−1 and r βt ∈ Jt . Further suppose that, analogously to the devel-
opment of (11.32)–(11.36),

E
[
r xt
∣∣Jt−1

]− r ft−1 = β
J
x,t−1λ

J
t−1, (11.39)
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λ
J
t−1 = E

[
r βt − r ft−1

∣∣J t−1

]
, (11.40)

where the last equality follows from the fact that the risk factor ft is an excess
return. Letting R xt ≡ (r xt − r ft−1) denote the excess return for any security
x , an implication of these equilibrium restrictions is that the (αx,t−1, β

J
x,t−1)

that solve the conditional least-squares minimization problem

min
αx,t−1,β

J
x,t−1

E
[(
R xt − αx,t−1 − β

J
x,t−1R

β
t

)2 ∣∣∣J t−1

]
(11.41)

satisfy

β
J
x,t−1 = Cov

[
r xt , r

β
t

∣∣Jt−1
]

Var
[
r βt
∣∣J t−1

] ; (11.42)

αx,t−1 = E
[
R xt
∣∣Jt−1

]− β
J
x,t−1E

[
R β
t

∣∣Jt−1
] = 0. (11.43)

The last expression is the economic content of this conditional beta model
—the conditional beta model implies that conditional α’s are zero.

Sufficient conditions for this model to condition down to an uncondi-
tional single-factor model obtain immediately from inspection of the first-
order conditions to the optimum problem (11.41). Let βx ≡ E[βJx,t−1] de-
note the mean of the conditional beta for security x , and let ηx,t−1 denote
the mean-zero, stochastic component of βJx,t−1; ηx,t−1 ≡ β

J
x,t−1 − βx . If we

substitute for βJx,t−1 into the first-order conditions to the minimization prob-
lem (11.41) and condition down to unconditional expectations, it is easy to
verify that

E
[(
R xt − βxR

β
t

)
R β
t − ηx,t−1

(
R β
t

)2
]

= 0, (11.44)

E
[(
R xt − βxR

β
t

)
− ηx,t−1R

β
t

]
= 0. (11.45)

It follows immediately that if

E
[
ηx,t−1

(
R β
t
)2
]

= 0 and E
[
ηx,t−1R

β
t
] = 0, (11.46)

then (11.44) and (11.45) reduce to the normal equations for (uncondi-
tional) least-squares projection. That is,

αx = E[R xt ]− βxE
[
R β
t
] = 0, (11.47)

and we obtain an unconditional beta model with βx = E[β Jx,t−1].
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To interpret the sufficient conditions (11.46) for an unconditional beta
model, note that they can be rewritten as10

E
[
ηx,t−1

(
R β
t
)2
]

= Cov
[
ηx,t−1, σ

2
β,t−1

]+ Cov
[
ηx,t−1,

(
λ
J
t−1

)2
]

= 0, (11.48)

E
[
ηx,t−1R

β
t
] = Cov

[
ηx,t−1, λ

J
t−1

] = 0, (11.49)

where σ 2
β,t−1 is the variance of R β

t conditioned on Jt−1. Thus, the condi-
tional beta model implies a corresponding constant-beta model if the tem-
poral variation in ηx,t−1 (which captures any variation in β

J
x,t−1) is uncor-

related with the market price of the factor risk (λJt−1) and with (σ 2
β,t−1 +

(λ
J
t−1)

2), the sum of the conditional variance of the benchmark return and
the squared market price of risk. These conditions are a complementary
representation of the sufficient conditions for a constant-beta model de-
rived in Lewellen and Nagel (2005). We discuss their analysis in more depth
when we take up the goodness-of-fit of conditional beta models.

A very different unconditional beta model has been the focal point
of many econometric studies of conditional pricing models. Specifically,
following Cochrane (1996), several researchers have assumed that the factor
weights φt−1 in the definition of q∗

t are affine functions of a state vector z t−1.
Continuing with our one-factor illustration, suppose that11

φ0
t−1 = a0 + b0z t−1 and φ

f
t−1 = a f + b f z t−1, (11.50)

for observable z t ∈ Jt and K = 1. Using this assumption we can condition
down the pricing relation (11.6) to the unconditional moment equation

E
[(
a0 + b0z t−1 + a f ft + b f z t−1 ft

)
rt
] = 1. (11.51)

If we view f #
t ≡( ft , z t−1, ft z t−1) as a set of risk factors and q#

t ≡a0 + b0z t−1 +
a f ft + b f z t−1 ft as a pricing kernel, then (11.51) can be treated (mechan-
ically) as an unconditional version of (11.33), with J being the null infor-
mation set. Exploiting this observation, we can write

E
[
r xt
] = µ+ β ′

xλ, (11.52)

where µ is the (constant) average return on an unconditional zero-beta
portfolio, βx = Cov( f #

t , f
#′
t )

−1Cov( f #
t , r

x
t ), and λ = −µCov( f #

t , q
#
t ).

10 In deriving the following we use the facts that E[R β
t |Jt−1] = λJt−1, from (11.40), and

ηx,t−1 has mean zero.
11 In the tradition of multibeta versions of CAPMs, this approach typically ignores the

constraint r ft−1 = 1/(E[ f ′
t |Jt−1]φ̃(z t−1)).
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That the one-factor conditional model we started with leads to a three-
dimensional unconditional beta model illustrates a more general point.
Factor risks are priced by agents conditioning on their information setA. If
there are K factor risks that are priced, a researcher testing a version of the
CAPM conditional on J ⊂A may well be led to conclude that the number
of priced factors is K ′>K . In particular, if a researcher assumes that J is the
null information set, then it may appear necessary to include additional risk
factors in an unconditional CAPM regression to explain the cross section
of historical means, even though these factors are not priced by agents. At
the root of the appearance of additional factors in unconditional models is
the correlation between risk premiums in the underlying conditional model
and the state of the economy, as seen from (11.44) and (11.45). If the second
terms in these relations are not zero (i.e., (11.46) does not hold), then state
variables that are useful for predicting λt appear as additional factors.

11.5. Methods for Testing Beta Models

Fama and MacBeth (1973) test three implications of the unconditional beta
model (11.38) with ft = (r βt − µ0) and r β presumed to be the return on
a marketwide stock index: (1) The expected return is linear in its risk in
the efficient portfolio; (2) βx is a complete measure of risk of security x
in the efficient portfolio; and (3) the risk premium E[r β − µ0] is positive.
Denoting an unrelated measure of risk as sx , they use the following model
to test these hypotheses:

r xt = γ0t + γ1tβx + γ2tβ
2
x + γ3t sx + uxt . (11.53)

They first estimated the βx for individual securities or portfolios of secu-
rities, and then estimated the parameters in (11.53). Seven years of data
were used to sort individual equities into portfolios, the next 5 years were
used to compute the β’s for these portfolios, and finally the subsequent 4
years were used to estimate the γ ’s in cross-sectional regressions, one for
each month in the sample. As a measure of sx , they used the standard er-
ror of the residual in the time-series regression of r x onto r β used to esti-
mate βx .

The reason for using nonoverlapping periods to estimate the β’s and
then the coefficients in (11.53) was to avoid the “errors-in-variables” prob-
lem associated with the use of estimated βxT in the final stage of cross-
sectional regressions. Under their maintained assumption of i.i.d. returns
and factors, the use of nonoverlapping samples in implementing these
stages leads to consistent estimators of the parameters. With the estimated
γ ’s in hand, their null hypotheses were (1)E(γ2t ) = 0, (2) E(γ3t ) = 0, and
(3) E(γ1t ) = E(r βt )− µ0 > 0.
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Shanken (1992) examines the statistical properties of the Fama-Mac-
Beth two-step estimation procedure in more depth. He notes that, though
the Fama-MacBeth procedure leads to a consistent estimator of the γ ’s, the
inference procedures they used are not asymptotically valid—they overstate
the precision of the estimated γ ’s. This is a consequence of the fact that
two-stage estimation affects the standard errors of the estimators in general,
even if the estimators are consistent (see Section 4.4). Shanken proposed a
two-stage estimator that corrected for both the effects of two stages on the
asymptotic standard errors and for the heteroskedasticity owing to the fact
that, in the cross-section, the portfolios have different residual variances—
the variances of the uxt in (11.53) vary with x . (Shanken maintained the
assumption of i.i.d. returns and factors and conditionally homoskedastic
errors in the time series.) He showed that his estimator is as efficient as the
ML estimator of the unconditional beta model discussed in Gibbons (1982).
The Fama-MacBeth approach, usually with the modifications suggested by
Shanken, has been widely applied in testing unconditional factor models,
when f represents the actual risk factors as well as when the vector f # of
pseudofactors is considered from conditioning down to an unconditional
model.

Since the ML estimators discussed by Gibbons and Shanken are asymp-
totically efficient (under their maintained assumptions, including the ad-
ditional assumption of normality), we briefly expand on this approach to
testing beta models. The ML approach uses the time series and cross-section
information simultaneously to avoid two-stage estimation. Specifically, Gib-
bons examines the restriction (11.47), rewritten for expected returns (ver-
sus excess returns): an implication of the unconditional one-factor model is
that αx = µ0(1 − βx) in the relation E[r xt ]= αx + βxE[r β]. For a collection
of portfolios, this restriction on the α’s amounts to a set of nonlinear cross-
equation restrictions on the parameters that can be tested by a likelihood
ratio statistic using a panel of time series on returns. He implemented this
approach for the case of factors that are portfolio returns under the assump-
tion that returns were i.i.d. normal with constant conditional variances.

As discussed by Shanken, this approach is easily adapted to the case
where some or all of the factors are macroeconomic variables and not re-
turns. (Though to preserve the assumption of temporal independence of
the factors, Shanken interprets the macro factors as “innovations” in the
underlying macro variables.) To see this, consider a multifactor version of
the unconditional beta model (11.38), derived under the assumption that
the pricing kernel is q∗

t = φ̃′ f̃t for constant weights φ̃:

E
[
r xt
] = µ0 + β ′

xλ, (11.54)

βx = Cov
[
ft , ft

]−1Cov
[
ft , r xt

]
, (11.55)
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λ = E[ ft ]− µ0E
[
q∗
t ft
]
. (11.56)

Substituting (11.56) into (11.55) gives the following restriction on the mean
of r xt :

E
[
r xt
] = µ0 + β ′

xE
[
ft
]− β ′

xE
[
ft f̃ ′
t

]
φ̃µ0. (11.57)

If ft is a vector of excess returns, then we have seen that this expression
simplifies to E[r xt ] = µ0+β ′

xE[ ft], the multifactor version of the restrictions
tested by the likelihood ratio statistic in Gibbons (1982).

On the other hand, if ft is a vector of, say, macro variables, and not
returns, then (11.57) has to be considered in its entirety. Consistent esti-
mators of the βx are obtained using (11.55). Similarly, E[ ft] and E[ ft f̃ ′

t ]
are estimable from the data (assuming that the risk factors ft are observable
to the modeler). Thus, the unknown parameters in (11.57) are µ0 and φ̃.
Assuming that the dimension of the set of returns being studied (x 1, . . . , xN )
is larger than the dimension of f (i.e., N>K), then (11.57) implies a set of
cross-equation nonlinear, overidentifying restrictions on the parameters.12

These restrictions can be tested using either GMM orMLmethods and the
associated likelihood ratio statistic.

It warrants emphasis that this discussion applies to the special case of a
q∗ with constant factor weights φ. As we will see, this discussion nevertheless
covers a large portion of the recent empirical literature on factor models,
because the φt defining q ∗

t+1 have been assumed to be affine functions of a
state vector z t and, upon conditioning down to the null information set, this
gives rise to an unconditional factor model. That is, starting from (11.51),
we can derive counterparts to all of the expressions (11.54)–(11.57). Of
course, for the pseudopricing kernel q#, the resulting λ in (11.56) is not
interpretable as the market price of risk for priced factors. Moreover, the
restrictions (11.57) are not all of the restrictions implied by the original
pricing model with state-dependent φt because the restrictions implied by
conditioning on agents’ information set are being ignored [owing to taking
unconditional expectations in (11.51)]. Additionally, as typically presented,
there is no accommodation for conditional heteroskedasticity in the return
or factor distributions. Thus, whether estimated by Fama-MacBeth or ML
methods, the estimators obtained are in general asymptotically inefficient.

If, as in much of the literature on beta models for returns, the returns
and factors are assumed to be i.i.d. processes, then testing can often proceed
using the Gaussian likelihood function. The resulting estimators are either

12 This assumes, implicitly, a rank condition that allows one to solve for the unknown φ

from the estimates of the intercepts. Outside of special cases, the β’s are typically such that this
rank condition is satisfied.
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efficient (if returns and factors are jointly normal) or are quasi-ML estima-
tors otherwise. If the i.i.d. assumption is relaxed, then the use of GMM is
a natural approach. We can illustrate the issues that arise using the testing
approach in Gibbons et al. (1989) which focuses on unconditional factor
models in which the factors are excess returns and returns are i.i.d. normal
processes. For the regression model r it − r ft−1 = αi + β ′

i ft + εit , for returns
i = 1, . . . ,N , Gibbons et al. (1989) assume that the εit are jointly normally
distributed with constant covariance matrix �. The relevant null hypothesis
is that the vector α = (α1, . . . , αN )

′ of intercepts is zero. They propose using
the statistic

GRS = T
N
(T − N − K )
(T − K − 1)

α ′
T�

−1
T αT

1 + f̄ ′
T�

−1
T f̄T

∼ F (N ,T − N − K ), (11.58)

where f̄T is the sample mean of ft and �T is the sample covariance matrix
of the factors; αT is the vector of least-squares estimates of α; and �T is an
unbiased estimator of the residual covariance matrix. The associated Wald
statistic, analogous to (4.45) from Chapter 4 but for multiple equations, is
a monotone transformation of the statistic (11.58). These statistics have the
same asymptotic χ2 distribution under the maintained assumptions of nor-
mally distributed ft with constant covariance matrix. Therefore, for small-
sample inference, use of these statistics abstracts from the negative skewness
and time-varying volatility that is prevalent in equity returns (Chapter 7).
The large-sample distribution is also not robust to time-varying volatility.

To accommodate nonnormality and time-varying volatility, one can in-
stead compute a robust GMM version of the Wald test as in (4.42). When
constructing the matrix �0 underlying this test one simply allows for con-
ditional heteroskedasticity. Additionally, there may be grounds for allowing
for serial correlation in the products εit ft . Least-squares estimation, by def-
inition, chooses (αi, βi) so that E[(αi + β ′

i ft )ft] = 0. These projections do
not imply that the resulting population εit is orthogonal to past values of
f or r it − r ft . In general, this situation falls under Case ACh(∞) in Chap-
ter 3. However, based on the review of the evidence in Chapter 9, it seems
likely that excess equity returns exhibit only a mild degree of persistence so
Case ACh(n), for moderate n, might be the most relevant. Whatever one’s
preferred n, allowing for some nonzero autocorrelation is easily accommo-
dated by appropriate choice of �0.

While the cross-sectional Fama-MacBeth methods or the panel approach
with GMM or ML are easily applied for given choices of risk factors, com-
paring the goodness-of-fits across models based on nonnested choices of f
is often challenging. In order to assess the relative fits of nonnested models,
Hodrick and Zhang (2001) proposed comparing the pricing errors across
models using the notion of “maximum pricing error” from Hansen and
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Jagannathan (1997). Consider the set of pricing kernelsMt+1 that price a
vector R of excess returns: E[m1

t+1Rt+1]=0, for any m1
t+1 ∈Mt+1. Suppose

that a researcher conjectures that the pricing kernel q ∗
t+1 following the lin-

ear factor model q ∗
t+1 = φ̃ ′ft+1 is inMt+1. Here q∗ can be interpreted either

as the actual pricing kernel, under the assumption that the factor weights φ̃
are state independent, or as a pseudopricing kernel arising from condition-
ing down in a dynamic model in which φ̃t is an affine function of the state
of the economy [as illustrated by (11.51)].

Hansen and Jagannathan show that, if this conjecture is false, then the
distance δ between q∗ andM,

δ = min
m∈L2

∥∥q ∗
t+1 − m∥∥, such that E[mt+1Rt+1] = 0, (11.59)

is nonzero. Furthermore, they show that δ can be expressed as

δ =
(
E
[
q ∗
t+1Rt+1

]
E
[
Rt+1R ′

t+1

]−1E
[
q ∗
t+1Rt+1

])1/2
, (11.60)

and that δ has the intuitive interpretation as the maximum pricing error
among the set of portfolios based on the basic assets underlyingR with norm
equal to one.

The factor weights φ̃ can be estimated either by GMM exploiting the
moment equations E[q ∗

t+1Rt+1] = 0, or by minimizing δ by choice of φ̃.
In fact, either estimation strategy leads to a GMM estimator based on the
same moment conditions. Where they differ is in the choice of the distance
matrix. As was discussed in Chapter 3, Hansen’s (1982b) optimal GMM esti-
mator for the given set of moment conditions E[q ∗

t+1Rt+1]=0 involves the
minimization of the quadratic form in (11.60), but with E[Rt+1R ′

t+1]−1 re-
placed by the inverse of the asymptotic covariance matrix of (1/T )

∑
t q

∗
t R t ,

S −1
0 . An attractive feature of the optimal GMM estimator is its relative ef-

ficiency. On the other hand, an advantage of minimizing δ to obtain an
estimator φ̃T is that the distance matrix used is invariant to the model being
examined. As such, δ is a useful statistic for comparing the relative fits of
different, nonnested pricing models. It is for this reason that Hodrick and
Zhang focus on the relatively inefficient estimator that minimizes δ.

The asymptotic covariance matrix of φ̃T obtained in this way is given by
(3.57) with d 0 being the probability limit of (1/T )

∑
t R t f

′
t ,W0 =E[RtR ′

t ]
−1,

and S 0 being the inverse of the distance matrix for Hansen’s optimal GMM
estimator. Jagannathan and Wang (1996) show that the statistic δT , ob-
tained by replacing the population moments in (11.60) by their sample
counterparts and φ̃ by φ̃T , can be expressed as a weighted sum of χ2(1)
random variables and they use this observation to derive its large-sample
distribution.
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11.6. Empirical Analyses of Factor Models

By the early 1990s a large body of evidence had accumulated supporting the
view that the static CAPM, with a one-dimensional f being the excess return
on a market portfolio, was not consistent with either the time-series or cross-
sectional distribution of returns. Most notably, Banz (1981) documented a
significant size effect: average returns on firms’ equities with low market
value of equity (ME) are too high given their β’s, whereas average returns
on large ME stocks are too low. Additionally, Rosenberg et al. (1985) and
Chan et al. (1991) present evidence that the ratio of a firm’s book value
of common equity (BE) to ME has significant explanatory power for the
cross section of equity returns (in the United States and Japan, respectively).
Thirdly, Basu (1983) documents a significant role for earnings/price ratios
in explaining the cross section of expected stock returns, even after account-
ing for size and market betas.

Fama and French (1992, 1993) captured the spirit of these findings
by constructing two portfolios from a two-dimensional stratification of U.S.
common stocks. Along one dimension stocks were sorted according to their
values of BE/ME and then grouped into three portfolios (L, M, H) contain-
ing the firms with the smallest, middle, and largest ratios of book-to-market
values (30, 40, and 30% of the firms, respectively). Along a second dimen-
sion, firms were stratified according to whether their ME was above (B =
big) or below (S = small) the median value for all firms. Value-weighted
portfolio returns were then computed within each of these six groups.
Finally, the returns on the portfolios “small minus big” (SMB) and “high
minus low” BE/ME (HML) were computed as

r SMB
t = 1

3

(
r SL
t + r SM

t + r SH
t

)− 1
3

(
r BL
t + r BM

t + r BH
t

)
, (11.61)

r HML
t = 1

2

(
r SH
t + r BH

t

)− 1
2

(
r SL
t + r BL

t

)
. (11.62)

Using these portfolio returns, they constructed a three-factor model with
ft = (r Mt − r ft−1, r

SMB
t , r HML

t )′.13

Fama and French (1993) tested a three-factor model with constant con-
ditional betas using the GRS statistic and twenty-five equity portfolios (N =
25). These portfolios were constructed by sorting stocks into quintiles of
both the size and BE/ME distributions. While the three factors had substan-
tial explanatory power for these equity portfolio returns, overall, the GRS

13 Returns on the SMB and HML portfolios are not computed relative to r ft−1, because
they are already excess returns; each is the difference between the returns on two different
portfolios.
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statistic indicated rejection of the null α = 0 at conventional significance
levels. The source of this rejection seems to be the stocks with the lowest
BE/ME ratios—growth stocks. Among these stocks, the smallest stocks had
returns that were too low relative to the predictions of the model, whereas
the largest stocks had returns that were too high. In other words, statistical
rejection of this constant-beta, three-factor model was linked to the absence
of a size effect in the lowest BE/ME quintile.

Vassalou (2003) explores the informational content of the r SMB and
r HML portfolios, over and above the market return, with particular emphasis
on business cycle information. Using a technique for constructing mimick-
ing portfolios proposed by Lamont (2001), Vassalou regresses GDP growth
between t and t + 4, GDPGR t ,t+4, onto a set of portfolio returns measured
over the interval t − 1 to t , Bt−1,t , and a vector of control variables Z t−2,t−1

measured at date t−1:

GDPGR t ,t+4 = cB t−1,t + kZ t−2,t−1 + ηt ,t+4. (11.63)

This recovers the GDP mimicking portfolio cT B t−1,t (the portfolio with an
unexpected component that is maximally correlated with GDPGR t ,t+4) un-
der the assumption that the control variables Z t−2,t−1 determine expected
returns E t−1[Bt−1,t]. When this mimicking portfolio was used along with the
return on the market to explain the cross section of excess returns on equi-
ties, Vassalou found that the model performed as well as the Fama-French
three-factor model. Moreover, in the presence of cB t−1,t as a factor, r SMB

and r HML had very little additional explanatory power.
Rather than presuming that betas (conditioned on the econometri-

cian’s information set J ) are constants, Jagannathan and Wang (1996) de-
rive a regression model with constant betas from a conditional beta model.
Starting from the conditional excess return relation (11.33), they assumed
that K = 1, ft = r Mt (the “market” return), and treated µ

0J
t−1 as a zero-beta

return (so there was no presumption that r ft−1 ∈ Jt−1). These features of
their model are reproduced by positing that q∗

t = φ0
t−1 + φMt−1r

M
t , which im-

plies that λJt−1 = E[r Mt − r ft−1|Jt−1] (because the single factor is a portfolio
return). Jagannathan and Wang further restrict their model by assuming
that λJt−1 = κ0 + κ1r

prem
t−1 , where r prem is the yield spread between BAA- and

AAA-rated bonds. This amounts to assuming that the market risk premium
on equities is an affine function of the corporate bond credit spread. Empir-
ical support for using a credit spread as a conditioning variable is provided
by Stock and Watson (1989) and Bernanke (1990), who find that credit
spreads are useful predictors of the U.S. business cycle.

Jagannathan and Wang complete their model by assuming that their
single factor r Mt is itself an affine function of two returns:
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r Mt = γ 0 + γ VWr VW
t + γ Lr Lt , (11.64)

where r VW is the return on the value-weighted stock index portfolio and
r L is their measure of the return to human capital (labor). (Note that
the weights in (11.64) are constants even though the model is formulated
with conditioning.) Under these assumptions, they derive a three-factor
unconditional CAPM in which

E
[
r xt
] = c0 + cVWβx,VW + c premβx,prem + c Lβx,L , (11.65)

and all of the β’s are constants. They find that their model fits the cross
section of (unconditional) expected returns better than the conventional
CAPM. Moreover, their model with the factors r VW and r L fit the data about
as well as the Fama and French (1993) model. The size effect is again much
weaker after allowing for multiple factors.

Lustig and Nieuwerburgh (2005) and Santos and Veronesi (2005) study
similarly motivated conditional CAPMs in which factor betas depend on the
ratios of housing to total wealth and the fraction of total income produced
by labor income, respectively. In the former case, the economic mechanism
underlying time-varying risks is the effect of changing house prices on the
collateral value of housing and the associated exposure of agents to idiosyn-
cratic risk. Changes in the ratio of housing wealth to human capital affect
the market price of risk. In the latter study, the risk premium that investors
require to hold stock varies with business cycle fluctuation in the fraction
of total income produced by wages. As with Jagannathan and Wang, these
studies end up examining multifactor unconditional beta models for the
cross-sectional distribution of excess returns, in which the number of fac-
tors exceeds the number of (conditionally) priced risks. That is, all of these
models are illustrations of the construction (11.50)–(11.52).

When working with a multifactor unconditional beta model derived
from a conditional model there is always some ambiguity as to whether a
factor is truly a priced risk factor or whether it enters owing to time-varying
risk premiums. For instance, does r HML in the Fama-French three-factor
truly represent a priced distress factor? Or does it enter their model because
firms that have recently experienced negative shocks to nondistress factors
have their book-to-market ratios and expected returns increase because the
risk premiums associated with these factors increase?

Daniel and Titman (1997) examine a third possibility: expected returns
are determined by a set of time-varying “characteristics” or firm attributes
θt−1, and θt−1 is not equal to β J

′
t−1λ

J
t−1. Their point is that if characteristics de-

termined expected returns, then there should be firms with these character-
istics (say distress) that do not match up with their risk loadings—distressed
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firms have high expected returns irrespective of their risk loadings. Put
differently, in the characteristics model, strong firms in distressed industries
have low expected returns, but they can have high loadings on a distress fac-
tor like r HML. Thus, it appears as if the returns on these firms are too low
given their risk loadings.14

To test their model, Daniel and Titman triple sorted stocks according
to size, BE/ME, and risk loadings. They concluded that the characteristics
model described the cross section of expected returns more accurately than
the risk model. Subsequently, Davis et al. (2000) used the same methodol-
ogy, but studied a much longer sample period. They concluded that the
Daniel-Titman findings are special to their chosen sample period; in the
longer sample the risk explanation dominates the characteristics-based ex-
planation for the cross-sectional patterns in expected returns.

There is a complementary empirical literature that has focused more
directly on pricing kernels by deriving testable implications from para-
metric specifications of the dependence of the weights φ̃t−1 on Jt−1. Let-
tau and Ludvigson (2001b) tested the moment restriction (11.54) implied
by a model in which the factors were the value-weighted market return,
the growth rate of labor income [as in Jagannathan and Wang (1996)],
and the growth rate of nondurable consumption. The scaling variable z was
“CAY,” a measure of the consumption/aggregate wealth ratio constructed
in Lettau and Ludvigson (2001a). Upon examining the cross section of ex-
pected excess returns associated with twenty-five size and book-to-market
sorted portfolios, they found that their scaled consumption-CAPM per-
formed about as well as the three-factor model of Fama and French. This
finding, which is striking in the light of the limited success that previous
studies have found using consumption-based models to explain excess re-
turns, is attributed to the time-varying risk premiums implicitly captured by
letting φ̃t−1 in the definition of the pricing kernel depend on CAYt−1.

The excellent goodness-of-fit of these conditional CAPMs to the cross
section of expected excess returns is striking in at least two aspects. First,
even low-dimensional models seem to be able to match the cross section
of returns quite well. Second, though the economic underpinnings and
risk factors are quite different across some of these models, they appear
to perform about equally well in matching the cross section of expected
excess returns. Lewellen and Nagel (2005) argue that the conclusions of
good fits to the cross sections of excess returns is misleading in these studies
because there was a failure to impose critical economic restrictions when
conducting the tests. In its simplest form, for the case of a single risk factor,

14 As the authors note, their characteristics-based model potentially admits asymptotic
arbitrage opportunities.
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their argument is based on the observation that the relation E[R xt |Jt−1]=
β
J
x,t−1λt−1 implies a strong restriction on the slope coefficients in the cross-

sectional regressions that are often run. Specifically, taking unconditional
expectations gives

E
[
R xt
] = βxE[λt−1] + Cov

[
β
J
x,t−1, λt−1

]
, (11.66)

where βx=E[β Jx,t−1] and λt−1 is the market risk premium. Following Lewel-
len and Nagel and using the model of Lettau and Ludvigson as an example,
λt−1 becomes the consumption risk premium. In this formulation, β Jx,t−1 is
assumed to be an affine function of CAYt−1 with coefficient δx and, there-
fore, (11.66) simplifies to

E
[
R xt
] = βxE[λt−1] + δxCov[CAYt−1, λt−1]. (11.67)

Lettau and Ludvigson treat the coefficients E[λt−1] and Cov[CAYt−1, λt−1]
as free parameters in their cross-sectional regressions. However, these coef-
ficients are tightly linked to the moments of macroeconomic variables that
determine the factor and factor weights. Calculations in Lewellen and Nagel
suggest that these overidentifying restrictions are unlikely to be satisfied by
U.S. data. It remains an open question as to whether similar conditional
beta models such as those developed in Lustig and Nieuwerburgh (2005)
and Santos and Veronesi (2005) satisfy the analogous model-implied over-
identifying restrictions.

Hodrick and Zhang (2001) computed their distance measure δ [see
(11.59)] as a measure of goodness-of-fit for several models, including con-
sumption CAPMs of the type studied by Lettau and Ludvigson, the model
of Jagannathan and Wang, and versions of the Fama-French factor models.
Their evidence suggests that none of these models fits the cross section of
expected excess returns as measured by δ and several related diagnostic
statistics. In addition, they examined the fit to returns scaled by the term
premium. Since this premium, say TPt , is in agents’ information set at date
t , the moment condition E[q ∗

t+1Rt+1TPt]= 0 can also be used to construct
model diagnostics. All of the models also failed to adequately price these
scaled excess returns.

Finally we note that substantial econometric efficiency is potentially lost
in both estimation and inference in many of these studies of unconditional
models, relative to the analysis of a parametric model of the dependence of
the conditional mean and variance of { ft } on Jt−1. In fact, if one is willing to
parameterize the first two conditional moments of ft , then there are several
alternative approaches that can be pursued.

Consider first the case where ft is a vector of observable excess returns
on portfolios of securities,J includes the riskless interest rate, and φt−1 ∈Jt .
In this case, we can derive a “conditioned down” version of (11.31),
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E
[
r xt
∣∣Jt−1

]− r ft−1 = β
J 1
x,t−1

(
E
[
r p 1
t

∣∣Jt−1
]− r ft−1

)

+ . . .+ β
J N
x,t−1

(
E
[
r pNt

∣∣Jt−1
]− r ft−1

)
,

(11.68)

where β J ix,t−1 is the ith element of β Jr ,t−1 = Cov( f̃t , f̃ ′
t |Jt−1)

−1Cov( f̃t , r xt |Jt−1)

with f̃t being the vector of excess returns on the benchmark portfolios.
If a researcher is willing to parameterize the joint distribution of (r xt , f̃

′
t )

conditioned on Jt−1, at least up through the first two conditional moments,
then (11.68) is easily tested using quasi- or full-information ML estimation.
This is the approach taken by Moskowitz (2003), where the factors were
the excess returns on the “market” and the size-factor and book-to-market
portfolios studied by Fama and French (1993). Moskowitz assumed that
the conditional second moments were well approximated by a multivariate
GARCH model. This formulation allows empirical analysis without having to
specify the functional dependence of φt−1 on elements ofJt−1. On the other
hand, it does not provide an economic explanation for why these factors,
which are themselves portfolio returns, explain the time-series properties
of excess returns on other portfolios.

If, instead, we select elements of ft to be more basic macroeconomic
risk factors and, in particular, some elements of ft are not portfolio returns,
then it seems necessary to parameterize the dependence of φt−1 on Jt−1,
say φ(z t−1), z t−1 ∈ Jt−1. The reason is that excess returns conditioned on
Jt−1 in this case are

E
[
r xt
∣∣Jt−1

] = r ft−1 + β
J ′
x,t−1λt−1, (11.69)

λt−1 = −r ft−1Cov
(
f̃t , f ′

t

∣∣Jt−1
)
φt−1. (11.70)

By parameterizing the conditional first and second moments of (r xt , f̃
′
t ) and

the dependence of φt−1 on Jt−1, the restrictions (11.69) and (11.70) on the
joint conditional distribution of returns and factors can be analyzed.
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Part III

No-Arbitrage DAPMs
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12
Models of the Term Structure

of Bond Yields

This chapter surveys models designed for pricing term structures of
market yields on default-free bonds.1 Our primary focus is on the interplay
between the theoretical specification of dynamic term structure models
(DTSMs) and their empirical fit to historical changes in the shapes of yield
curves.2 With this interplay in mind, we characterize DTSMs in terms of
three primary ingredients: the risk-neutral distribution of the state variables
or risk factors, the mapping between these risk factors and the short-term
interest rate, and the factor risk premiums that (when combined with the
first two) allow construction of the likelihood function of the historical
bond yields. Particular attention is given to affine quadratic-Gaussian, and
nonaffine stochastic volatility models, and models with “regime shifts.” The
goodness-of-fits of these DTSMs are assessed in Chapter 13.

There are several important segments of the fixed-income literature
that we have chosen to omit from this chapter in order to keep its scope
manageable. Specifically, we largely restrict our attention to dynamic pricing
models that have examined features of the joint distribution of long- and
short-termbond yields in estimation and testing. That is, we focus onmodels
designed to explain the conditional distribution of yields on zero-coupon
bonds with different maturities. This means that no attempt is made to
systematically review the vast literature on descriptive, time-series models
of interest rates (including the literature on short-term rates).3 Nor do we
address the vast literature on the “forward-rate” models developed in Heath

1 This chapter is taken largely fromDai and Singleton (2003b). The pricing of defaultable
fixed-income securities is taken up in Chapter 14.

2 Recent, more mathematically oriented surveys of the theoretical term structure litera-
ture can be found in Back (1996), Sundaresan (2000), Gibson et al. (2001), and Yan (2001).

3 See Chapman and Pearson (2001) for a survey with extensive coverage of empirical
studies of short-rate models.
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et al. (1992), Brace et al. (1997), and Miltersen et al. (1997). These models
typically take the yield curve as given, and then use no-arbitrage relations
to price fixed-income derivatives. As such, they abstract from modeling the
time-series properties of yield curves. Their central role in the pricing of
fixed-income derivatives is discussed in Chapter 16.

Recalling our notation, D(t ,T ) denotes the price and yT−t
t denotes

the continuously compounded yield of a (default-free) zero-coupon bond
issued at date t and with maturity date T . Similarly, the forward interest
rate for a loan at date T of instantaneous duration that is contracted upon
at date t is defined by f (t ,T )= −∂ logD(t ,T )/∂T , for any T ≥ t . We let Y
denote the vector of N state variables or “risk factors” that are hypothesized
to determine the shape of the yield curve over time.

12.1. Key Ingredients of a DTSM

DTSMs are typically constructed from the following three ingredients:

IQ: The time-series process for Y under the risk-neutral measure Q.
IP: The time-series process for Y under the historical measure P.
Ir : The functional dependence of r (t) on Y .

The ingredients IQ and Ir underlie the computation of prices of fixed-
income securities, and IP and Ir are used to construct the moments of bond
returns (under P) used in estimation. Therefore, all three ingredients are
essential for econometric analyses of DTSMs.

The set of specifications of (IQ, IP, Ir ) that are consistent with no arbi-
trage opportunities is enormous as a no-arbitrage requirement places rela-
tively weak restrictions on a model. However, the computational demands
of both pricing bonds and maximizing the estimation criterion function
have typically led researchers to focus on specifications of (IQ, Ir ) that lead
to closed-form or essentially closed-form solutions for zero-coupon bond
prices. Additionally, with (IQ, Ir ) in hand, the specification of the risk pre-
miums that link IQ and IP have often been chosen so that the resulting
data-generating process (P distribution of bond yields) leads to computa-
tionally tractable criterion functions for estimation. We elaborate on these
specification issues later.

As we will see, models vary in terms of their interpretation of the risk
factors Y , whether they are observable variables or treated as latent factors,
and how they parameterize the distribution of Y . Nevertheless, a common
feature ofmost empirical DTSMs is thatN , the dimension ofY , is taken to be
quite small (say two or three) relative to the total number of available bonds
to be priced. Therefore, prior to presenting some of the more popular
specifications of DTSMs, it is helpful to provide some empirical motivation
for the examination of low-dimensional factor models.
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Figure 12.1. Weights on principal components of changes in yields, by maturity.
Bloomberg Data, 1991–1997.

Figure 12.1 displays the weights associated with the first three prin-
cipal components (PCs) of weekly changes in yields on twenty constant-
maturity U.S. Treasury and corporate bonds.4 A PC analysis decomposes
the covariancematrix of yield changes into its eigenvalue-eigenvector repre-
sentation C�C ′, where C is the matrix of eigenvectors normalized to have
unit lengths and � is the diagonal matrix of associated eigenvalues. The
columns of C are the “factor weights” displayed in Figure 12.1. The cumu-
lative proportions of variance explained by the PCs given in the legend to
Figure 12.1 are

∑ k
j=1�jj/

∑ 20
j=1�jj , for the first k PCs.

4 The data were downloaded from Bloomberg. The Treasury yields are constant-maturity
yields: approximate yields on newly issued Treasury bonds of the stated maturities. The corpo-
rate yields are Bloomberg’s estimate of new-issue par-coupon yields, constructed from market
prices on outstanding seasoned corporate bonds with the stated credit rating. Bloomberg uses
a proprietary system for correcting these yields for the optionality inherent in many corporate
bonds (e.g., the right of the issuer to call in the bonds).
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Note first of all that the first three PCs explain over 96% of the variation
in bond yields.5 Thus, focusing on a small number of risk factors seems like
a reasonable starting point.6 Note further that the weights of the first PC lie
approximately along a horizontal line. This implies that the changes in bond
yields induced by a change in PC1 are all approximately equal. As such, we
interpret PC1 as a parallel shift in the yield curve or a “level” factor.

PC2 has weights that are approximately equal for a given maturity but,
with the credit rating held fixed, they tend to increase approximately lin-
early with maturity. Accordingly, changes in PC2 represent shifts in the slope
of the yield curve, holding fixed the credit quality of the bonds. Finally, the
weights on PC3, which again are approximately the same for all bonds of a
given maturity, tend to have a parabolic shape. With a fixed credit rating,
they start high, gradually decline, and then increase again for longer ma-
turities. This pattern underlies the common label of “curvature” for factor
PC3. Though these PCs are not literally risk factors of a DTSM—in particu-
lar, PCs are orthogonal by construction, whereas the Y ’s in a DTSM may be
correlated—it is instructive to keep this decomposition in mind both in in-
terpreting theoretical formulations and for our discussion of the empirical
evidence.

Having chosen the dimension of Y , our next step is to select the nu-
meraire used in pricing. Most studies of DTSMs that involve time series of
bond yields focus on risk-neutral pricing, and we typically proceed in this
manner as well. In contrast, the financial industry tends to have a cross-
sectional, as opposed to a time-series, focus given the practical demands of
“point-in-time” pricing systems. Accordingly, there is more focus on choos-
ing a numeraire security price P and an associated measure m(P ) that give
rise to convenient closed-form or numerical solutions for expectations of
the form Em(P )

t [Z (T )], for terminal payoffs Z (T ). (See Chapter 8 for a dis-
cussion of the meaning of Em(P )

t [·].) Particularly in the case of such LIBOR-
based instruments as caps, floors, and swaptions, pricing has tended to focus
on forward measures QT , with the numeraire chosen to be either the price
of a LIBOR-based zero-coupon bond or a swap price (see Chapter 16).
Of course, if two derivatives based on the same underlying risk factors are

5 This percentage is obtained by setting k=3 in the preceding expression for the propor-
tion of variance explained by the PCs. That a small number of principal components explains
well over 90% of the variation in yields across the maturity spectrum for bond yields has been
widely documented in the literature; see, e.g., Litterman and Scheinkman (1991) for a dis-
cussion of U.S. markets, and Singleton (1995) and Driessen et al. (2000) for discussions of
foreign bond markets.

6 While lettingN be small in empirical term structure analyses gives a reasonably accurate
picture of the risk profile of bond yields, the residual 4% of yield variation may nevertheless be
consequential for pricing fixed-income securities, particularly certain fixed-income options.
See Chapter 16 for further discussion of these issues.
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priced with different numeraires, then the resulting pricing models may be
based implicitly on mutually inconsistent assumptions about the distribu-
tions of the risk factors (Brace et al., 1997; Jamshidian, 1997). This problem
does not arise ifm(P ) = Q and the distribution of Y underQ is used in pric-
ing all of the derivatives of interest. We revisit these issues in Chapter 16; for
the remainder of this chapter we focus on risk-neutral pricing.

Another issue that arises in practice is that trading desks often require
that a model correctly “price” an entire yield curve before it will be used
for pricing derivatives based on this curve. This consideration in part un-
derlies the widespread use of forward-rate based models, which prescribe
the risk-neutral dynamics of the forward curve (as in Heath et al., 1992).
In such models, the forward curve f (t , ·) is an (observable) input into an
arbitrage-free pricingmodel. As typically implemented in industry, forward-
rate models are silent about the time-series behavior of yields under P and,
therefore, are not within the family of DTSMs explored in depth here. We
discuss the use of these models for the pricing of fixed-income derivatives
in depth in Chapter 16.

Of course if, as is often the case, dim(Y ) = N is small (say three or
four), then N is likely much smaller than the number of securities to be
priced, say K . As such, if the parameters of the model are held fixed, it
may not be possible to price exactly all K securities using N risk factors.
Onemeans of circumventing this limitation of dimensionality in yield-based
models [those based on (IQ, Ir )] is to introduce time-dependent parameters
that allow for point-in-time calibration of a low-dimensional factor model
to an entire yield curve of spot yields or volatilities. (This is an easy “add-
on” in most of the DTSMs discussed subsequently.) This practice is not
without controversy, since recalibrating the parameters as the shape of the
underlying yield curve or option volatilities change amounts to “changing
the model.” Therefore, the resulting models are almost surely fraught with
arbitrage opportunities from a dynamic perspective (Backus et al., 1998b;
Buraschi and Corielli, 2000; Brandt and Yaron, 2001).

In principle, these issues disappear if the entire yield curve is viewed
as the state vector and its dynamic properties are explicitly modeled under
bothQ and P. Models of such high (possibly infinite) dimensions have been
developed under the labels of “Brownian sheets” (Kennedy, 1994), “random
fields” (Goldstein, 2000), and “stochastic string shocks” (Santa-Clara and
Sornette, 2001). Bester (2004) explores the empirical fit of a particular
parametric random field model.

An intermediate modeling strategy, one that has been widely pursued
in academic studies, is to keep N small and fix the parameters of the con-
ditional distribution of Y , but allow for the possibility that not all of the
bonds are priced perfectly by the DTSM under investigation. Researchers
typically consider one of two cases: all of the bonds are priced with errors by
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the model or N bonds are priced exactly by the model and the remaining
K −N bonds are priced with errors.

The central role of DTSMs in financial modeling has led to the devel-
opment of an enormous number of models, many of which are not nested.
Initially, we focus on the case where Y follows a diffusion process and dis-
cuss three of the most widely studied families of DTSMs: affine, quadratic-
Gaussian (QG), and nonaffine stochastic volatility models. Then we step
outside of the diffusion framework and discuss DTSMs with jumps and
multiple “regimes.”

12.2. Affine Term Structure Models

The ingredients of affine term structure models are:

IQ(A): Under Q, Y follows an affine process with

CCFQt or CMGFQt = eφ
Q
0t+φQ

′
Yt Yt , (12.1)

where φQ0t and φ
Q
Yt are complex (real) coefficients in the case of

the CCF (CMGF).
IP(A): Given f Q(Yt+1|Yt ) implied by (12.1), f P(Yt+1|Yt ) is determined

once one specifies the Radon-Nykodym derivative (dP/dQ)t ,t+1

= dP/dQ(Yt ,Yt+1) of the measure P with respect to the Qmea-
sure:

f P(Yt+1|Yt ) = f Q(Yt+1|Yt )× (dP/dQ)t ,t+1. (12.2)

Implicit in the specification of (dP/dQ)t ,t+1 is the specification
of the market price of risk, �t .

Ir (A): The short rate is an affine function of Y :

r (t) = δ0 + δ′Y Y (t). (12.3)

This DTSM is affine because of the assumptions IQ(A) and Ir (A). The for-
mer states that Y follows an affine diffusion, as defined in Section 5.1. For
now we suppress a role for jumps.

If Y follows a discrete-time affine process, say a process in one of the
families DAM (N ) introduced in Chapter 5, then an immediate implication
of Assumptions A(Q) and A(r ) is that

D(t ,T ) = E Qt
[
e−

∑τ−1

i=0
r t+i

]
= e−r t E Qt [D(t + 1, τ − 1)] = e−γ 0(τ )−γY (τ )Yt ,

(12.4)
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where τ ≡ (T − t) and γ 0 and γY are determined by the recursions:

γ 0(τ ) = δ0 + γ 0(τ − 1)− φQ0
( − γ Y (τ − 1)

)
,

γY (τ ) = δY − φQY (−γY (τ − 1)),

with the initial condition γ 0(0)= γY (0)= 0. As shown in Gourieroux et al.
(2002) and Dai et al. (2005), this pricing relation follows from the fact that
the CMGFQ of Y is an exponential affine function of Y (see Chapter 5) and
the law of iterated expectations.

Recall that for the family of continuous-time affine diffusions we have

µ
Q
Y (t) = KQ(θQ − Yt

)
, (12.5)

and σY (t) = �√
S (t), where

Sii(t) = αi + β ′
i Y (t), Sij (t) = 0, i �= j, 1 ≤ i, j ≤ N , (12.6)

and � is an N ×N matrix of constants. For this model, and under Assump-
tion Ir (A), Duffie and Kan (1996) show that the solution to the PDE (8.51)
for D(t ,T ) is exponential-affine:

D(t ,T ) = e γ 0(T−t)+γY (T−t)′Y (t), (12.7)

where γ 0 and γY satisfy known ordinary differential equations (ODEs).
Note that in deriving these pricing relations, we have been silent on

the properties of Y under P. To obtain (12.4) or (12.7), essentially any
specification of f Q(Yt+1|Yt ), or equivalently any arbitrage-free specification
of the pricing kernel, can be chosen so long as Y follows an affine process
under Q.

12.3. Continuous-Time Affine DTSMs

In Chapter 5 we discussed the concept of admissibility of an affine model.
Families of benchmark, admissible models AM (N ) for the state vector Y
were introduced, with sufficient structure imposed to ensure that Sii(t) ≥ 0.
Using these concepts, we proceed to develop corresponding families of
canonical affine DTSMs as follows. A canonical model is one that is admis-
sible, econometrically identified, and “maximally flexible” within a specified
family of models. Since we are focusing on pricing, we define our canonical
models relative to the risk-neutral representation of the risk factors Y . We
return subsequently to the specification and econometric identification of
the P distribution of the risk factors and bond yields.
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We start with ingredient Ir (A) and a given benchmark model AM (N )
for Y , where, as before, the columns of the matrix B are the coefficients of
the instantaneous conditional variances of Y and, therefore, M = rank(B)
indexes the degree of dependence of the conditional variances on the num-
ber of state variables. Using this index and applying the definition of a
benchmarkmodelAM (N ) fromChapter 5 to the risk-neutral representation
of Y gives an admissible affine DTSM with N factors and M state variables
driving volatilities. Not all admissible affine diffusions give rise to economet-
rically identified DTSMs, however, because Y is latent and enters the deter-
mination of r as δ′Y Yt . We refer tomodels on which sufficient normalizations
have been imposed to ensure identification as “canonical” AM (N ) DTSMs.
As introduced by Dai and Singleton (2000) (hereafter DS), the canonical
AM (N ) model is the most flexible econometrically identified affine DTSM
on the state spaceRM+×RN−M ; the firstM state variables are volatility factors
and so must have realizations in RM+ , the nonnegative region of RM , and
the remaining factors can take on arbitrary values in RN−M . The subfamily
AM (N ) (M =0, . . . ,N ) of affine DTSMs is then defined, following DS, to be
all models that are nested special cases of the M th canonical model or of
invariant transformations of this model.7

More formally, the canonical representation of AM (N ) is defined as
follows:

Definition 12.1 [Canonical Representation AM (N )]. For each M, we parti-
tion Y (t) as Y ′ = (Y V ′

,Y D ′
), where Y V is M ×1 and Y D is (N − M )×1, and

define the canonical model AM (N ) as the special case of (12.3), (12.5), and (12.6)
with

KQ =

KVV

M×M 0M×(N−M )

KDV
(N−M )×M KDD

(N−M )×(N−M )


, (12.8)

for M >0, and K is either upper or lower triangular for M =0,

�Q =
(
�V
M×1

0(N−M )×1

)
, (12.9)

� = I , (12.10)

7 The union ∪N
M=0AM (N ) does not encompass all admissible N -factor affine models,

however. The reason is that there are affine models defined on different state spaces that
cannot be transformed to an observationally equivalent model defined on one of the state
spaces RM+ × RN−M,M = 0, . . . ,N .
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α =
(
0M×1

1(N−M )×1

)
, (12.11)

B =
[
IM×M BVD

M×(N−M )
0(N−M )×M 0(N−M )×(N−M )

]
, (12.12)

with the following parametric restrictions imposed:

δYi ≥ 0, M + 1 ≤ i ≤ N , (12.13)

KQi �
Q ≡

M∑
j=1

KQij �
Q
j > 0, 1 ≤ i ≤ M , (12.14)

KQij ≤ 0, 1 ≤ j ≤ M , j �= i, (12.15)

�
Q
i ≥ 0, 1 ≤ i ≤ M , (12.16)

Bij ≥ 0, 1 ≤ i ≤ M , M + 1 ≤ j ≤ N . (12.17)

Equivalent affine models are obtained under invariant transformations
that preserve admissibility and identification and leave the short rate (and
hence bond prices) unchanged. Let ψ0 = (δ0, δY ,KQ,�Q, �, αi, βi : 1 ≤
i ≤N ) denote the vector of unknown parameters. One of the most widely
applied transformations is8:

Definition 12.2 (Invariant Affine Transformation). An invariant affine
transformation TA of an N -factor affine DTSM is an arbitrary combination of trans-
formations of the form TAYt = LYt + ϑ ,

TAψ0 = (
δ0 − δ ′

Y L
−1ϑ,L ′ −1δY ,LKQL−1, ϑ + L�Q,L�,{

αi − β ′
i L

−1ϑ,L ′ −1βi : 1 ≤ i ≤ N
})
,

where L is an N ×N nonsingular matrix, and ϑ is an N ×1 vector.

Invariant affine transformations TA are generally possible because of the
linear structure of affine DTSMs and the fact that the state variables are
not observed. For instance, with r t affine in Yt as in (12.3), TA could be any
transformation of Yt → LYt and δY → L−1′

δY with L a nonsingular matrix.

8 See Dai and Singleton (2000) for a discussion of other invariant transformations.
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Implicit in our specification of a canonical model is a sufficient set of
normalizations to guarantee that the resulting models are identified (in ad-
dition to being admissible) in the sense that one cannot find a “rotation” of
the state Y that leaves r and, hence, bond prices unchanged, while changing
the interpretations of the risk factors. Following is an itemized accounting
of the normalizations along with a description of their roles in identifying
the models. Throughout we presume that the instantaneous short rate is
given by (12.3). For branch AM (N ), we have:

1. Scale of the State Variables. Bii = 1, 1 ≤ i ≤ M , αi = 1,M + 1 ≤ i ≤
N , and �ii = 1, 1 ≤ i ≤ N . Fixing the scale of Yt in this way allows
δY to be treated as a free parameter vector.

2. Level of the State Vector. αi = 0, 1 ≤ i ≤ M ,�Qi = 0,M+1 ≤ i ≤ N .
Fixing the level of the state vector in this way allows δ0 and �V to be
treated as free parameters.

3. Interdependencies of the State Variables. Three considerations arise:

The upper-diagonal blocks of KQ,�, and B, which control the inter-
dependencies among the elements of Y V are not separately iden-
tified. This indeterminacy is eliminated by normalizing the upper-
diagonal block of B to be diagonal.

The lower-diagonal blocks of KQ and �, which determine the inter-
dependencies among the elements of Y D, are not separately iden-
tified. This indeterminacy is eliminated by normalizing the lower-
diagonal block of � to be diagonal.

The lower-left blocks of KQ and �, which determine the interde-
pendencies between the elements of Y V and Y D, are not separately
identified. We are free to normalize either KDV or �DV to zero. We
choose to set �DV = 0 in our canonical representation.9

4. Signs. The signs of δY and Yt are indeterminate if B is free. Normal-
izing the diagonal elements of the upper-diagonal block of B to 1
has the effect of fixing the sign of Y V, and consequently �Qi and
δYi , 1 ≤ i ≤ M . The sign of Y D is determined once we impose the
normalization that δYi ≥ 0,M + 1 ≤ i ≤ N .

9 Starting from a model with nonzero �DV, the affine transformation with

L =
[ IM×M 0M×(N−M )

−�DV
(N−M )×M I (N−M )×(N−M )

]

transforms the model to an equivalent model with �DV = 0 (N−M )×M .
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5. Brownian Motion Rotations. An orthogonal transformation of an
affine diffusion Y , TAYt =OYt with O satisfying OO ′ = I , gives

TAψ0 = (
δ0,OδY ,OKQO ′,O�Q,O�, {αi,Oβi : 1 ≤ i ≤ N }),

and has no observable effect on bond yields.

For the canonical model A0(N ), � = I so the transformed co-
variance matrix becomes O . We are free to rotate the Brownian mo-
tion dW Q(t) byO , thereby preserving the normalization�= I . Since
there areN (N−1)/2 free parameters inO , we can chooseO to “zero-
out” N (N − 1)/2 parameters in KQ. Accordingly, we normalize KQ

to be lower (or upper) triangular.

Even in cases with M �= 0, if Sii and Sjj are proportional for i �= j ,
then the parameters KQij and K

Q
j i are not separately identified. One

of them can be normalized to zero.

12.3.1. Illustrative Continuous-Time Affine DTSMs

For the case of N = 1, there are two families of affine DTSMs. The family
A0(1) (one-factor Gaussian), originally proposed by Vasicek (1977), has

dr (t) = KQ(θQ − r (t)
)
dt +�r dW Q(t). (12.18)

The family A1(1) (one-factor square-root diffusion), developed by Cox et
al. (1985b) for pricing bonds with real (consumption-denominated) pay-
offs, has

dr (t) = KQ(θQ − r (t)
)
dt +�r

√
r (t) dW Q(t). (12.19)

More recently, as the literature has moved beyond N =1, two different
tracks have been pursued. One branch has developed models with r being
an affine function of a vector of state variables, as in our characterization of
the families AM (N ) using (IQ(A), IP(A), Ir (A)). The other has treated r as a
state variable and introduced additional state variables to describe the dy-
namic properties of the mean and conditional variance of r . Though these
two approaches are seemingly different, many of themodels that have taken
r to be a state variable are equivalent, after an invariant affine transforma-
tion, to a model in AM (N ) with r defined as an affine function of Y .10

10 Included in this set are those in Vasicek (1977), Langetieg (1980), Cox et al. (1985b),
Brown and Dybvig (1986), Hull and White (1987, 1993), Longstaff and Schwartz (1992), Chen
and Scott (1993), Brown and Schaefer (1994), Pearson and Sun (1994), Chen (1996), Balduzzi
et al. (1996), and Backus et al. (2001).



Page 322 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

322 12. Models of the Term Structure of Bond Yields

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[322], (14)

Lines: 348 to 408

———
-1.95888pt PgVar
———
Long Page
PgEnds: TEX

[322], (14)

For instance, consider the canonical DTSM based on the A1(2) affine
process (5.16):

rt = δ0 + δ1Y1t + δ 2Y2t ; (12.20)

dY1(t) = κQ11
(
θ
Q
1 − Y1(t)

)
dt + √

Y1(t) dW
Q
1 (t) (12.21)

dY2(t) = [
κ
Q
21

(
θ
Q
1 −Y1(t)

)− κQ22Y2(t)]dt + √
1 + β2(1)Y1(t) dW Q

2 (t), (12.22)

with Cov(dW Q
1 (t), dW

Q
2 (t)) = 0. An equivalent model in which r is a state

variable is obtained by applying the invariant affine transformation (vt , rt )′
= LYt + ϑ ,

L =
(
β2(1) 0

δY 1 δY 2

)
, ϑ =

( 0

δ 0

)
(12.23)

to Y to obtain

dv(t) = κQ11
(
θQv − v(t)

)
dt + σvv

√
v(t) dW Q

v (t), (12.24)

dr (t) = [
κ
Q
21

(
θQv − v(t)

) + κQ22
(
θQr − r (t)

)]
dt

+ σrr
√
1 + v(t) dW Q

r (t)+ σrv
√
v(t) dW Q

v (t). (12.25)

The first state variable serves as the “stochastic volatility” for r (t), but note
that it also enters the drift of r (t) and is instantaneously correlated with r (t).

Similarly, within the family A0(2), themost flexible (underQ) version of
the two-factor Gaussian (“Vasicek”) model studied by Langetieg (1980), and
its counterpart in which r is a state variable and the second state variable is a
stochastic mean of r , are equivalent. The latter two-factor central-tendency
model of r proposed by Beaglehole and Tenney (1991) and Balduzzi et al.
(1998) is nested in our canonical model A0(2).

Additional examples of equivalent models, within the families AM (3),
are presented in Dai and Singleton (2000).

12.3.2. Unspanned Stochastic Volatility

All of the affine DTSMs that we have considered up to this point have the
property (implicitly) that N bond yields span the risks underlying variation
in the term structure. The continuously compounded yield on a (T − t)-
period zero-coupon bond, − logD(t ,T )/(T − t), is an affine function of Y ,
as seen from (12.7). Therefore, assuming that the matrix with rows γY (τi)′
for some set of maturities i = 1, . . . ,N is invertible, we can express Y as an
affine function of N bond yields.

An interesting question at this juncture is whether it is possible for a
subset of M of the N risk factors (or M linear combinations of the N risk
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factors) to affect the conditional distribution of the factors, but have no ef-
fect on bond yields. Equivalently, is it possible for there to be N factors, but
for the γY (T−t) to have zero entries for M factors for all maturities (T−t)?
Collin-Dufresne andGoldstein (2002a) (hereafter CDG) explored this ques-
tion for the case of unspanned stochastic volatility or USV; the presence
of stochastic volatility that cannot be hedged away by taking positions in
portfolios of bonds. Their motivation for examining USV was the empirical
observation that there is substantial variation in the implied volatilities on
bond options that appears to be independent of the risk factors in standard
DTSMs—for example, level, slope, and curvature (see also Heidari andWu,
2003). We explore this link to option pricing in more depth in Chapter 16.
For now, we focus on an illustrative example of a model in which USV is
possible. Since CDG show that N must be larger than two for USV to be
present, we consider a case with N =3.

CDG show that any model with N = 3 in which bond markets are in-
complete (i.e., not all of the risks can be hedged with positions in bonds)
can be rotated so that the state variables are rt , its drift µ

Q
t , and its volatil-

ity Vt . Moreover, if bond markets are incomplete, then bond prices are
exponential-affine functions of rt and µ

Q
t ; that is, there is USV as Vt is inde-

pendent of bond prices. To illustrate their ideas, we consider the canonical
model A1(3). This model can always be rotated so that the state variables
are (Vt , µ

Q
t , rt ), whether or not there is USV. Therefore, we first undertake this

rotation, and then characterize the additional restrictions imposed by the
assumption of USV.

The model A1(3) can be rewritten as in DS with r as a state variable [see
their equation (23)]:

dvt = κvv(v̄ − vt )dt + σvv√vtdB
Q
vt , (12.26)

dθt = κθθ (θ̄ − θt )dt + √
αθ + βθvtdBQθ t + σθv√vtdB

Q
vt

+ σθr√αr + vtdB
Q
rt , (12.27)

drt = κrv(v̄ − vt )dt + κrr (θt − rt )dt + √
αr + vtdB

Q
rt + σrv√vtdB

Q
vt

+ σr θ
√
αθ + βθvtdBQθ t , (12.28)

where we assume that κrr > 0 (so that θt acts as a stochastic long-run mean
of rt). In order to apply the propositions of CDG, we first rewrite (12.26)–
(12.28), through an invariant transformation, in terms of the state vector
(Vt , µ

Q
t , rt ). Noting that

µ
Q
t = κrv v̄ − κrvvt + κrr θt − κrr r t , (12.29)

Vt = αr + σ 2
r θ αθ + (

1 + σ 2
rv + σ 2

r θβθ
)
vt , (12.30)
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we find the invariant transformation of interest to be

TA



vt

θt

rt


 =


 Lvv 0 0

−κrv κrr −κrr
0 0 1





vt

θt

rt


 +



αr + σ 2

rθαθ

κrvv̄

0


, (12.31)

where Lvv = 1+σ 2
rv +σ 2

r θβθ . The resulting equivalent maximal A1(3)model
is given by

d



Vt

µ
Q
t

r t


 =




κvv 0 0
κrv (κθθ−κvv )

Lvv
(κθθ + κrr ) κrr κθθ

0 −1 0







V̄

0

θ̄


 −



Vt

µ
Q
t

r t




dt

+ �̃


√−α̃ + Vt/Lvv 0 0

0
√
αθ − βθ α̃ + βθVt/Lvv 0

0 0
√
αr − α̃ + Vt/Lvv


dB Qt ,
(12.32)

where V̄ ≡ σr θαθ + Lvv v̄, α̃ ≡ (σ 2
r θαθ + αr )/Lvv , and

�̃ =

 Lvvσvv 0 0

κrr (σθv − σrv)− κrvσvv κrr (1 − σrθ ) −κrr (1 − σθr)
σrv σrθ 1


. (12.33)

Note that the linear combination of dB Qt in (12.32) that determines the
instantaneous variance of rt has the property that the constant terms sum
to zero and the weights on Vt sum to one, thereby guaranteeing that Vt is
the stochastic volatility of rt .

Necessary and sufficient conditions for USV to obtain in this model,
translated from Collin-Dufresne et al. (2004) into the notation of the pre-
ceding maximal model, are:

κrr κθθ = 2c 2V ; (κθθ + κrr ) = −3c V ; κrv(κθθ − κvv)
Lvv

= −1; (13.34)

(κrr (σθv − σrv)− κrvσvv)2+ (κrr (1− σr θ ))2βθ + (−κrr (1− σθr ))2 = c 2V , (12.35)

where

cV = σrv [κrr (σθv − σrv)− κrvσvv]
Lvv

+ σr θκrr (1 − σr θ )βθ
Lvv

− κrr (1 − σθr )
Lvv

.

(12.36)
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Under these restrictions the entire yield curve does not depend on Vt , even
though Vt affects the conditional distributions of rt and µ

Q
t . Translated

back to the original model in terms of (vt , θt , rt ), with γY (τ )′ = (γv(τ ),

γθ (τ ), γr (τ )), USV implies

γv(T − t) = κrv

κr θ
γθ (T − t), (12.37)

and the state variables v and θ collapse to one state variable with regard to
their effect on bond prices.

Under either rotation of the factors (Vt , µ
Q
t , rt ) or (vt , θt , rt ), when these

constraints are imposed only two of the three factors affect bond yields.
Moreover, the source of this phenomenon is volatility risk that cannot be
perfectly hedged by only taking positions in bonds.We take up the empirical
relevance of USV in Chapters 13 and 16.

12.3.3. Market Prices of Risk

Having specified the distribution of Y under Q, the distribution of Y and
the yields on bonds under P are fully determined upon specifying how the
market prices of risk, �t depend on Y . DS analyze the “completely affine”
class of DTSMs with

µPY (t) = KP(θP − Y (t)
)
and �(t) = √

S (t)λ1, (12.38)

where λ1 is an N ×1 vector of constants. In this case, both the P-drift µPY (t)
and Q-drift µQ = µPY (t)−σY (t)�(t) are affine in Y (t). This specification
encompasses virtually all of the econometric formulations of affine DTSMs
studied in the literature prior to 2000. In particular, the Cox, Ingersoll,
and Ross (CIR)–style models [the family AN (N )] are obtained by setting
[S (t)]ii = Yi(t), and the Gaussian (Vasicek-style) models are obtained by
setting �(t) to a vector of constants.

A potentially important limitation of the specification (12.38) of � is
that temporal variation in the instantaneous expected excess return on a
(T−t)-period zero bond, eD(t ,T )=γY (T−t)′�Stλ1 [see (8.52) and (12.7)],
is determined entirely by the volatilities of the state variables through S (t).
Interpreting the market prices of risk as capturing the effect on security
prices of agents’ attitudes toward risk, this formulation forces the effects
of changes in Y on these attitudes to be channeled entirely through factor
volatilities. Moreover, the sign of each �i(t) is fixed over time by the sign of
λ1i . This does not preclude eD(t ,T ) from changing sign over time, but does
represent a potentially strong limitation on the flexibility of excess returns
to change sign. As stressed by Duffee (2002), this may be an important con-
sideration in the empirical modeling of bond yields because excess returns
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on bonds tend to be small (near zero) and highly variable relative to their
mean values.

To circumvent these limitations of specification (12.38), Duffee (2002)
proposed the more flexible “essentially affine” specification of�(t) that has

�t = √
Stλ1 +

√
S −
t λ2Yt , (12.39)

where λ1 is an N ×1 vector and λ2 is an N ×N matrix, and S −
ii,t = (αi +

β ′
i Yt )

−1, if inf (αi + β ′
i Yt ) > 0, and zero otherwise. Within the canonical

model for AM (N ), the inf requirement allows us to normalize the first M
rows of λ2 to zero (corresponding to the M volatility factors). Thus, when
M =N (multifactor CIR models), the “completely” and “essentially” affine
specifications are equivalent—excess returns vary over time only because of
time variation in the factor volatilities.

However, when M < N , Duffee’s essentially affine specification intro-
duces the possibility that Y affects expected excess returns both indirectly
through the Sii(t) and directly through the nonzero elements of λ2Yt . More-
over, the signs of the�i(t) corresponding to the N−M nonvolatility factors
may switch signs over time. (The signs of the �i(t) corresponding to the
firstM volatility factors are fixed as in CIR-style models.) The smallerM , the
more flexibility introduced by (12.39) over (12.38), though at the expense
of less flexibility in matching stochastic volatility. The specification (12.39)
preserves the property that the drifts of Y are affine under both Q and P.

The requirement that the ith diagonal element of S −
t be nonzero only

if inf (αi + β ′
i Yt )>0 was imposed by Duffee to rule out arbitrage that might

arise if elements of �t approach infinity as (αi + β ′
i Yt ) approaches zero.

Collin-Dufresne et al. (2004) and Cheridito et al. (2003) have shown that
this condition imposes more structure than is necessary to ensure the ab-
sence of arbitrage. Specifically, Duffee imposed sufficient structure to en-
sure that the Novikov condition, a sufficient condition for the equivalence
of the measures P andQ (Duffie, 2001), is satisfied. Even if the Novikov con-
dition cannot be verified, so long as zero is not attainable by Yt under both P
andQ, arbitrage is ruled out under some more flexible specifications of�t .

To illustrate this point, consider the case of an A1(1) DTSM with

�t = [σ(Yt )]−1
[
µPt − µQt

]
= λ0√

Yt
+ λ1

√
Yt , (12.40)

where λ0 = (κPθP−κQ θQ). The essentially and completely affine models
assume that λ0 = 0. However, so long as λ0 ≤ (κPθP)/σ 2 −0.5, this A1(1)
model is well-defined and admits no arbitrage opportunities. At a practical
level, this extended model has both κθ and κ changing with the measure
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change from P to Q, whereas the essentially affine model allows only κ to
change with the measure change.

Duarte (2004) proposed a complementary extension of the essentially
affine models by specifying � to be

�(t) = �−1λ0 + √
Stλ1 +

√
S −
t λ2Yt , (12.41)

where λ0 is an N ×1 vector of constants. With this extension, the market
prices of risk of the M volatility factors in an AM (N ) model may switch
signs over time. Additionally, larger differences between the drifts of Y
under the P and Q measures are accommodated because µP(t) includes
the term�

√
S (t)�−1λ0 in Duarte’s model, as prescribed by (12.5).With this

modification, Y follows a nonaffine process underP—the drift involves both
the level and square-root of the state variables—but one that is nevertheless
affine under Q [so that the pricing relation (12.7) continues to hold].

A natural question at this juncture is whether the specification of �
affects the econometric identification of a DTSM. We previously discussed
normalizations on the parameters governing the Q distribution of Y to
rule out observationally equivalent “rotations” of an affine DTSM. We de-
fer discussion of the identification of the parameters governing �(t) until
Chapter 13.

The choice of affine model determines whether r remains strictly posi-
tive over the entire state space. Strictly speaking, negative values for r are not
economically meaningful. However, the only family of affine diffusions that
guarantees strictly positive r are those in the family AN (N ). With M = N ,
negative correlations among the Y ’s are not easily generated (DS), and
λ2 = 0 in (12.39) thereby restricting the state dependence of �(t) in es-
sentially affine models. The generalized market price of risk (12.40) allows
for nonlinear dependence of �t on the volatility of Y , but not for a direct
effect of Y on �t . Therefore, by selecting models in AM (N ), with M < N ,
one may well achieve greater flexibility at specifying factor correlations and
market prices of risk, though at the expense of (typically small) positive
probabilities of the realized r being negative.

12.4. Discrete-Time Affine DSTMs

Two conceptually distinct approaches to developing DTSMs in discrete
time have been explored in the literature. One approach starts from a
discrete-time approximation to the diffusions underlying a continuous-time
DTSM. For example, following Sun (1992), several researchers have exam-
ined discrete-time counterparts to CIR-style affine DTSMs. Such models
are approximate in that the conditional distribution of Y must be trun-
cated to ensure nonnegativity of the conditional variance of Y . The second
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approach starts from a parametric, discrete-time specification of the pricing
kernel q ∗

t , as discussed in Chapter 8. We follow this second approach, as it
yields exact discrete-time DTSMs.

Discrete-time versions of affine DTSMs are developed in Gourieroux
et al. (2002), Ang and Piazzesi (2003), and Bekaert et al. (2004). The pri-
mary focus in these studies has been on Gaussian models. Gourieroux et al.
(2002) develop the discrete-time counterpart to the one-factor square-root
(CIR-style) model with a completely affine specification of the market price
of risk. Dai et al. (2005) (hereafter DLS) extend these analyses by develop-
ing discrete-time counterparts to all N+1 families AM (N ),M =0, 1, . . . ,N ,
of affine models. The subsequent discussion follows the analysis in DLS.

In Section 5.3 we developed the discrete-time counterparts, DAM (N ),
to the continuous-time affine processes AM (N ). DLS adopt the process
DAM (N ) as the Q distribution of the risk factors Y . Since Y is Q-affine,
we know that bond prices are exponential-affine functions of Y . Moreover,
as discussed in Chapter 5, the conditional Q densities of Y are known in
closed form. In other words, these assumptions lead to a fully specified
affine DTSM, one that is the discrete-time counterpart to the family AM (N ).

To complete the specification of this discrete-time DTSM, it remains
to specify the P distributions of Y and the bond yields. From the discus-
sion of (8.26) in Section 8.3.1 we know that it is enough to specify the
Radon-Nikodym derivative (dP/dQ)Dt ,t+1 in order to deduce f P(Yt+1|Yt )
from f Q(Yt+1|Yt ).11 DLS assume that

(dP/dQ)Dt ,t+1 = e�
′
t Yt+1

φQ(�Dt ;Yt ) , (12.42)

where �Dt =�D(Yt ) is closely related to market price of risk.12 Since φQ, as
the Q-CMGF of Y , is known in closed form and �Dt is given parameterically
by the modeler, it follows that f P is also known in closed form. Moreover,
this is true for any specification of the state-dependence of themarket prices
of risk.

The motivation for this choice is DLS’s desire to nest (the discrete-time
version of) all N +1 families, AM (N ),M = 0, . . . ,N , of affine models, for
essentially arbitrary choices of the market price of risk �Ct .13 Recall from

11 As noted in Chapter 8, (dP/dQ)Dt ,t+1=1/(e r t q ∗
t ), where q

∗ is the pricing kernel associ-
ated with this model. Therefore, we are effectively picking the pricing kernel q∗.

12 �D is the lead term in an expansion of the nonlinear expression for expected excess
returns and in this sense is the dominant term in the true market price of risk. Furthermore,
note that (dP/dQ)Dt ,t+1 is zero at �Dt = 0, consistent with our thinking of �D as the market
price of risk. See DLS for details.

13 Here we add the superscript to �C in order to differentiate it from the discrete-time
counterpart.
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the discussion in Section 8.3.2 that the change of measure from P to Q is
accomplished by scaling the density under P by14

dQC

dH (t ,T ) = e−
1
2 ∫Tt �(s)′�(s)ds−∫Tt �(s)′dW (s)

E Pt
[
e−

1
2 ∫Tt �(s)′�(s)ds−∫Tt �(s)′dW (s)] . (12.43)

Now, for a small time step  and approximate affine state process Yt+ ≈
µPY (Yt ) +�Y

√
SYtεPt+ , with εPt+ |Xt ∼N (0, I ),

(dQ/dH)Ct ,t+ ≈ e−�
C′
t ε
P
t+ − 1

2�
C′
t �

C 

E Pt
[
e�
C′
t ε
P
t+ − 1

2�
C′
t �

C 
] = e−�

D′
t �Y

√
SYt εPt+ 

E Pt
(
e−�

D′
t �Y

√
SYt εPt+ 

)

= e−�D
′

t Yt+ 

E Pt
[
e−�D′

t Yt+ 
] = e−�D

′
t Yt+ 

φ P
(−�Dt ;Yt

) , (12.44)

where�Dt ≡(
�Y

√
SYt

)′−1
�Ct is a transformation of the continuous-timemar-

ket price of risk �Ct . Thus, recognizing that φ
P(−�Dt ;Yt )=

[
φQ(�Dt ;Yt )

]−1
,

we see that this (approximate) continuous-time construction suggests that,
for a small discrete interval of time , the pricing kernel implied by (12.42)
is approximately the same as the kernel for a continuous-time DTSM in
AM (N ).

Through this construction we see that DLS have developed a family
of models that effectively replicates in discrete time the entire family of
continuous-time pricing models in which Y follows an affine diffusion un-
der Q. By fixing a model DAM (N ) for the Q distribution of Y and choos-
ing �Dt to be �Dt = (�Y

√
SYt )′−1�Ct , where �

C
t is any one of the widely

studied specifications in continuous-time DTSMs [e.g., the specification
(12.41)], we end upwith the discrete-time counterpart (DAM (N ),�D) to the
continuous-time model (AM (N ),�C). A key advantage of the discrete-time
formulation is that the likelihood function is known for any state-dependent
specification of �D . As such, one can construct (and estimate relatively
easily) much richer discrete-time affine DTSMs than have heretofore been
examined in the continuous-time literature.

12.5. Quadratic-Gaussian Models

The quadratic-Gaussian family of DTSMs includes the models studied by
Longstaff (1989), Beaglehole and Tenney (1991), Constantinides (1992),

14 To relate this expression to the Radon-Nikodymderivative that arises in the continuous-
time model for the time interval [0,T ], recall that the latter is DT ≡ e

1
2 ∫T

0 �(s)
′�(s)ds−∫T

0 �(s)
′dW (s).

D follows the process dDt = −Dt�(t)′dW (t) and hence is a martingale: E Pt [DT ] = Dt . It
follows that (dQ/dP)Ct ,T =DT /E Pt [DT ] and, hence, E Pt [Dt ,T ]=1. This ensures that the induced
conditional Q density integrates to unity.
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Lu (2000), Ahn et al. (2002), and Leippold and Wu (2002) as special cases.
The ingredients of QG models are:

IQ(QG ): Under Q, the drift and volatility functions of the risk factors
satisfy

µ
Q
Y (t) = ν 0 + νY Y (t), (12.45)

σY = �, a constant matrix, (12.46)

where ν0 is an N × 1 vector and νY is an N ×N matrix of
constants.

IP(QG ): Given σY (t) satisfying (12.46), the requirement (12.45) de-
termines µPY (t), once �(t) is specified, and vice versa.

Ir (QG ): The short rate is a quadratic function of Y :

r (t) = a + Y (t)′b + Y (t)′cY (t), (12.47)

where a is a scalar, b is an N ×1 vector, and c is an N ×N
matrix of constants.

Ahn et al. (2002) and Leippold and Wu (2002) show that under these con-
ditions the solution to the PDE (8.51) is an exponential quadratic function
of Y :

D(t ,T ) = eγ 0(T−t)+γY (T−t)′Yt+Y ′
t γQ (T−t)Yt , (12.48)

where γ 0, γY , and γQ can be computed from known ODEs or from the
closed-form expressions presented in Kim (2004).

The drift condition (12.45) along with the assumption that the diffusion
coefficient σY (t) is the constant matrix � imply that Y follows a Gaussian
process under Q. These assumptions do not restrict the drift of Y under P,
however. Subject to preserving no arbitrage, we are free to choose essentially
any functional form for µPY (t), so long as �(t) is chosen so that µQ(t) =
(µPY (t) − ��(t)) is affine in Y . The special case examined in Ahn et al.
(2002) has�(t) = λ1+λ2Y (t), which implies that Y is Gaussian under both
P andQ. This is the same functional form for� as in the essentially Gaussian
affinemodel with�(t) as in (12.39) since, in this case, S (t)= I . However, the
effects of �(t) on prices in the QG and this Gaussian affine model are not
equivalent because the mappings between Y and zero-coupon bond prices
are different.

The squared-autoregressive-independent-variable nominal term struc-
ture (SAINTS) model proposed by Constantinides (1992) is shown by Ahn
et al. (2002) to be the special case of the QG model in which � is diagonal
and µPY (t) = −KPY (t) with KP diagonal (the N risk factors are mutually
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independent); and the coefficients λ1 and λ2 determining �(t) are con-
strained to be specific functions of the parameters governing the Y process.
These constraints potentially render the SAINTS model much less flexible
than the general QG model in describing bond yields.

Analogously to our discussion of affine DTSMs, we can define a canoni-
cal QG model as follows. The normalization ν0 = 0 allows the coefficients b
of the linear term in (12.47) to be unconstrained (Leippold andWu, 2002).
Alternatively, and equivalently, b can be normalized to zero, in which case
ν0 is a free parameter (Ahn et al., 2002). If one wants to ensure that rt is
nonnegative, then the admissible parameter regions for b and ν0 can be
constrained to RN+ and R+, respectively. Additionally, � is normalized to be
diagonal and νY is normalized to be lower triangular. Finally, c is chosen to
be symmetric and with diagonal elements that are normalized to unity. To
ensure that r stays strictly positive, one can further impose the constraint
that c is positive semidefinite.

12.6. Nonaffine Stochastic Volatility Models

Limited attention has been focused on DTSMs outside the affine and QG
families, in large part because of the computational challenges that arise
when bond prices are not known in closed form. One family that has re-
ceived considerable attention in the financial industry (but relatively little
attention in academic research), has log r (t) following a Gaussian process,

d log r (t) = KQ(θQ − log r (t)
)
dt + σr dW Q(t). (12.49)

Perhaps the most well-known version is the Black et al. (1990) model, along
with its continuous-time counterpart studied in Black andKarasinski (1991).
A two-factor (multinomial) extension was studied by Peterson et al. (1998).
Zero-coupon bond prices are not known in closed form when r follows
the process (12.49). However, approximate pricing formulas have been
developed (e.g., Basu and Dassios, 1999). Further, for one-factor models,
numerical solution of the PDE defining these prices is feasible. Since a
lognormal process is strictly positive, it has been gaining favor in the context
of modeling the arrival rate (intensity) of default (see Chapter 14).

Another nonaffine, one-factor DTSM is the “three-halves” model (Cox
et al., 1980; Ahn and Gao, 1999)

dr (t) = KQ(θQ − r (t)
)
r (t) dt + σ r (t)1.5dW Q

r (t), (12.50)

which is a stationary process, so long asKQ and σ are greater than zero. The
conditional density f (rt+1|rt ) is known in closed form, which makes this a
convenient alternative formulation to affine models. Ahn and Gao (1999)
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assumed that the market price of risk of r was �(t) = λ1/
√
r (t) + λ2√r (t),

which has exactly the same form as the extended specification (12.40) for
CIR-style affine models. Thus, �(t)may change signs over time if λ1 and λ2
have opposite signs. These positive features of the three-halves model must
be balanced against the fact that correlated, multifactor extensions have yet
to be worked out.

Outside of a pricing framework, Andersen and Lund (1997b, 1998)
studied various special cases of the following nonaffine three-factor model:

d log v(t) = µ(v̄ − log v(t))dt + ηdWv(t),

dθ(t) = ν(θ̄ − θ(t))dt + √
αθ + βθθ(t) dWθ (t), (12.51)

dr (t) = κ(θ(t)− r (t))dt + r (t)γ v(t)dWr (t),

where (Wv,Wθ ,Wr ) are independent Brownian motions. In this model the
volatility factor v(t) follows a lognormal process and the instantaneous
stochastic volatility of r , r (t)γ v(t), is affected both by v and r . These models
do not have known closed-form solutions for bond prices. Largely for this
reason this formulation of stochastic volatility has been studied primarily in
the context of econometric modeling of the short rate and not as a DTSM.

As for nonaffine discrete-time models, Backus and Zin (1994) parame-
terize−log q ∗

t as an infinite order, moving average process with i.i.d. normal
innovations. This formulation accommodates richer dynamics than a Gaus-
sian diffusion model and is easily extended to multiple factors, but it ab-
stracts from time-varying volatility. More recently, Brandt and Yaron (2001)
parameterize −log q ∗

t as a Hermite polynomial function of (Yt ,Yt−1), where
Yt is an observable state vector. Their model extends the Backus-Zin specifi-
cation of q∗ by allowing for nonnormality and time-varying conditional mo-
ments, but it is more restrictive in requiring that the pricing kernel depend
only on (Yt ,Yt−1) and that Y be observable. Similarly, Lu and Wu (2000)
model q∗ using a semi-nonparametric density based onHermite polynomial
expansions.

These semiparametric approaches, though flexible, often present their
own challenges. Specifically, it may be difficult to verify that the parameters
of the pricing kernel are identified from bond yield series. Moreover, if the
state variables are taken to be functions of observable bond yields, then
internal consistency requires that the same functions of the model-implied
yields must recover the state vector. This consistency is not always easily
imposed.

12.7. Bond Pricing with Jumps

There is growing evidence that jumps are an important ingredient in mod-
eling the distribution of interest rates. For instance, Zhou (2001c), Das
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(2002), and Johannes (2004) find that jump-diffusion models fit the con-
ditional distribution of short-term interest rates better than the nested dif-
fusion models they examine. Affine DTSMs are easily extended to allow Y
to follow a jump diffusion

dY (t) = µY (Y ) dt + σY (Y ) dW (t)+ Y dZ (t), (12.52)

where Z is a Poisson counter, with state-dependent intensity {λP(Y(t)) : t≥0}
that is a positive, affine function of Y , λP(Y ) = l 0 + l ′

Y Y ; and  Y is the
jump amplitude with distribution ν P on RN . If the jump risk is priced,
then a compensated jump term also appears in the pricing kernel with
a possibly state-dependent coefficient $( Y ,Y ) representing the market
price of jump risk:

dMt

Mt
= − r (Y ) dt −�(Y )′ dW P(t)− [

$( Y ,Y ) dZ (t)− γ (Y )λP(Y ) dt],
(12.53)

where γ (Y ) =∫
$(x,Y )dν P(x) is the conditionalP-mean of$. From (12.53),

the risk-neutral distribution of the jump size and the risk-neutral jump ar-
rival rate are given by

dνQ(x) = 1 − $(x,Y )
1 − γ (Y ) dνP(x), λQ(Y ) = (1 − γ (Y ))λP(Y ). (12.54)

Although in general $(x,Y ) may depend on both Y and the jump ampli-
tude x , and therefore γ (Y ) may be state-dependent, in most implementa-
tions $ is assumed to be a constant.

These expressions simplify further if we can writeMt =M (Yt , t). This is
possible, for example, in equilibrium pricing models, where M represents
marginal utility that depends only on the current state. In this case, Ito’s
lemma implies that

rt = − 1
Mt

[
∂

∂t
+ G P

]
Mt , (12.55)

�t = −σ ′
t
∂

∂Yt
logMt , $t (x) = 1 − M(Yt + x, t)

M(Yt , t)
, (12.56)

where G P is the P-infinitesimal generator [see (8.50)]. Note in particu-
lar the link between the market price of jump risk $ and M: the sign of
M (read “marginal utility”) depends on whether a jump in Y raises or
lowers marginal utility relative to the prejump value. Moreover, the risk-
neutral jump arrival rate and the risk-neutral distribution of the jump size
are given by
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λQ(Yt , t) =
∫
M(Yt + x, t)dν Pt (x)

M(Yt , t)
λP(Yt , t), (12.57)

dνQt (x) = M(Yt + x, t)∫
M(Yt + x ′, t)dν Pt (x ′)

dν Pt (x). (12.58)

If Y is an affine-jump diffusion under the risk-neutral measure, with
the risk-neutral drift and volatility specifications being affine as in (12.5)
and (12.6), and the “jump transform” ϕ(c) = ∫

RN exp (c · x) dνQ(x), for c
an N -dimensional complex vector, is known in closed form, then the PDE
defining the zero prices D(t ,T ) admits a closed-form solution (up to ODEs)
as an exponential-affine function of Y , just as in the case of affine diffusions
(Duffie et al., 2000). Care must be taken in specifying ϕ(c) to make sure that
Y remains an admissible process. For instance, for those risk factors that fol-
low square-root diffusions in the absence of jumps, it appears that an added
jumpmust be positive to ensure that this factor never becomes negative. Das
and Foresi (1996) and Chacko and Das (2001) present illustrative examples
of affine bond and bond-option pricing models with jumps.

State variables with jumps have received relatively less attention in the
empirical literature on DTSMs. One of the earliest affinemodels with jumps
is that of Ahn and Thompson (1988), who extend the equilibrium frame-
work of Cox et al. (1985b) to the case of Y following a square-root pro-
cess with jumps. Brito and Flores (2001) develop an affine jump-diffusion
model, and Piazzesi (2003) develops a mixed affine-QG model, in which
the jumps are linked to the resetting of target interest rates by the Federal
Reserve (see also Das, 2002).

12.8. DTSMs with Regime Shifts

None of the parametric models for Y considered so far are naturally suited
to capturing persistent “turbulent” and “quiet” periods in bond markets.
Such patterns have been documented in historical yields (e.g., Hamilton,
1988; Gray, 1996; Ang and Bekaert, 2002) using descriptive “switching re-
gime” models (see Section 7.2.2). However, there has been much less work
on incorporating switching regimes into dynamic pricingmodels. Following
Dai and Singleton (2003b),15 in this section we extend the family of affine
DTSMs to allow for changes in economic regimes. In the presence of regime
shifts, the parameters governing the distributions of the state variables (as
well as possibly those of the market prices of risk) change as the economy

15 Their analysis extends the complementary treatment in Landen (2000) by parame-
terizing the pricing kernel under the measure P (in addition to under Q) and allowing for
state-dependent probabilities of changing regimes.



Page 335 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

12.8. DTSMs with Regime Shifts 335

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[335], (27)

Lines: 829 to 869

———
4.54489pt PgVar
———
Normal Page

* PgEnds: Eject

[335], (27)

transitions across regimes. If the state Y follows a diffusion in each regime,
then the sample path of Y does not “jump” with a change in regime, only
the conditional distribution from which Y is drawn changes.

The evolution of “regimes” is described by an (S + 1)-state continuous-
time conditionally Markov chain st : & → {0, 1, . . . , S } with a state-depen-
dent (S + 1) × (S + 1) rate or generator matrix R Pt = [R Pij,t] in which
all rows sum to zero. [See Bielecki and Rutkowski (2004) for formalities.]
Intuitively, R Pij,t dt , i �= j represents the probability of moving from regime i
to regime j over the next short interval of time. The subsequent discussion
is simplified notationally by introducing (S + 1) regime indicator functions
z jt = 1{st=j}, j = 0, 1, . . . , S , with the property that E[dz jt |st ,Yt] = R Pjt dt ,
where R Pjt ≡ R Pj (st ;Yt , t) = ∑S

i=0 z
i
t R
P
ij,t .

To introduce regime-switching into a bond pricing model, we assume
that the pricing kernel can be written asMt ≡ M (st ;Yt , t)=∑S

j=0 z
j
t M (st =

j ;Yt , t). (As noted in the case of jumps, having M (st ; ·) depend only on Y
implicitly constrains the state dependence ofM .) Then, using Ito’s lemma,

dMt

Mt
= −rt dt −�′

t dW
P
t −

S∑
j=0

$
j
t

(
dz jt − R Pjt dt

)
, (12.59)

where �(st ;Yt , t) is the market price of diffusion risk and $j (st ;Yt , t) is the
market price of a shift from the current regime st to regime j an instant
later. Under this formulation of Mt , $j (st = i;Yt , t) = [1 − M(st = j ;
Yt , t)/M(st = i;Yt , t)]. Therefore, $i(st = i;Yt , t) = 0 and

(1 − $ i(st = j ;Yt , t))(1 − $j (st = i;Yt , t)) = 1, 0 ≤ i, j ≤ S . (12.60)

Thus, there are only 1
2S (S + 1) free market prices of risk for regime shifts.

In particular, for a two-regime model (S =1) there is only one free market
price of regime-switching risk, representing the ratio of the pricing kernels
for the two regimes.

The risk-neutral distribution of the short-rate is governed by the rela-
tions r it ≡ r (st = i;Yt , t)=δi0 +Y ′

t δ
i
Y , and the assumption that (risk neutrally)

Y follows an affine diffusion with regime-dependent drifts and volatilities:

µQ(st ;Yt , t) ≡
S∑
j=0

z jt κ
Q j (θQ j − Yt

)
,

σ (st ;Yt , t) =
S∑
j=0

z jt diag
(
α
j

k + Y ′
t β

j

k

)
k=1,2,...,N ,

(12.61)
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where δi0 and α
i
k are constants, κQi is a constant N ×N matrix, and δiY , θ

Qi ,
and β ik are constant N ×1 vectors. Under this formulation, when a regime
shifts, the conditional moments of Y change, but its sample path remains
continuous.

LettingD(t ,T )≡ D(st ,Yt ; t ,T ), we can writeD(t ,T )≡∑S
j=0 z

j
t D j (t ,T ),

where D j (t ,T ) ≡ D(st = j,Yt ; t ,T ). No arbitrage, which requires that
µD(t ,T ) = rtD(t ,T ) for all 0 ≤ st ≤ S and all admissible Yt , implies that
the D j (t ,T ) satisfy the (S + 1) PDEs

[
∂

∂t
+ G i

]
Di(t ,T )+

S∑
j=0

RQij,tD
j (t ,T )− r i(Yt , t)Di(t ,T ) = 0, (12.62)

0 ≤ i ≤ S , where G i is the counterpart to (8.50) for regime st = i, RQij,t =
(1− $j (st = i;Yt , t))R Pij,t if j �= i, and RQii,t = −∑

j �=i R
Q
ij,t . (R

Q
t is the rate

matrix of the conditionally Markov chain under the risk-neutral measure
Q.) In general, the matrix RQt is not diagonal. Therefore, these S + 1 PDEs
are coupled, and the (D i(t ,T ) : 0 ≤ i ≤ S ) must be solved for jointly.
The boundary condition is D(T ,T ) = 1 for all sT , which is equivalent to
(S + 1) boundary conditions: (D i(T ,T ) = 1 : 0 ≤ i ≤ S ).

An affine regime-switching model with a closed-form solution for zero-
coupon bond prices is obtained by specializing further to the case where RQt
is a constant matrix and κQi , δiY , and β

i
k are independent of i. Under these

assumptions,

D i(t ,T ) = e γ 0i (T−t)+γY (T−t)′Yt , 0 ≤ i ≤ S , (12.63)

where the γ0i(·) and γY (·) are explicitly known up to a set of ODEs. Note that
in this specialized environment regime dependence under Q enters only
through the “intercept” term γ0i(T − t); the derivative of zero-coupon bond
yields with respect to Y does not depend on the regime. Though admittedly
strong, these assumptions do allow for Y to follow a general affine diffusion
and for the P-rate matrix R P to be state dependent.

In both respects, this formulation extends the one-factor, continuous-
time formulation of Naik and Lee (1997) [as well as Proposition 3.2 of
Landen (2000)]. Even with regime switching, it may be empirically more
plausible to allow for multiple, correlated risk factors. Moreover, Naik and
Lee assume constant market prices of regime-shift risk [the $j (t) are con-
stants], and obtain regime independence of the risk-neutral feedback
matrix κQ j under the stronger assumption that the actual matrix κPj is in-
dependent of j .

In sorting out the added econometric flexibility of thesemodels relative
to single-regime, affine DTSMs, it is instructive to examine the implied
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excess returns on a (T − t)-period zero-coupon bond. Based on the pricing
kernel (12.59), for current regime st = i, we have

µiDt − r it = σ i ′
Dt�

i
t −

S∑
j=0

$j (st = i )
[
1 − D j (t ,T )

D i(t ,T )

]
R Pjt , (12.64)

where σ iDt is the diffusion vector in regime i for D i(t ,T ). If $j (st = i)= 0,
for all j = 0, 1, . . . , S , then excess returns may still be time varying for
two reasons: (1) state dependence of �t and/or σY (t) (as in single-regime
models), and (2) the possibility that either of these constructs might shift
across regimes. It is the latter added source of flexibility that the previous
literature on DTSMs with regime shifts has relied on to improve goodness-
of-fit over single-regime DTSMs.

By allowing for priced regime-shift risk ($j (st ) �= 0), we see from
(12.64) that Dai and Singleton introduce an additional source of variation
in excess returns. This is true even if R P is a constant (non-state-dependent)
matrix. Of course, allowing R P to be state dependent, while maintaining
the assumption of constant RQ for computational tractability, would add
flexibility to this model.

Several researchers have developed discrete-time, regime-switching
models. Bansal and Zhou (2002) examine regime-switching CIR-style mod-
els. They relax the assumptions that κQi and β it are regime independent,
while maintaining the assumption that R P = RQ, a constant matrix [the
$j (t) = 0]. Their model does not admit a closed-form exponential-affine
solution, so they proceed by linearizing the discrete-time Euler equations
and solving the resulting linear relations for prices. In a related study, Wu
and Zeng (2003) derive a general equilibrium, regime-switching model,
building upon the one-factor CIR-style model of Naik and Lee (1997), with
constant R P.

The model in Dai et al. (2003) has the risk factors following Gaussian
processes with two regimes, so bond prices are obtained in closed form.
It extends the Bansal-Zhou framework by allowing for state-dependent R Pt
and priced regime-shift risk (they assumed that the market price of regime-
shift risk is zero). Ang and Bekaert (2003b) also examine a regime-switching
Gaussian DTSM. They assume that regime-shift risk is not priced, R P is
constant, and the historical rates ofmean reversion of the risk factors are the
same across regimes. These assumptions can be relaxed, while preserving
closed-form solutions for bond prices.
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13
Empirical Analyses of Dynamic

Term Structure Models

We turn next to the estimation and assessments of fit of DTSMs. Focusing
primarily on the parametric models just surveyed and drawing upon Chap-
ter 5, we begin by reviewing alternative estimation strategies. The goodness-
of-fit of DTSMs is then explored in two steps. First, we describe several
notable empirical features of the historical behavior of bond yields that
have been widely viewed as “puzzles.” We present these as challenges that a
successful DTSM should resolve, roughly speaking, by producing a match
between certain moments of the model-implied and historical conditional
distributions of bond yields.

13.1. Estimation of DTSMs

Chapter 5 introduced several estimation strategies for continuous-time
models. Most of these methods are applicable to DTSMs, after making the
requisite modifications to accommodate the fact that the state vector Y is
observed only indirectly through the DTSM. We begin our discussion of
estimation with affine models.

13.1.1. Affine DTSMs

Let ψ0 denote the population parameters governing an affine DTSM and
suppose that zero-coupon bond prices are to be used in estimation. If we let
yt denote an N -dimensional vector of yields on these bonds, it follows from
(12.7) that yt = A(ψ0)+ B(ψ0)Yt , where Yt follows an affine diffusion, and
the N × 1 vector A and N × N matrix B are determined by an affine pric-
ing model.1 The parameter vector ψ0 includes the parameters governing

1 Recalling that the yield on a zero-coupon bond is defined as −logD(t ,T )/τ , τ = (T−t),
note that the components of A and B are γ0(τ ) and γY (τ ) from (12.7) scaled by 1/τ .

338
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the affine diffusion Yt under Q, the parameters describing the functional
dependence of r on Y , and the parameters governing the market prices of
factor, jump, or regime-shift risks.

Assuming that B(ψ0) is invertible, we can solve for Yt as an affine func-
tion of yt ,

Yt = B(ψ0)
−1( yt − A(ψ0)). (13.1)

Therefore, by the standard change-of-variable analysis, the conditional den-
sity function of yt , fy , is

f Py ( yt+1|yt ;ψ) = f PY
(
B(ψ)−1 [ yt+1 − A(ψ)

] ∣∣ yt ;ψ) abs
∣∣B(ψ)−1

∣∣ . (13.2)

It follows that if the density of the state vector f PY is known, then one can
proceed directly with ML estimation of ψ0. Within the family of continuous-
time affine DTSMs, f PY is known for the special cases of Gaussian models
[models in A 0(N )] ( Jegadeesh and Pennacchi, 1996) and independent
square-root processes [models in A3(3) with KP diagonal] (Chen and Scott,
1993; Pearson and Sun, 1994), so long as the market price of risk 	Ct is
chosen so that Y follows an affine process under P.

For the case continuous-time affine models in the families AM (N ) (M �=
0,N ), the unknown f Py can in principle be computed from knowledge of
the conditional characteristic function (CCF). Since B(ψ) is nonsingular, yt
and Yt generate the same information set. Therefore, the CCF of yt+1 can be
expressed in terms of the CCF of Yt+1, which is known for affine diffusions
(Chapter 5):

φPyt (u, ψ) = e iu
′A(ψ)φPYt (B(ψ)

′u). (13.3)

Fourier inversion then gives f Py in terms of φPY ,

f Py ( yt+1|yt ;ψ) = 1
(2π)N

∫
RN
e−iu

′yt+1φPyt (u) du

= 1
(2π)N

∫
RN
e−iu

′B(ψ)Yt+1φPYt (B(ψ)
′u) du, (13.4)

where it is understood that φPY is evaluated at Yt given by (13.1). When
this Fourier inversion is computationally tractable, ML estimation of affine
DTSMs can be implemented directly using (13.3). Fourier inversion is prac-
tical for scalar and perhaps low-dimensional problems, but it becomes in-
creasingly numerically burdensome as N increases beyond one.

The computational burden of full information methods can be avoided,
at the expense of some econometric efficiency, by using method-of-moments
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estimators. Knowledge of the CCF of Y leads directly to closed-form expres-
sions for all of the conditional moments of Y and hence, owing to their
affine dependence on Y , of zero-coupon bond yields y as well. Liu (1997)
develops a GMM estimator based on this fact and shows that its efficiency
approximates increasingly well that of the ML estimator as the set of mo-
ments included is expanded. A special case of the GMM estimator is the
quasi-maximum likelihood estimator (Fisher and Gilles, 1996).

More tractability is achieved by shifting to discrete time. We saw in
Chapter 12 that f PY is known in closed form as long as the Radon-Nikodym
derivative (dP/dQ)Dt ,t+1 is known in closed form. In particular, for the pa-
rameterization (12.42) adopted by Dai et al. (2005), f PY is known for any
admissible state-dependent market price of risk 	Dt . This includes a wide
class of nonlinear term structure models within the families DAM (N ), M =
0, 1, . . . ,N , all of which can be estimated directly by the method of ML.

In the case of ML estimation, no additional complications are intro-
duced for the case of coupon bond yields. However, since these yields are
nonlinear functions P (Yt ) of the state, their moments are typically not
known. Therefore, GMM estimation based on knowledge of the moments
of Y is generally not feasible. On the other hand, we can, as discussed in
Chapter 6, use simulation to compute moments, so SME is feasible.

To compute the ML estimator using coupon bond yields, a change-
of-variable argument can again be used to relate the distributions of the
observed (coupon) yields y and the state Y . Assuming that the dimension
of yt is equal to that of Yt gives

f Py ( yt+1|yt ;ψ) = f PY
(
P−1( yt+1;ψ

)∣∣ yt ;ψ) abs
∣∣∣∣∂P−1( yt+1;ψ)

∂y

∣∣∣∣ . (13.5)

This provides the likelihood function of the data up to knowledge of the
conditional density of the state, f PY . It differs from the case for zero-coupon
bonds in two respects: the mapping P is in general nonlinear so the fitted
state Y must be obtained from y by numerical methods, and the Jacobian
of this transformation is in general state dependent (in contrast to the
constant |B(ψ0)

−1| for zero-coupon bonds). If the density f PY is unknown,
then one can in principle proceed to the likelihood function implied by
(13.5) after substitution of an approximation for f Py . For instance, one of
the approximations proposed by Ait-Sahalia (2001) or Duffie et al. (2003b)
(see Section 5.6) could be used.

Pursuing the example of coupon bonds, suppose that y is a vector of
N yields on coupon bonds of various maturities. Letting ynt denote the
coupon-yield on an n-year coupon-paying bond, we find that the coupon
rate cnt for a newly issued n-year bond trading at par is
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y nt = 1 − D(t , t + n)∑2n
j=1 D(t , t + 0.5j )

,

where coupons are assumed to be paid semiannually. Though each zero
price D(t , t + j ) is an exponential-affine function of the state, y nt is not.
However, if yt = P (Yt , ψ0) and P is invertible so that Yt = P−1( yt ;ψ0),
then (13.5) applies. Chen and Scott (1993), Pearson and Sun (1994), and
Duffie and Singleton (1997) used this approach with the known conditional
density of Y to compute ML estimators of multifactor CIR-style models.

A key premise of this estimation strategy is that the number of bonds
to be used in estimation is equal to N , the dimension of Y . In practice, the
number of bonds available for estimation, say K , is often much larger than
N . A common strategy for addressing this situation is to assume that N of
the K bonds are priced exactly by the model, whereas the remaining K −N
bonds are priced up to a vector of additive pricing errors, ηt (see Chen and
Scott, 1993; Duffie and Singleton, 1997; Honore, 1998; Dai and Singleton,
2000; among others). More concretely, Chen and Scott (1993) and Duffie
and Singleton (1997) assumed that ηt followed a first-order autoregressive
process with normally distributed innovations,

ηit = ρ0i + ρ1iηit−1 + uit , uit ∼ N
(
0, σ 2

ui

)
, (13.6)

where the uit could be mutually correlated, but were assumed to be inde-
pendent of the state vector Yt .

This approach allows the N bonds that are priced exactly to be used for
inversion for Y in order to derive f Py from f PY . At the same time, there are K
“shocks” driving the K yields being modeled and N factor risks plus K −N
pricing errors. The presence of the latter shocks ensures that there is no
yield that is related deterministically to the other yields within the DTSM
being estimated.

While this is a convenient means of using more bonds than risk factors
in estimation, the interpretation of η remains somewhat problematic. One
view is that these errors capture pricing errors in the market. The recorded
prices in data sets may not be actual market transactions prices or the prices
of bonds along the yield curve may not have been recorded at precisely the
same time. Alternatively, some have included ηt as explicit recognition of
the fact that the pricing model is an approximation and does not literally
describe the prices in the market. Under either interpretation, one must
make what are essentially ad hoc assumptions about the joint distribution
of the η and y in order to complete the derivation of the likelihood function
for the data on bond yields.
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In some cases, an alternative to introducing additive errors is to intro-
duce a bond-specific yield factor �t and to discount future cash flows for
the bond in question using the adjusted short rate r (t) + �(t). Duffie et
al. (2003b) implement this approach in the context of an affine DTSM for
pricing sovereign bonds.

If all K bonds are assumed to be priced with errors, then filtering
methods must be used to obtain fitted states Y . Outside of the Gaussian
case, the optimal filters are nonlinear so the Kalman filters typically used
are only approximations (Duan and Simonato, 1999; Duffie and Stanton,
2001). Bobadilla (1999) found that estimates of ψ0 in affine models were
sensitive in some cases to the parameterization of the pricing errors.

These extraction issues do not arise if the state variables are observed
economic time series (e.g., macroeconomic and yield curve variables). Crit-
ical in choosing yield curve variables as elements of Y is that the model
maintain internal consistency—it must correctly “price” the state variables
when they are known functions of the prices of traded securities. Duffie
and Kan (1996) present a generic example of how this can be done in
affine models. Imposing internal consistency in nonaffine settings can be
challenging, so internal consistency is often ignored (e.g., Boudoukh et al.,
1998). T. Wu (2000), S. Wu (2002), Ang and Piazzesi (2003), and Buraschi
and Jiltsov (2004) incorporate macro factors (for which these consistency
issues do not arise) directly into affine term structure models.

Up to this point we have said little about the specification of the market
prices of risk, 	(t). In fact, we have implicitly been assuming that 	 is
modeled as in (12.39) so that Y follows an affine diffusion under both Q and
P. This allowed us to use knowledge of the CCF under P to construct GMM
or ML estimators of ψ0. This estimation strategy would not be available
for Duarte’s formulation of 	(t) in (12.41), even though the Q-drift of Y
remains affine. In this case, as well as other situations where the estimators in
the preceding paragraph are not applicable, efficient estimates are obtained
using the Monte Carlo maximum likelihood estimator of Pedersen (1995)
(see also Brandt and Santa-Clara, 2001), the approximate ML estimator of
Ait-Sahalia (2001), or the efficient simulated method-of-moments estimator
proposed by Gallant and Tauchen (1996).

Another important issue is whether or not all of the parameters govern-
ing 	(t) are econometrically identified. Some insight into whether there
are new issues in identification arising from the choice of 	 comes from
inspection of the case of an A0(1) model with the state-independent mar-
ket price of risk 	 = λ1, as in (12.38). For this one-factor model we can
set Y = r and KQ = KP = κ . With r following the risk-neutral process
drt = κ(θQ − rt ) dt + σr dB

Q
t , the coefficients in the exponential-affine rep-

resentation of D(t ,T ) in (12.7) are
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γY (τ ) = − (1 − e−κτ )
κ

, (13.7)

γ0(τ ) =
(
σ 2
r

2κ2
+ σrλ1

κ
− θ P

)
(τ + γY (τ ))− σ 2

r

4κ
γY (τ )

2, (13.8)

where τ = T − t and we have used the fact that θQ = θ P−σrλ1/κ.Note that
θ P and σrλ1/κ enter (13.8) symmetrically. Additionally, the Jacobian of the
transformation from r to observed bond yields y involves only the relevant
γY (τ ), not γ0(τ ). Therefore, the parameters λ1 and θ P are not separately
identified from the first-order conditions to the likelihood function.

In a one-factor setting, there are two sources of identification of λ1.
One is the use of coupon bond yields instead of zero yields to estimate
the model. The nonlinear mapping between the coupon yield and the
underlying (Gaussian or otherwise) state variable implies that the Jacobian
of the transformation from y to Y is state-dependent and the scores of the
log-likelihood with respect to the parameters governing 	 and θ P are not
collinear. Another source of identification is the assumption that the state
variable follows a non-Gaussian process. In the case of a “completely affine”
square-root model, 	(t) = λ1

√
rt and there is no collinearity between the

scores of the log-likelihood.
This intuition for one-factor models can easily be generalized to the case

of N -factor affine models for N > 1. When zero yields are used to estimate
a Gaussian model [in the A0(N ) branch] with market price of risk (12.38),
one out of the N components of λ1 is not identified. This is because δ0 [the
constant term in (12.3)] and the N components of λ1 are not separately
identified. By normalizing one of the elements of λ1 to zero, the level of r ,
δ0, and the other elements of λ1 are identified. When zero yields are used
to estimate non-Gaussian models [in the AM (N ) branch with 1 ≤M ≤N ],
one out of N market prices of risk is not identified unless, at least for one
k with M + 1 ≤ k ≤ N , βk is not identically zero. When coupon yields are
used to estimate affine models, λ1 is fully identified.

These same considerations carry over to extended specifications of	(t)
such as (12.39). In this particular case, the first M rows of λ2 would be
normalized to zero.

13.1.2. QG Models

Estimation of QG models is complicated by the fact that there is not a
one-to-one mapping from observed yields to the state vector Y , because
of the quadratic dependence of r on Y . For example, in a one-factor QG
model, the yield on an s -period, zero-coupon bond, y s , is given by y s(t) =
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as + bsY (t) + csY (t)2. Given y s(t) and under suitable parameter values [so
that b 2

s − 4cs(as − y s(t))> 0], there are two roots to the previous quadratic
equation, corresponding to two possible values of the implied state variable:

Y (t) = −bs ±√
b 2
s − 4cs(as − y s(t))

2cτ
. (13.9)

Given this indeterminacy, filtering methods are called upon to estimate the
model-implied Y . An efficient algorithm for extracting Y from observed
yields is developed in Kim (2004). He uses this filter to obtain quasi-ML
estimators for QG models.

Ahn et al. (2002) circumvent the need for filtering by using a SME
(which effectively gives observable Y through simulation). Then they use
the reprojection methods proposed by Gallant and Tauchen (1998) to esti-
mate E[Y (t)|y(t − 1), . . . , y(t − L)], with y being the vector of bond yields
used in estimation. Lu (2000) uses the filtering density f (Y (t)|y(t), y(t −
1), . . . , y(1)) to compute the conditional expectation of Y (t). Though the
likelihood function for QG models can be written down in closed form, we
are not aware of any studies that directly implement the ML estimator.

13.1.3. Other DTSMs

The one-factor three-halves model (12.50) for r gives a conditional density
f (rt+1|rt ) that is known in closed form (Eom, 1998; Ahn and Gao, 1999).
Therefore, ML estimation is feasible, again using standard transformation-
of-variable techniques.

Outside of certain affine, QG, and the one-factor three-halves models,
most of the DTSMs that have been studied empirically do not lead to known
conditional densities for the state. For these cases, either GMM (simulated
methods of moments) or an approximate ML method has been used in
estimation.

13.2. Empirical Challenges for DTSMs

In evaluating the relative goodness-of-fits of DTSMs it is helpful to organize
the findings in the literature around a few important empirical observations
about bond yields. Following Dai and Singleton (2003b), we focus on the
following features of the first and second moments of bond yields:

LPY: Letting yn ≡ − logD(t , t + n)/n denote the yield on an n-period
zero-coupon bond, linear projections of y(n−1)

t+1 −ynt on to the slope
of the yield curve, (ynt − rt )/(n−1) give fitted coefficients φnT that
are negative, increasingly so for longer maturities (Campbell and
Shiller, 1991).
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CVY: Conditional volatilities of changes in yields are time-varying and
typically highly persistent. Moreover, in recent years, the term
structures of unconditional volatilities of swap and treasury yields
have tended to be hump shaped, with the hump occurring within
the 2- to 3-year maturity range.

13.2.1. Time-Varying Expected Returns on Bonds

In Section 9.6 we discussed expectations relations linking the changes in
yield on an n-period bond and the slope of the yield curve [see (9.63)].
From this analysis we saw that the temporal variation in term premia play
a central role in modeling time variation in expected excess returns on
bonds. Further, the expectations theory—which asserts that yields on long-
term bonds should adjust one-for-one with changes in the slope of the
yield curve—was obtained only under the special assumption that term
premiums are constant. Rather than testing the expectations theory, we view
the conceptual and empirical observations drawn in Chapter 9 as under-
pinnings of goodness-of-fit tests of candidate DTSMs.

Specifically, the results from projections of yn−1
t+1 −ynt onto (ynt −rt )/(n−1)

shown in Table 9.7 are descriptive findings that a successful DTSM should
match. This can be checked by simulating yields from a candidate DTSM
and then computing the implied population projection coefficients and
comparing them with those obtained in the data. A well-specified DTSM
should replicate the failure of the expectations theory of the term structure.

Additionally, we noted that (9.63) implies that the projections of the
“premium-adjusted” change in yields onto the (scaled) slopes of the yield
curve, (ynt − rt )/(n − 1),[

yn−1
t+1 − ynt − (

c n−1
t+1 − c n−1

t

)+ 1
n − 1

pn−1
t

]
= φ0

n + φRn
( ynt − rt )
n − 1

+ νnt+1,

(13.10)

give φRn = 1, for all n. That is, the term premiums implied by a candidate
DTSM should be such that the violations of the expectations theory are
fully corrected once the adjustments in (13.10) are made. There is also an
analogous set of yield projections for the forward rates: Et[ f n−1

t+1 − rt] =
( f nt −rt )+(Et[pn−1

t+1 ]−pnt ). So projections of the “premium-adjusted” forward
rates ( f n−1

t+1 − rt − (pn−1
t+1 − pnt )) onto ( f nt − rt ) also give slope coefficients

of one.
We stress that these projection results hold for any economic model;

the content of (13.10) comes from the model-implied specification of the
term premiums c nt and pnt . To check whether (13.10) is satisfied, we use
fitted yields from a candidate DTSM to estimate these premium-adjusted
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projections and compare the resulting slope coefficients to unity.2 Intu-
itively, these premium adjusted regressions check for the validity of the
model-implied Q distribution of yields, whereas the unadjusted LPY pro-
jections check the validity of the implied P distribution of yields.

A related empirical pattern discussed in Chapter 9 is the high degree of
predictability in excess returns over one-year holding periods documented
in Cochrane and Piazzesi (2005). In the light of their findings, another
question of interest is whether DTSMs, as conventionally specified with a
small number N of risk factors, can replicate this predictability.

13.2.2. Volatility of Bond Yields

There is substantial evidence that bond yields exhibit time-varying condi-
tional second moments (e.g., Ait-Sahalia, 1996; Brenner et al., 1996; Gal-
lant and Tauchen, 1998). Other than in the case of the Gaussian affine and
basic lognormal models, DTSMs typically build in time-varying volatility, a
property that is naturally central to the reliable valuation of many fixed-
income derivatives. Thus, the challenge CVY presents for DTSMs is not
whether yields exhibit time-varying volatility, but rather whether there is
enough model-implied variation in volatility (both in magnitude and persis-
tence) to match historical experience.

Another important dimension of CVY is that the term structure of un-
conditional volatilities of (changes in) bond yields has tended to be hump
shaped over the past 10 to 15 years (see, e.g., Litterman et al., 1991). Plotting
the volatilities of zero-coupon treasury bond yields against maturity over the
period 1983–1998 shows a hump that peaks around 2 to 3 years in maturity
in both the swap and Treasury markets (Figure 13.1).3 A very similar pat-
tern of volatilities is obtained using U.S. dollar fixed-for-variable rate swap
yields for the post-1987 period (for which data are available). Interestingly,
it appears that this hump at 2 years was not a phenomenon observed for
the entire post–World War II period in the United States. Figure 13.1 also
displays the term structure of volatilities for the subperiod 1954–1978 (the
period of the “monetary experiment” from 1979 to 1981 was omitted), dur-
ing which the volatilities were both smaller and their term structure less
humped.

Single-factor models, as traditionally formulated, are unlikely to be suc-
cessful in matching these patterns. The most widely cited criticisms of one-
factor models include: (1) they understate the volatility of long-term yields

2 We do not use simulated data for this case because the resulting coefficients would be
unity by construction.

3 Annualized volatility is measured as the standard deviation of changes in the logarithms
of bond yields, scaled up by the number of observations per year.
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Figure 13.1. Term structures of volatilities of yields on zero-coupon U.S. Treasury
bonds based on monthly data from 1954 through 1998.

(e.g., Brown and Dybvig, 1986) (fail to match CVY); (2) they overstate the
correlation between yields at different maturities (see, e.g., Rebonato and
Cooper, 1997, and Chapter 16); and (3) the mean reversion coefficient re-
quired to explain cross-maturity patterns at a point in time is inconsistent
with the mean reversion coefficient that gives the best time-series fit (e.g.,
Brown and Schaefer, 1994). Additionally, Backus et al. (2001) show the im-
possibility of matching LPY with a one-factor affine DTSM.4

4 A fourth issue is whether the linear drift specifications in one-factor models are appro-
priate. Evidence supporting a nonlinear conditional mean for the short rate is discussed in
Ait-Sahalia (1996) and Stanton (1997). In principle, the finding of nonlinear drifts for one-
factor models could be a consequence of misspecifying the number of factors. However, the
nonparametric analyses in Boudoukh et al. (1998) and Balduzzi and Eom (2000) suggest that
the drifts in both two- and three-factor models of Treasury yields are also nonlinear. In spite
of this evidence, it does seem that having multiple factors in linear models is more important,
at least for hedging purposes, than introducing nonlinearity into models with a smaller num-
ber of factors (see, e.g., Balduzzi and Eom, 2000). Perhaps for this reason, or because of the
computational demands of pricing in the presence of nonlinear drifts, attention continues to
focus primarily on DTSMs with linear drifts for the state variables.
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Figure 13.2. Unadjusted sample and model-implied population projection coeffi-
cients φn. Risk-adjusted sample projection coefficients φR. Source: Dai and Singleton
(2002).

13.3. DTSMs of Swap and Treasury Yields

We begin our in-depth exploration of the empirical fit of DTSMs by review-
ing their applications to the Treasury and swap yield curves.

13.3.1. DTSMs and Expected Returns

Roberds and Whiteman (1999), Backus et al. (2001), and Dai and Singleton
(2002), among others, have examined whether implied yields from affine
models match the patterns of “unadjusted” projection estimates φnT dis-
played in Figure 13.2 as LPY for the smoothed Fama-Bliss data set.5 Drawing

5 Dai (2003) and Wachter (2005) examine the puzzle LPY in the context of nonaffine
macroeconomic models in which agents preferences exhibit habit formation. We revisit their
analyses in Section 13.5. McCallum (1994) and Kugler (1997) propose resolutions of the puzzle
LPY based on macroeconomic models with particular monetary policy rules.
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upon the analysis in Dai and Singleton (2002),6 Figure 13.2 also displays
the population φn implied by canonical three-factor Gaussian [A0C (3)] and
square-root or CIR-style [A3C (3)] models. Model A0C (3) was estimated using
the extended risk-premium specification (12.39), whereas modelA3C (3)was
fit with the more restrictive specification (12.38).7

Model A3C (3) embeds the most flexible specification of factor volatili-
ties (within the affine family), but requires the relatively restrictive risk pre-
mium specification (12.38). From Figure 13.2 we see that the fitted φnT form
(approximately) a horizontal line at unity, implying that the multifactor CIR
model fails to reproduce the downward sloping pattern LPY. The empirical
analysis in Duffee and Stanton (2001) suggests that this failure of CIR-style
models extends to the special case of (12.41) with λ2 =0. Thus, it seems that
it is not enough to free up the mean of 	(t) in completely affine DTSMs to
match LPY; the dynamics of 	 must also be changed as in (12.39). On the
other hand, the Gaussian A0C (3)model, which gives maximum flexibility in
both specifying the dynamic properties of the market prices of risk and the
factor correlations, is successful at generating φn that closely resemble LPY.

Whether a DTSM matches LPY speaks to whether it matches the P-
dynamics of yields, but it does not directly address whether a DTSM matches
the Q-dynamics. To address the latter, Dai and Singleton (2002) suggest
examining projections of the term-premium adjusted changes in yields
(13.10) onto the scale slope (ynt − rt )/(n − 1). Under the null hypothesis
that the DTSM is correctly specified, this projection should produce a co-
efficient φRnT of unity for all n. From Figure 13.2 it is seen that model A3C (3)
gives φRnT that are virtually the same as the historical estimates LPY, instead
of the theoretically predicted horizontal line at unity for a correctly spe-
cified model. In other words, it is as if model A3C (3) has constant risk pre-
miums. In contrast, the φRnT implied by model A0C (3) are approximately
unity, at least beyond maturities of about 2 years.8 It turns out that the results
for models AMC (3), M =1, 2, lie in between these two extremes.

These findings highlight the demands placed on risk premiums in
matching the first-moment properties of bond yields. The specification
(12.38) appears to be grossly inconsistent with LPY, for any of the families
AM (3). Since (12.38), or nested special cases of this specification, were used
in most of the empirical literature on DTSMs up to around 2000, it follows

6 As in their analysis, our canonical models AMC (N ) assume that the first M factors
are mutually independent. This allows us to use the ML estimator proposed by Duffie et al.
(2003b).

7 Based on the discussion around the specification (12.40) in Chapter 12, the specifica-
tion of 	t in model A3C (3) could be relaxed further. An interesting question is whether this
extension would improve the fit of this model relative to what Dai and Singleton report.

8 See Dai and Singleton (2002) for a discussion of fitting the short end of the yield curve
using a four-factor model.
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that the models studied in this early literature were incapable of matching
LPY. Even with Duffee’s extended specification (12.39), only the Gaussian
model appears to match both LPY and the requirement that φR=1.

Turning to QG models, they share essentially the same market prices of
risk as the extended Gaussian model. Therefore, we expect multifactor QG
models to be equally successful at matching LPY. In fact, when we computed
the φRn implied by one-factor Gaussian and QG models, calibrated to the
moments of forward rates, we found that both models implied virtually
identical φRn (that were approximately unity). Additionally, Lu (2000) [for
multifactor versions of the SAINTS model of Constantinides (1992)] and
Leippold and Wu (2003) (for a general two-factor QG model) generate
patterns of unadjusted φn consistent with LPY in Figure 13.2.

The structure of risk premiums in regime-switching models also appears
to be central to their flexibility in matching LPY. All of the empirical studies
we are aware of adopt the relatively restrictive risk premium specification
(12.38) within each regime, and assume that regime-shift risk is not priced.
Naik and Lee (1997) and Evans (2000) have the market price of risk be-
ing proportional to volatility, with the same proportionality constant across
regimes. In Naik and Lee, this implies that regime-dependence of the bond
risk premium is driven entirely by the regime-dependence of volatility. Evans
only allows the long-run means, and not the volatility, of the state variables
to vary across regimes. In contrast, Bansal and Zhou (2002) allow the market
price of risk to vary across regimes, through both the regime-dependence
of volatility and the regime-dependence of the proportionality constant.

Interestingly, Evans’s two-factor CIR-style model [an A2(2) model with
two regimes] fails to reproduce the historical estimates of φn from U.K. data
(see his Table 6). In contrast, Bansal and Zhou, who study a two-factor CIR
model with two regimes using U.S. data, generate projection coefficients
consistent with the pattern LPY in Figure 13.2. Taken together, these find-
ings suggest that having multiple regimes may overcome the limitations of
AN (N )models in matching LPY outlined above, so long as the factor volatil-
ities and risk premiums vary independently of each other across regimes.

As noted previously, the key feature of bond yield data underlying the
departures of the joint distribution of changes in bond yields from the im-
plications of the expectations hypothesis (EH) is the high degree of pre-
dictability of excess holding-period returns. An interesting question then
is whether DTSMs can replicate this predictability. Before addressing this
question within the context of a formal DTSM, it is instructive to explore
whether the predictive power of forward rates for excess returns is repli-
cated using a small number of principal components of bond yields. The
latent factors in many DTSMs are highly correlated with the low-order PCs.
Therefore, high R 2’s in predictive regressions using PCs would be an en-
couraging first step.
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Table 13.1. Contributions of the PCs to the R2 from
the Regressions of Excess Returns on All Five PCs

Data 2-year bond 3-year bond 4-year bond 5-year bond

A. Total contribution of PC1–PC3
UFB 0.838 0.774 0.762 0.827
SFB 0.974 0.953 0.946 0.947

B. Contribution of PC2
UFB 0.555 0.580 0.610 0.672
SFB 0.624 0.670 0.708 0.737

To address this issue we regressed the excess 1-year holding-period re-
turns on the PCs of the yields on bonds with maturities of 1 through 5 years
(five yields).9 Since there are five yields, the use of all five PCs would repli-
cate the findings in Cochrane and Piazzesi (2005) (see Section 9.6) using
five forward rates—these series embody precisely the same information. As
we have seen, DTSMs are typically fit with N less than or equal to three and,
therefore, we are particularly interested in whether the first three PCs have
nearly as much predictive content as the five forward rates.

Table 13.1 shows that the first three PCs from data set SFB account for
well over 90% of the predictive power of forward rates for excess returns.
In contrast, for data set UFB the percentages range between 76 and 83%.
These findings suggest that the fourth and fifth PCs and their relationships
to excess returns in data set UFB are different than for data set SFB.

That the variation in yields associated with the fifth PC differs across
data sets is seen from Table 13.2. The volatilities of the first three PCs are
quite similar across data sets. However, the volatilities of PC4 and PC5 are
larger in data set UFB than in the SFB data. It is this extra variation in data
set UFB, which is not explained by the usual “level,” “slope,” and “curvature”
factors, that underlies the differences in Table 13.1.A.

An interesting issue for future research is the nature of the extra vari-
ability in the UFB data: are there economic factors omitted from the SFB
data, or is the extra variation in the UFB data an artifact of the particular
spline used to construct them? If one concludes that there are key economic
factors underlying the variation in yields in the UFB data that are not cap-
tured by the first three PCs, then it seems likely that three-factor DTSMs will
also fail to incorporate this economic information.

To explore the forecasting power of DTSMs for excess holding-period
returns, we estimate discrete-time, three-factor, Gaussian DTSMs [DA0(3)

9 These calculations discussed in the remainder of this section were undertaken in col-
laboration with Qiang Dai and Wei Yang.
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Table 13.2. Standard Deviations of PCs in Basis Points

Data PC1 PC2 PC3 PC4 PC5

UFB 528 67.3 10.6 7.39 6.73
SFB 527 64.2 9.0 1.47 0.16

models] by the method of ML, using monthly data over the common pe-
riod of 1970–2000. Then, treating the ML estimates as the true population
parameters, we undertake two complementary exercises. First, from each
model, we simulate time series of bond yields of length 105 and then, using
the simulated data, we estimate the projections of excess returns onto the
five forward rates. We interpret the resulting projection coefficients and R 2

as the population values implied by the models.
Second, to explore the small-sample properties of the model-implied

R 2 in these projections, we simulated 104 time series of yields, each of
length T , estimated the projections of excess returns onto forward rates
for each simulation, and then computed the sample mean and standard
deviation of the R 2 across simulations. In other words, we computed the
means and standard deviations of the small-sample distributions of the R 2

statistic implied by the DA0(3)model. This exercise was undertaken for T =
360 and T = 600, corresponding to 30 and 50 years of data, respectively.

Given the linear dependence of excess returns on Y in affine DTSMs,
the number of latent factors limits the number of noncollinear forward rates
that can be used in these regressions. For our three-factor models, we choose
to use the forward rates f 0→1, f 2→3, and f 4→5, in addition to a constant
term, as the regressors. For comparability, the reported sample R 2’s are for
projections of excess returns onto the same three forward rates.

The model-implied population R 2’s (“Pop.” in Table 13.3) are very sim-
ilar across both data sets. This is surely a consequence of the fact that the
fitted yields from the three-factor models share similar smoothness proper-
ties, even though the underlying data sets are not equally smooth. Further-
more, the sample R 2’s are consistently larger than their population coun-
terparts (compare columns “Samp.” and “Pop.”). The differences between
these R 2’s tend to be smaller for the relatively smooth SFB data.

The general tendency for population R 2’s to be below their sample
counterparts suggests that finite-sample R 2’s are upward biased. To explore
this possibility more systematically, we conducted a Monte Carlo analysis un-
der the presumption that each DTSM, evaluated at the ML estimates, is the
true data-generating model for the term structure data. The results confirm
that, under the null hypotheses that our affine models accurately describe
conditional first-moment properties of these bond yields, the actual (pop-
ulation) degree of predictability in excess returns is much less than what is
indicated by the sample R 2’s presented in Cochrane and Piazzesi (2005).
The small-sample biases are large, on the order of 50% of Pop.
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Table 13.3. Monte Carlo Simulations for Model DA 0(3)

UFB SFB

Maturity Samp. 360 600 Pop. Samp. 360 600 Pop.

2 0.33 0.26 0.23 0.18 0.29 0.29 0.26 0.21
(0.10) (0.08) (0.10) (0.08)

3 0.36 0.27 0.23 0.18 0.30 0.28 0.25 0.20
(0.10) (0.08) (0.10) (0.08)

4 0.35 0.29 0.25 0.20 0.30 0.28 0.25 0.20
(0.10) (0.08) (0.10) (0.07)

5 0.33 0.31 0.28 0.23 0.30 0.28 0.25 0.20
(0.10) (0.08) (0.10) (0.07)

Note: For each data set and model, the first column reports the R 2’s for regressions estimated
from the observed data, the second and third columns report the small-sample means and
standard errors (in parentheses) of the R 2’s estimated from simulated samples of length 360
and 600 months, and the fourth column reports the model-implied population R 2.

Moreover, the means of the small-sample distributions of the R 2’s are
quite close to the realized values in the data sets (compare the column
labeled “360” with the column “Samp.”). The largest difference occurs for
data set UFB. Thus, if one believes that UFB most accurately measures
the zero and forward rates, then this finding constitutes mild evidence
that model DA0(3) does not fully generate the degree of predictability in
excess returns inherent in the historical data. However, the differences
between the R 2’s in the historical sample and the mean of the small-sample
distribution of the model-implied R 2’s are all within one standard deviation
(of the small-sample distribution of the R 2) of each other.

Finally, an important question is whether the deviations from the EH—
the high degree of predictability of excess returns—is economically im-
portant for optimal consumption and investment decisions. An interesting
partial answer to this question is provided by Sangvinatsos and Wachter
(2005), who examine the behavior of long-term investors in bond markets
in the presence of the state-dependent market prices of risk that explain
the failure of the EH. They find that these risk premiums induce substan-
tial hedging demands and, consequently, the bond holdings of investors in
their setting look very different than those of a mean-variance optimizer.

13.3.2. DTSMs and Bond-Yield Volatility

A hump-shaped term structure of yield volatilities is inconsistent with the
theoretical implications of both one-factor affine and QG DTSMs. This is
essentially a consequence of mean-reversion of the state.

In multifactor models, a humped-shaped volatility curve can be induced
either by negative correlation among the state variables or hump-shaped
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loadings on the state variables Y in the mapping between zero coupon
yields and Y . Fitted yields from both affine and QG DTSMs typically fit the
volatility hump (e.g., Dai and Singleton, 2000; Leippold and Wu, 2003), so
long as yields on bonds with maturities that span the humps are used in
estimation.

The economic reasons for the different shapes in Figure 13.1 remain
largely unexplored, though the differing patterns pre- and post-1979 are
suggestive. In a study of U.S. Treasury yields over the period 1991–1995,
Fleming and Remolona (1999) found that the term structure of “an-
nouncement effects”—the responses of Treasury yields to macroeconomic
announcements—also have a hump-shaped pattern that peaks around 2 to
3 years. Moreover, they fit two-factor affine models in which r mean reverts
to a stochastic long-run mean and found that the model-implied announce-
ment impact curves were also humped shaped. Might it be that investors’
attitudes toward macroeconomic surprises following the monetary experi-
ment in the late 1970s changed, much like what happened in option mar-
kets following the “crash” of October 1987?

Piazzesi’s (2003) analysis lends support to a monetary interpretation
of the volatility hump. Her econometric model, which is essentially a four-
factor mixed affine-QG model with jumps, not only matches the humped-
shaped volatility pattern in Figure 13.1, but also the “snake” shape of volatil-
ity between 0 and 2 years (steeply declining volatility from 0 to 6 months and
then rising volatility to 2 years). Her study provides a rich structural (mone-
tary) interpretation of the need for a fourth factor to capture the very short
end of the LIBOR curve (on the need for four factors, see also Liu et al.,
2006).

The second aspect of CVY is the degree of model-implied time-varying
volatility relative to what we find in the historical data. To set a historical
benchmark for comparing models we estimated GARCH(1,1) (Bollerslev,
1986) models for the 5-year yields using historical data.10 Next we computed
ML estimates of the canonical A1C (N ) models (N = 2, 3), based on the
risk premium specification (12.39), with the 6-month and 2- and 10-year
yields (2- and 10-year yields when N = 2) assumed to be fit perfectly by
the model. Then we refit the same GARCH model using simulated yields
from these models. In the case of swaps, we simulated 20 years of weekly
data (1040 observations); whereas in the case of Treasury zero-coupon data,
we simulated 20 years of monthly data (240 observations). We selected

10 Clearly one could use a much richer parameterization of conditional volatility than
a GARCH(1,1) model—the semi-non-parametric density proposed by Gallant and Tauchen
(1996) is one such parameterization. Our goal here was to simply compute a descriptive
measure of persistence in volatility that could be used to compare models. Going beyond this
basic comparison is an interesting topic for future research.
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Table 13.4. ML Estimates of GARCH(1,1) Parameters Using
Historical and Simulated Time Series of Swap and Treasury Yields

GARCH(1,1) σ̄ α β

Swap sample 0.005 (0.001) 0.126 (0.038) 0.657 (0.062)
Model A1C (2) 0.012 (0.003) 0.102 (0.040) 0.235 (0.209)
Model A1C (3) 0.008 (0.000) 0.126 (0.027) 0.793 (0.024)

Treasury sample 0.016 (0.005) 0.165 (0.058) 0.749 (0.069)
Model A1C (3) 0.000 (0.000) 0.146 (0.075) 0.605 (0.188)
Model A1R (3) 0.000 (0.000) 0.164 (0.070) NA

Note: The GARCH model has σ 2
t = σ̄ +αu 2

t +βσ 2
t−1, where u t is the innovation from an AR(1)

representation of the level of the 5-year yield. Standard errors are given in parentheses.

the 5-year yield, because it lies between the 2- and 10-year yields that are
matched perfectly at the implied state variables. The results are shown in
Table 13.4.

The swap sample, 1987–2000, covers a period of relative tranquility in
interest rates, compared to the period of the late 1970s and early 1980s. The
5-year yields implied by model A1C (3) exhibit comparable volatility charac-
teristics to the historical data. In contrast, the model A1C (2) substantially
understates the degree of volatility persistence in the 5-year swap yield. So
moving from two to three factors makes a substantial difference in matching
the persistence in stochastic volatility during this period, even though in both
cases only Y1 drives the factor volatilities.

The smoothed Fama-Bliss sample of Treasury zero-coupon bond yields
covers a 25-year period that includes the monetary experiment in the late
1970s. Nevertheless, we see that the implied GARCH(1,1) estimates from
model A1C (3) again match those in the sample quite closely. To see whether
the specification 	(t) affects these results, we re-estimated model A1C (3)
with	(t) given by (12.38) instead of (12.39). The results for Treasury data—
Model A1R (3) in Table 13.4—are striking, with the volatility in Model A1R (3)
showing almost no persistence. The best-fitting model was an ARCH(1).11

The structure of conditional volatility in QG models has been explored
extensively in Ahn et al. (2002, 2003) (see also Lu, 2000). They argue
that there is a significant difference between three-factor QG and affine
models along this dimension, with QG models doing a much better job of
matching the conditional variation in the historical U.S. Treasury data as
captured in their descriptive (semi-nonparametric auxiliary) model. How-
ever, their reference affine model was the preferred affine A1(3) model

11 We repeated this calculation for several simulated time series 20 years long and ob-
tained qualitatively similar results.
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examined in Dai and Singleton (2000), which is based on specification
(12.38) of	(t). As we have just seen, using the specification (12.39) instead
can have a significant effect on affine model-implied yield volatilities. Nev-
ertheless, the analysis in Brandt and Chapman (2002) suggests that, even
with the extended specification of	(t), the A1(3)model does not fit the his-
torical distributions of bond yields as well as three-factor QG models. Kim
(2004) also provides evidence on the relatively good fit of QG models to
historical volatility.

In summary, affine- and quadratic-Gaussian DTSMs are evidently capa-
ble of resolving the puzzles associated with the rejections of the expectations
hypothesis. At the same time, for both families of models, there appears to
be a “tension” between matching properties of (1) the conditional mean,
(2) the conditional volatilities, and (3) the risk premiums (Duffee, 2002; Dai
and Singleton, 2002). Within the family of affine DTSMs, clearly we must
haveM >0 in order for there to be stochastic volatility. However, accommo-
dating stochastic volatility in this manner seems to conflict with matching
the first-moment properties of yields. Duarte (2004) finds that his extended
market price of risk (12.41) does not contribute substantially to relaxing
this tension in matching first and second moments within the affine family.
Kim (2004) reaches a somewhat more optimistic conclusion for QG models
in that they seem to do a better job of generating substantial conditional
volatility, while having market prices of risk that address the expectations
puzzles.

13.4. Factor Interpretations in Affine DTSMs

Implicit in trying to meet the challenges of matching the conditional first-
and second-moment properties of bond yields are key trade-offs that are evi-
dently being made by the likelihood functions associated with these models.
Introducing stochastic volatility, by moving from anA0(3) to anA3(3)model,
for example, necessarily improves a researcher’s ability to match stochastic
volatility in the data. Moreover, the likelihood function for the A3(3)model
clearly weights matching this volatility more heavily than it weights match-
ing the conditional first-moment properties of the zero-coupon bond yields,
under either P or Q.

A complementary perspective on this tension is that it reflects the chal-
lenges in fitting the relative prices of bonds of different maturities and the
time-series properties of these yields at the same time. Collin-Dufresne et
al. (2004) have recently emphasized the dual role that the volatility factors
[the first M factors in an AM (N ) model] play in affecting both the cross
section of bond yields and their time-varying volatilities. In particular, they
find that, in an unconstrained A1(3) DTSM, the volatility factor does not
match well with standard measures of the stochastic volatility of short-term
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interest rates (e.g., GARCH or EGARCH models). This finding motivates
their consideration of a constrained A1(3)model in which there is USV (see
Section 12.3.2).

In assessing the importance of USV, Collin-Dufresne et al. use bond
yield data alone, so not all of their parameters are identified.12 Of particular
interest is their findings for members of the family A1(3) with and without
USV. In both cases, estimation proceeds assuming that the models price
the first two principal components of swap yields (actually, the PCs of zero
yields constructed from swap yields) perfectly. In their unconstrained A1(3)
model, the third PC is assumed to be priced up to a normally distributed
error. For theA1(3)–USV model, the volatility factor that does not appear di-
rectly in bond prices is treated as the latent factor. An extended market price
of risk specification is used that nests the specification (12.39) developed by
Duffee (2002) by incorporating versions of the more flexible specification
(12.40) for A1(N ) models.

What they find is that the implied state variables filtered from the un-
constrained A1(3) model match the first three PCs of the swap yields quite
closely. The first two PCs are matched by construction and the third is an
outcome of their estimation—the likelihood function chose the parame-
ters so that one of the state variables roughly matched this PC. In contrast,
whereas (again by construction) the first two state variables in the A1(3)–
USV model track the first two PCs, the third state variable looked much
more like the volatility of the short-term bond yield than it did the third
“curvature” PC from bond yields. The measures of volatility used were the
fitted GARCH(1,1) and EGARCH(1,1) volatilities (see Chapter 7).

Since the A1(3)–USV model is literally nested in the unconstrained
A1(3) model, the finding that they imply different third factors must be a
consequence of misspecification of the A1(3) family: nested models such
as these cannot be built up from distinct risk factors. Indeed, when Collin-
Dufresne et al. estimate a A1(4)–USV model, they find that it fits the best of
all of the models examined. This is to be expected, because three of the risk
factors can capture the usual level, slope, and curvature factors, and one is
free to capture USV.

That factor interpretations can change with the imposition of restric-
tions on the parameters of a DTSM may seem surprising at first, so some
elaboration on this possibility seems warranted. Consider the analysis with
U.S. Treasury data of the A1(3) family of models in Dai and Singleton
(2002). Table 13.5 shows the mean reversion parameters under P of the

12 This is because the bond prices do not depend on the unspanned volatility factors. All
of the parameters would be identified if as many prices of derivatives as unspanned factors
were included in the empirical analysis. We return to this point in Chapter 16 when discussing
the empirical evidence on fitting to the implied volatilities of derivatives.
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Table 13.5. Mean Reversion Parameters from Various A1(3)Models

Parameter A1C (3) A1S (3) A1L(3)

κ11 0.002 (−0.005) 0.653 (0.574) 1.95 (1.94)
κ21 0.204 (−0.107) −5.45 (−6.33) −0.44 (0.08)
κ31 0.295 (−0.384) 0.029 (0.039) 1.01 (3.99)
κ22 0.983 (0.062) 1.50 (1.80) 0.13 (0.002)
κ32 −2.740 (−1.95) −0.022 (−0.011) 0.25 (−0.03)
κ23 −0.403 (0.471) −16.6 (−38.2) −0.26 (0.005)
κ33 2.510 (2.340) 0.500 (0.244) 0.61 (0.58)

ML 33.54 33.54 33.42

Note: Parameters under P are presented with their associated Q counterparts in parentheses.
Y1 is the volatility factor.
Source: Dai and Singleton (2002).

three factors in three members of the family A1(3). The numbers in paren-
theses are the corresponding numbers under Q. The first, model A1C (3),
is a slightly constrained version of the canonical model for this family us-
ing Duffee’s essentially affine specification of the market prices of risk (see
Section 12.3.3). The volatility factor shows relatively little mean reversion
under P (κ P11 = 0.002) and it is explosive under Q (κQ11< 0).

Model A1S (3) is the same model with the additional constraint that the
volatility factor Y1 be stationary under both P and Qmeasures. Though im-
posing Q-stationarity has almost no effect on the value of the likelihood
function (they are the same to two decimal places), it leads to a factor rota-
tion. The volatility factor Y1 now has an intermediate rate of mean reversion.
Finally, modelA1L(3) imposes the additional constraints that the second and
third factors do not exhibit stochastic volatility. That is, they are correlated
(through the drift) with Y1, but Y1 does not affect the instantaneous volatil-
ities of factors Y2 and Y3 (which are constant). Again the factors are rotated
and Y1 now has the fastest rate of mean reversion among the volatility factors
in these three models. Collin-Dufresne et al. (2004) found a similarly large
change in the rate of mean reversion of the volatility factor in their A1(3)
model when they imposed the constraints associated with USV. However,
from (12.30) it follows that the volatility factors vt and Vt are perfectly cor-
related and, hence, they should have the same degree of mean reversion.

Since all the models listed in Table 13.5 were estimated with the same
data and with the same bonds being priced perfectly by the model, these
rotations must be a consequence of model misspecification. Locally, the per-
sistence in the volatility of r is determined only by the persistence in Y1, the
only factor with stochastic volatility. Each of these models leads to a different
conclusion about the degree of this persistence. Something very similar ap-
pears to be happening in the analysis of Collin-Dufresne et al. Depending on
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the particular parametrization chosen, the likelihood function makes differ-
ent trade-offs between fitting the cross-section and time-series properties of
bond yields within the misspecified family A1(3). The consequences of this
were striking in Dai and Singleton’s (2002) analysis of expectations puzzles.
Moving from model A1C (3) to A1L(3), they found that there was a substan-
tial improvement in their models’ abilities to fit correlations of bond yields
and the slope of the yield curve historically. In particular, the risk-adjusted
coefficients φRnT were much closer to unity. We relate these observations to
the pricing of fixed-income derivatives in Chapter 16.

13.5. Macroeconomic Factors and DTSMs

Several complementary literatures have recently been exploring the link-
ages between interest rate behavior and the business cycle. Before examin-
ing these models, we note that there is substantial descriptive evidence that
macroeconomic variables are highly correlated with the latent state vari-
ables in DTSMs. For instance, Wu (2000) and Evans and Marshall (2001)
find that “aggregate demand” shocks are highly correlated with the first
PC or “level” factor and that monetary policy shocks (at least under some
identifying assumptions) affect the slope of the yield curve by having a dis-
proportionately large effect on short-term rates.

To relate these descriptive studies to the properties of a DTSM, we
proceed to decompose the responses of yields to factor “shocks” based on
their contributions to expected future changes in short rates and to changes
in term premiums. Recalling that

Rn
t = 1

n

n−1∑
i=0

Et[rt+i] + 1
n

n−1∑
i=0

p it ≡ ESt (n)+ TPt (n), (13.11)

we can decompose movements in zero yields into the “expected return”
(ESt (n) and “term premium” (TPt (n)) components. Focusing on the A0(3)
model, with market price of risk specification (12.39), the factors have
the following interpretations in terms of yield curve movements: Factor 1
is a “curvature” or “butterfly” factor, with a P-half-life of about 2.2 months;
Factor 2 is the “level” factor, with the longest P-half-life of 2.65 years;
and Factor 3 is the “slope” factor, with an intermediate P-half-life of 1 year.

Figure 13.3 displays the responses of the Treasury zero curve to one-
standard deviation shocks to the factors. Shocks to the level factor induce a
roughly equal change in the yields of bonds of all maturities. At the short
end, out to about 2.5 years, yields are affected almost entirely through
ESt (n). However, as the maturity of the bonds is increased, TPt (n) grows
while ESt (n) declines to the point where they have roughly equal effects on
the 10-year yield. It is precisely the growing importance (with maturity) of
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Figure 13.3. Responses of yields, expected average short rates, and risk premiums
to shocks to the factors in an A0 (3) model fit to U.S. Treasury bond yields.

TPt (n) that underlies the success of model A0(3) in replicating the failure
of the expectations theory in the historical data. The responses of yields to
level shocks are very similar to the responses to the aggregate demand shock
in Evans and Marshall (2001).

The slope factor (Factor 3) moves short-term rates by three times as
much as it moves the long-term rates (150 versus 50 basis points). It affects
yields virtually entirely through ESt (n), having a near-zero effect on term
premiums. This shock is very similar to one of the versions of the exoge-
nous monetary policy shock used in the structural vector autoregression in
Evans and Marshall (2001). Finally, the curvature shock (Factor 1) is a pure
risk-premium phenomenon with a near-zero ESt (n) for all n. Previous de-
scriptive studies have found that the curvature factor, as proxied by the third
principal component, evidences little correlation with macroeconomic ac-
tivity. As such, Duffee (2002) conjectured that it might represent a “flight
to quality” shock.

While these descriptive studies are suggestive of the contributions of
macroeconomic shocks to term structure movements, a deeper understand-
ing of the roles of macro shocks requires the integration of term structure
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and business cycle models. The first generation of models along these lines
introduced macro factors directly into DTSMs. For instance, Ang and Pi-
azzesi (2003) estimate anDA0(5), a five-factor discrete-time Gaussian model,
in which three of the factors are latent (as in standard DTSMs) and two are
observed macroeconomic variables. One of the latter represents real eco-
nomic activity and the other is related to inflation. While informative about
the correlations between macro variables and yields, within a no-arbitrage
setting, this formulation does not provide an economic interpretation of
the latent shocks. Additionally, as specified, no feedback was allowed be-
tween the macro variables and the short-term interest rate. Such feedback
is predicted by most formulations of monetary policy rules.

Another body of work introduces multiple regimes into affine DTSMs
with latent risk factors. Common to all of these studies is the finding, consis-
tent with the descriptive analyses of Ang and Bekaert (2002) and others, that
the switches in regimes are closely matched with recessions and expansions
in the U.S. economy. Ang and Bekaert (2003b) introduce inflation into a
regime-switching model in order to extract measures of ex ante real interest
rates within a DTSM. Dai et al. (2003) estimate a model with two regimes in
which the risk of shifting across regimes is priced. They find that the market
prices of regime-shift risk vary over time with the stage of the business cycle.
Furthermore, the introduction of multiple regimes with state-dependent
probabilities of switching regimes accommodates the asymmetric nature of
business cycles: recoveries tend to take longer than contractions (see, e.g.,
Neftci, 1984, and Hamilton, 1989).

To develop more formal links between the risk factors in DTSMs and
macroeconomic models of the business cycle Hordahl et al. (2003), Rude-
busch and Wu (2003), and Bekaert et al. (2005) overlay an affine DTSM on
an IS-LM-style macroeconomic model of the economies for Germany and
the United States. They combine aggregate demand and aggregate supply
equations with a monetary policy rule to determine the short-term interest
rate. Then the absence of arbitrage opportunities is used to derive the im-
plied model of long-term bond yields. These studies work within the A0(N )
framework, thereby ignoring macroeconomic links to conditional volatility.
Time-varying conditional volatility could be introduced into these models
within the discrete-timeAM (N ) framework of Dai et al. (2005). Additionally,
the literature has presumed that only the short-term interest rate enters into
the aggregate demand equation. This facilitates model development, since
long-term rates are then determined by an arbitrage-free DTSM. However,
standard economic reasoning would support a role for long-term rates di-
rectly in the aggregate demand function.

Following Bekaert et al., a representative model has the monetary au-
thority setting the short-term interest rate according to the rule

it = ρit−1 + (1 − ρ)
[̄
it + βEt

[
πt+1 − π∗

t

]+ γ
(
yt − ynt

)]+ εMP ,t , (13.12)
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where ρ is the interest rate smoothing parameter (see, e.g., Clarida et al.,
1999), π denotes inflation and π∗ is the central bank’s inflation target, y is
detrended output and yn is the natural rate of output, and ī is the desired
level of i when π= π∗ and y = yn .

Aggregate demand, incorporating adjustment costs, is given by

yt = αIS + µy Et[yt+1] + (1 − µy)yt−1 − φ (it − Et[πt+1])+ εIS,t . (13.13)

The leads and lags in (13.13) are sometimes increased to accommodate
monthly data in a setting where expectations about the future or adjustment
costs involve more periods (e.g., Fuhrer, 2000). The lagged y is motivated
by the presence of external habit formation (see Section 10.5.2) in agents’
preferences. Inflation is set according to a standard Phillips curve:

πt = δEt[πt+1] + (1 − δ)πt−1 + κ
(
y−ynt

)+ εAS,t . (13.14)

To complete this model (as a model of the term structure), the mar-
ket prices of risk must be specified. Since the IS curve (13.13) is derived
from a linearization of the first-order conditions to a representative agent’s
intertemporal consumption/investment problem, the market prices of risk
are not free parameters. All of the macroterm structure models that have
been examined to date assume a linear structure to the aggregate demand
and supply functions and the monetary policy rule, with Gaussian homo-
skedastic shocks. Under their assumption that marginal rates of substitution
are lognormally distributed, this leads to the pricing kernel13

q ∗
t+1 = e−it−

1
2	
D′
�	D−	D′

εt+1, (13.15)

where εt+1 ∼N (0, �). That is, these models imply that the market prices of
risk 	 are constant. This, in turn, implies that expected excess returns are
constants and the EH holds.

Bekaert et al. (2005) impose this structure for internal consistency and,
thereby, examine a macroeconomic model that, by construction, is not able
to match the high degree of predictability in excess returns documented
above. Hordahl et al. (2003) and Rudebusch and Wu (2003) adopt a speci-
fication of	t that is an affine function of the macroeconomic and/or latent
risk factors in their models. This allows their term structure models to better

13 To relate this pricing kernel to the family considered by Dai et al. (2005), we write their
pricing kernel [using (12.42)] as q ∗

t+1 = e−it−ηt−	D
′
t (Yt+1−mPt ), where ηt = 	D

′
t m

P
t −a(	t )−b(	t )Yt

and a(	D) = 	D
′
µ0 + 1/2	D

′
�t	

D and b(	D) = 	D
′
µY are the coefficients in the conditional

P-MGF for Y . It follows that ηt = 1
2	

D′
t �t	

D
t and we obtain (13.15) as the homoskedastic special

case with εt+1 ≡ Yt+1 −mPt .
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fit the time-series properties of excess returns, but at the expense of intro-
ducing a logical inconsistency—their aggregate demand and market price
of risk specifications are not mutually consistent.

Ang et al. (2005b) and Law (2005) pursue an intermediate strategy of
emphasizing macro factors, without imposing the detailed structure out-
lined above. Instead they interpret their mappings between the short rate
r and macroeconomic variables as variants of Taylor monetary policy rules.
These formulations allow r to depend on its past and thereby allow for either
policy inertia or interest rate smoothing. The implied DTSMs are assumed
to be in the DA0(N ) families but, unlike the more structured models just
discussed, the market price of risk 	D is allowed to be an affine function
of the state. This flexibility is allowed because the authors do not adopt a
parametric model of aggregate demand. Upon estimating the models using
MCMC methods (see Section 6.8), they find that the macro variables explain
at least half of the variation in bond yields. Also of interest is their finding
that the model-implied monetary policy shocks do not correspond closely
to the policy shocks extracted using regression methods.

Finally, Dai (2003), Buraschi and Jiltsov (2004), and Wachter (2005)
develop DTSMs directly from agents’ intertemporal optimum problems.
Buraschi and Jiltsov assume logarithmic preferences, Dai assumes that
agents exhibit internal (stochastic) habit, and Wachter has agents exhibit-
ing external habit. A primary focus of all three of these papers is on the
abilities of preference-based models to resolve the expectations puzzles LPY
outlined previously. To achieve their goals, Dai and Wachter assume ex-
ogenous inflation processes so that the pricing kernel for nominal bonds
is agents’ marginal rate of substitution scaled by the inverse of the infla-
tion rate. Buraschi and Jiltsov, on the other hand, endogenize inflation by
introducing money directly into agents’ preferences. The latter model, as
well as the related continuous-time model of Wu (2002), introduce Taylor-
like monetary policy rules directly thereby incorporating a monetary policy
shock.
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14
Term Structures of Corporate

Bond Spreads

If the issuer of a fixed-income security might default prior to the maturity
date T then, in addition to the risk of changes in r , both the magnitude and
the timing of payoffs to investors may be uncertain. How these additional
default risks affect pricing depends on how the default event is defined and
how recovery in the event of a default is specified. This chapter presents
several of the most widely studied models for pricing defaultable bonds and
reviews the evidence on the empirical fits of these models.

14.1. DTSMs of Defaultable Bonds

At the broadest level, the two most commonly studied default processes
are those of reduced-form and structural models. The former treat default
as an unpredictable event, essentially the outcome of a jump process and
its associated intensity or the arrival rate of default events. In contrast, the
latter often provide an explicit characterization of the default event, like
the first time that a firm’s assets fall below the value of its liabilities. Hybrid
models that combine aspects of both approaches have also been examined.

In the case where an issuer might default, we view a zero-coupon bond as
a portfolio of two securities: (1) a security that pays $1 at date T contingent
on survival of the issuer to the maturity date T ; and (2) a security that
pays the (possibly random) recovery w received at default, if default occurs
before maturity. More precisely, we let τ denote the random default time
and 1{τ>t} be the indicator function for the event that τ > t . The price of
this defaultable zero-coupon bond, B(t ,T ), is given by

B(t ,T ) = E Qt
[
e− ∫Tt rs ds1{τ>T }

]
+ E Qt

[
e− ∫τt rs dsw1{τ≤T }

]
. (14.1)

The practical challenge in extending our pricing models to accommodate
default is the evaluation of the two expectations in (14.1). The first involves

364
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a random payoff determined by the default process underlying the default
time τ . The second involves the random recovery and discounting over an
uncertain horizon also determined by the distribution of τ .

14.1.1. Reduced-Form Models

In reduced-form models the default time is determined by a counting
( jump) process Z (t) with associated state-dependent intensity process λP(t).
Whether or not an issuer actually defaults is an unpredictable event because,
conditional on the path of λP(t), survival is determined as the outcome of
a random draw from a Poisson distribution. For pricing in this setting, we
extend the formulation (8.32) of the pricing kernel to allow for a “jump”
to the absorbing default state

dMt

Mt
= −rt −�′

t dW
P
t − 	t

(
dZ t − λPt dt

)
, (14.2)

where	t = 	(Yt ) is the market price of default risk, andw(Y (t)) denotes the
recovery by holders of a fixed-income security in the event of default. For a
defaultable zero-coupon bond with price B(t ,T ), the absence of arbitrage
opportunities implies that B(t ,T )Mt is a martingale, which, in turn, implies
that [

∂

∂t
+ G

]
B(t ,T )− (

rt + λ
Q
t
)
B(t ,T )+ wQt λ

Q
t = 0, (14.3)

where λQt ≡ (1 −	t )λPt is the risk-neutral intensity of arrival of default, wQ is
the risk-neutral recovery rate, and G is the infinitesimal generator discussed
in Chapter 8 [see the discussion surrounding (8.50)].

Comparing (14.3) with (8.51) we see that the defaultable security is
priced using the default-adjusted discount rate rt + λ

Q
t . To interpret this

change in discounting, it is instructive to proceed in two steps. Consider
first the role of survival in pricing. Suppose that Z is a Cox process (see
Chapter 5 and Lando, 1998). Then the probabilities under P and Q that a
firm survives from time t until time T are

pP(t ,T ) = E Pt
[
e− ∫Tt λP(s)ds

]
and pQ(t ,T ) = E Qt

[
e− ∫Tt λQ(s)ds

]
, (14.4)

respectively. These survival probabilities take the form of expected present
value relations, with intensities in the place of interest rates. We exploit this
analogy repeatedly in subsequent discussions. Note also that as we change
the measure under which survival is computed, it is necessary to change
both the distribution under which the expectation is computed and the
underlying intensity.
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Importantly, as discussed in Artzner and Delbaen (1995), Martellini and
Karoui (2001), and Jarrow et al. (2005) the requirement of no arbitrage
places only weak restrictions on the risk premium 	(t) and, hence, on the
mapping between λQ and λP. Not only may λP and λQ differ in their current
levels, they may also have different degrees of persistence and time-varying
volatility. Moreover, one might jump while the other follows a continuous
sample path.1 An important empirical issue is the magnitude of 	(t) or,
equivalently, the degree to which λP and λQ differ. As we discuss later, this
depends in part on the abilities of market participants to diversify away
“jump-at-default” risk.

Next suppose that wQt =0, so that there is no recovery in the event of de-
fault. In this case, an investor in a corporate zero-coupon bond receives the
promised payoff of $1 only if the firm survives to the maturity date T . That
is, only if the random default time τ , should default occur, is after T . The
price of this “survival contingent claim” is B(t ,T ) = E Qt [e− ∫Tt r (s) ds1{τ>T }].
From (14.3), it follows that this bond price solves the PDE[

∂

∂t
+ G

]
− (

r (t)+ λQ(t)
)
B(t ,T ) = 0. (14.5)

As shown by Lando (1998) and Madan and Unal (1998), the solution to this
PDE is

B(t ,T ) = E Qt
[
e− ∫Tt (r (s)+λQ(s))ds)

]
. (14.6)

It follows that the survival-contingent claim can be valued by treating the
payoff as $1 with certainty and simultaneously adjusting the rate of discount-
ing. Intuitively, using rt +λQt in discounting accounts for both the time value
of money and mean rate of loss in the event of default, λQ(t)×$1. Since there
is no recovery, adjusting by the mean loss rate amounts to accounting for
survival.

With nonzero recovery, the solution to (14.3) for B(t ,T ) depends on
what one assumes about recovery, wQt . Note the interesting parallel between
the stochastic dividend h in (8.51) and the term wQt λ

Q
t in (14.3). The pos-

sibility of a recovery in the event of default effectively introduces a divi-
dend that is received at the rate wQt λ

Q
t . Since λQt dt is the probability of

default over the next instant of time and wQt is the recovery in the event
of default, the dividend is the (risk-neutral) mean recovery rate owing to
default.

Duffie and Singleton (1999) assume that investors lose an expected
(risk-neutral) fraction LQt of the market value of B(t ,T ), measured just

1 Thus, moving between λP and λQ is not analogous to the standard adjustment to the
drift of r to obtain its risk-neutral representation.
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prior to the default event (fractional recovery of market value). In this case,
wQt = (1 − LQt )B(t ,T ) and B(t ,T ) solves the PDE

[
∂

∂t
+ G

]
− (

r (t)+ LQ(t)λQ(t)
)
B(t ,T ) = 0. (14.7)

It follows that B(t ,T ) = E Qt [e− ∫Tt Ru du], where Rt ≡ rt + λ
Q
t L
Q
t denotes the

“default-adjusted” discount rate.
Lando (1998), Duffie (1998), and Duffie and Singleton (1999) consider

the alternative assumption that a recovery amount of wQτ is received at the
time of default. With the face value of this bond normalized to unity, this
recovery assumption is interpretable as fractional recovery of face value. As
such, it is more closely aligned with the typical covenants of a bond, by which
bondholders are entitled to the smaller of the face values of their bonds or to
whatever portion of that value that remains after liquidation of the issuer’s
assets. By analogy to (8.33), the recovery-of-face value assumption leads to
the pricing relation

B(t ,T ) = E Qt
[
e− ∫Tt (rs+λQs )ds

]
+ E Qt

[ ∫ T

t
e− ∫ut (rs+λQs ) ds λQuw

Q
u du

]
. (14.8)

Madan and Unal (1998) derive similar pricing relations for the case of
junior and senior debts with different recovery ratios.

Finally, Jarrow and Turnbull (1995) assume a constant fractional recov-
ery of an otherwise equivalent Treasury security with the remaining matu-
rity of the defaultable instrument. This recovery assumption is natural for
the case of default on a long-dated corporate zero-coupon bond, where it
seems unlikely that a bankruptcy court would accelerate the bond holder
to par (face value). Instead, one might expect the courts to consider the
discounted values of comparable maturity default-free zero-coupon bonds.
For coupon bonds, the recovery-of-treasury convention implies recovery of
some portion of future coupon payments in addition to face value. This re-
covery assumption has been less widely applied in the empirical literature
than the preceding two assumptions.

Throughout this discussion of pricing we have, naturally, focused on
risk-neutral recovery wQ. At the same time, we have followed standard prac-
tice and adopted the specification (14.2) ofM that presumes that recovery
risk is not priced: wQ = w P. Only the risk related to the timing of default is
(possibly) priced with market price of risk 	t . Analogously to the treatment
of jump amplitude risk in Chapter 12, we could introduce a risk premium as-
sociated with recovery risk. The practical consequence of such an extension
for pricing would be that historical information about recovery would, in
general, be an unreliable guide for parameterizing wQ absent independent
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information about the risk premium associated with recovery risk. Since so
little is known about the latter risk premium,2 we focus on wQ in pricing
and assume that wQ = w P in the few situations where w P is the construct of
interest.

14.1.2. Structural Models

Structural models, in their most basic form, assume default at the first
time that some credit indicator falls below a specified threshold value. The
conceptual foundations for this approach were laid by Merton (1970, 1974)
and Black and Scholes (1973). They supposed that default occurs at the
maturity date of debt provided that the issuer’s assets are less than the
face value of maturing debt at that time. (Default before maturity was not
considered.) Black and Cox (1976) introduced the idea that default would
occur at the first time that assets fall below a boundary D (which may or may
not be the face value of debt), thereby turning the pricing problem into one
of computing “first-passage” probabilities. For the case of exogenously given
default boundary F and firm value A, if in the event of default bondholders
lose the fraction LQT of par at maturity, then the price B(t ,T ) of a defaultable
zero-coupon bond that matures at date T is

B(t ,T ) = E Qt
[
e− ∫Tt ru du (1 − LQT1{τ<T }

)]

= D(t ,T )
[
1 − LQTH

T (At/F , rt ,T − t)
]
, (14.9)

where HT (At/F , rt ,T − t) ≡ ET
t [1{τ<T }] is the first-passage probability of

default between dates t and T under the forward measure induced by the
default-free zero price D(t ,T ) (see Chapter 8). Thus, B(t ,T ) is the price of
a riskless zero-coupon bond minus the value of a put option on the value of
the firm.

Pricing in models with endogenous default thresholds has been ex-
plored by Geske (1977), Leland (1994), Leland and Toft (1996), Anderson
and Sundaresan (1996), Mella-Barral and Perraudin (1997), and Ericsson
and Reneby (2001), among others. The endogeneity of F arises (at least
in part) because equity holders have an option as to whether to issue addi-
tional equity to service the promised coupon payments. With F determined
by the actions of equity holders and debtors, it becomes a function of the un-
derlying parameters of the structural model. The models of Anderson and

2 It is also the case that little is known about the market price of default risk 	t . However,
at least in the case of timing risk, there is relatively more information available from rating
agencies on historical default rates.
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Sundaresan (1996), Mella-Barral and Perraudin (1997), and Ericsson and
Reneby (2001) accommodate violations of absolute priority rules (equity
holders experience nonzero recoveries, even though bondholders recover
less than the face value of their debt).

14.1.3. Pricing with Two-Sided Default Risk

For the cases of interest rate forward and swap contracts, default risk is “two-
sided” in the sense that a financial contract may go “into the money” to
either counterparty, depending on market conditions. As such, the relevant
default processes for pricing change with market conditions. Duffie and
Singleton (1999) show, in the context of reduced-form models, that this
dependence of λQ and wQτ on the price P (t) of the contract being valued
renders the preceding reduced-form pricing models inapplicable, at least
in principle.3 Fortunately, for at-the-money swaps (those used most widely
in empirical studies of DTSMs), these considerations are negligible (Duffie
and Huang, 1996; Duffie and Singleton, 1997). Hence, standard practice
within academia and the financial industry is to treat such interest-rate swaps
as if they are bonds trading at par ($1), with the discount rate R chosen to
reflect the credit/liquidity risk inherent in the swap market.

Using this approximate pricing framework, the resulting discount curve
− log B(t ,T )/(T − t) “passes through” short-term LIBOR rates. However,
there is no presumption that long-term swap rates and LIBOR contracts
reflect the same credit quality. They are in fact notably different (Sun et al.,
1993; Collin-Dufresne and Solnik, 2000). Nor is there a presumption that
Rt−rt reflects only credit risk; liquidity risk may be as, if not more, important
[see Grinblatt (2001) and Liu et al. (2006) for discussions of liquidity factors
in swap pricing].

14.2. Parametric Reduced-Form Models

The development of parametric reduced-form models of defaultable bond
prices has largely paralleled the literature on DTSMs for default-free securi-
ties. Affine and quadratic-Gaussian models have received the most attention.

14.2.1. Affine Models

In the Duffie-Singleton framework with fractional recovery of market value,
the default adjusted discount rate Rt = rt + λ

Q
t L
Q
t can be modeled as an

3 Under fractional recovery of market value, one can still express B(t ,T ) as the solution to
(14.7). However, because of the dependence of R on P , B(t ,T ) solves a quasi-linear equation,
instead of a more standard linear PDE, and prices must be obtained by numerical methods.
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affine function of the state Yt . A researcher has the choice of modeling R di-
rectly or of building up a model of R from separate affine parameterizations
of r and λQLQ. Importantly, since credit spreads on zero-coupon or coupon
bonds depend only on the mean loss rate λQt L

Q
t , it is not possible to sepa-

rately identify λQt and LQt from bond data alone. Therefore, researchers who
have wanted to draw conclusions about the default intensity λQt or the associ-
ated risk-neutral survival probability have typically fixed LQt , which thereby
allows them to back out λQt from the fitted mean loss rate.

The first steps toward an affine model under fractional recovery of face
value are the modeling of (rt + λ

Q
t ) and λQt as affine functions of Y . Then

the price of $1 contingent on survival to date T [the first term in (14.8)] is
known in closed form. To price the recovery claim, we first observe that a
random recovery wQt can be replaced by its conditional mean E Q[wQt |Yt−]
just prior to the date recovery is realized (see Duffie and Singleton, 1999).
The model can then be completed by assuming a constant conditional mean
recovery rate. Alternatively, though we are not aware of examples in the
literature, one could assume that logwQ(t) (or log E Q[wQt |Yt−]) are affine
functions of the state. Under either of these generalizations, the recovery
claim is priced using the extended transform of Duffie et al. (2000) (see
Chapter 5) to evaluate

E Q
[
e− ∫ut (rs+λQs )ds λQuw

Q
u

]
du.

Only the one-dimensional integral in (14.8) is computed numerically.4

Note that λQ and LQ do not enter the pricing equations symmetrically
under fractional recovery of face value. As such, assuming that the market
prices bonds according to this recovery convention, one can in principle
separately identify recovery and default arrival rates from coupon bond
data. This observation is developed in more depth, in the context of pricing
sovereign debt, in Pan and Singleton (2005).

14.2.2. Quadratic-Gaussian Models

QG models are also easily adapted to the problem of pricing defaultable
securities by having both r and λQ be quadratic functions of Y . In this
setting, QG models offer the flexibility, relative to affine models, of having
strictly positive (r , λQ) and negatively correlated state variables (see, e.g.,
Duffie and Liu, 2001).

4 An equally tractable pricing model is obtained if the fractional loss LQτ is incurred at
T , the original maturity of the bond (the convention used in most structural models). In this
case, wQτ = (1 − LQτ )D(τ,T ) is the discounted recovery (from T to τ) and LQτ must be chosen
judiciously to facilitate computation of the relevant expectations.
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14.3. Parametric Structural Models

Structural models of default combine an arbitrage-free specification of the
default-free term structure with an explicit definition of default in terms
of balance sheet information. The former is typically taken to be a stan-
dard affine DTSM. The new, nontrivial practical consideration that arises
in implementing structural models is the computation of the forward, first-
passage probability HT .

A representative structural model has firm value A following a lognor-
mal diffusion with constant variance and nonzero (constant) correlation
between A and the instantaneous riskless rate r :

dAt

At
= (r − γ ) dt + σAdW

Q
At , (4.10)

dr = κ(µ− r ) dt + σr dW
Q
rt , (4.11)

where Corr(dW Q
A , dW

Q
r )=ρ and γ is the payout rate. Kim et al. (1993) and

Cathcart and El-Jahel (1998) adopt the same model for A, but assume that r
follows a one-factor square-root (A1(1)) process. Related structural models
are studied by Nielsen et al. (1993) and Briys and de Varenne (1997).

The basic Merton model has: (1) the firm capitalized with common
stock and one bond that matures at date T , (2) a constant net payout rate γ
and a constant interest rate r , and (3) default occurs whenAT <F , where F is
constant. (Firms default only at maturity of the bond.) In actual applications
of this model, a coupon bond is typically assumed to be a portfolio of zero-
coupon bonds, each of which is priced using the Merton model. Geske
(1977) extended Merton’s model to the case of multiple bonds maturing
at different dates.

Building upon Black and Cox (1976), Longstaff and Schwartz (1995)
allowed the issuer to default at any time prior to maturity of the bonds (not
just at maturity) and replaced the assumption of constant r with the one-
factor Vasicek (1977) model (4.11). Though the Longstaff-Schwartz model
is in many respects more general than the Merton model, the latter is not
nested in the former.5

In the Leland and Toft (1996) model, a firm continuously issues new
debt with coupons that are paid from the firm’s payout γA. The default
boundary is endogenous, because equityholders can decide whether or not
to issue new equity to service the debt in the event that the payout is not

5 The Merton model gives a closed-form solution for defaultable zero-coupon bond
prices. Longstaff and Schwartz provided an approximate numerical solution for HT in their
setting. Subsequently, Collin-Dufresne and Goldstein (2001a) provided an efficient numerical
method for computing the B(t ,T ).
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Figure 14.1. Credit spreads implied by reduced-form and structural models.

large enough to cover the dividends. Their model gives a closed-form ex-
pression for B(t ,T ) under the assumption of constant r . Anderson and
Sundaresan (1996) and Mella-Barral and Perraudin (1997) solve simpli-
fied bargaining games to obtain close-form expressions for their default
boundaries.

A typical feature of structural pricing models is that the value of the firm
diffuses continuously over time. This has the counterfactual implication
that yield spreads on short-maturity, defaultable bonds will be near zero,
since it is known with virtual certainty whether or not an issuer will default
over the next short interval of time. This is illustrated in Figure 14.1 by
the dashed line that shows spreads near zero for short-maturity bonds and
then rising sharply over bonds with maturities in the 2- to 4-year range.6 The
notably spiked shape of the spreads is a consequence of the similar shape to
the term structure of forward default probabilities induced by Merton-style
structural models. As shown by Duffie and Lando (2001), more plausible
levels of short-term spreads are obtained in structural models by making
the assumption that bondholders measure firm’s assets with error. Once
measurement errors are introduced, this basic structural model becomes
mathematically equivalent to an intensity-based, reduced-form model.

An alternative means of generating more plausible spreads for short-
maturity bonds is to introduce a jump into the asset value process (14.10).
Zhou (2001a) added the possibility of a jump in assets A with i.i.d. ampli-
tudes at independent Poisson arrival times, thereby allowing for A to pass
through the default threshold (F in our basic formulation) either through
continuous fluctuations of the Brownian motion or by jumps. Given that

6 We are grateful to Pierre Collin-Dufresne for providing this figure based on the work
in Collin-Dufresne and Goldstein (2001a).



Page 373 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

14.4. Empirical Studies of Corporate Bonds 373

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[373], (10)

Lines: 223 to 254

———
7.08005pt PgVar
———
Long Page
PgEnds: TEX

[373], (10)

A can pass below F even when it is well away from F today, investors will
demand a positive spread even at short maturities.

Another equally important feature of many structural models is that
credit spreads tend to asymptote to zero with increasing maturity, again
as illustrated by the dashed line in Figure 14.1. This is in contrast to the
behavior of standard reduced-form models, which tend to asymptote to a
constant long-term yield, as illustrated by the solid line in this figure. To see
why, note that the zero-coupon bond yield spreads (under zero recovery)
in reduced-form and structural models are given by their associated survival
probabilities:

− (T − t) log
(
B(t ,T )
D(t ,T )

)
=
{− logpQ(t, T ) reduced-form,

− logHT (At/F , rt ,T − t) structural.

In reduced-form models

pQ(t ,T ) = E Qt
[
e− ∫Tt λQ(u) du

]
= e− ∫Tt f Q(t ,u) du,

where f Q(t ,u) is the instantaneous, risk-neutral forward default probability
for date u. Suppose that λQ(t) follows a square-root process with parameters
(σ, θQ, κQ). Then f Q(t ,T ) converges to a positive constant as T → ∞. As
a consequence, pQ(t ,T ) → 0 as T → ∞; eventually, the issuer defaults
with probability one. This behavior of the survival probability underlies
the flattening out of the yield curve at the long end for the reduced-form
model. On the other hand, in this structural model, the probability of never
defaulting isH (At/F , rt ,∞) = 1−e (−mXt /σ

2), wherem = r−γ−σ 2/2. This is
a consequence of the fact that (risk neutrally) A drifts away from the default
boundary at the rate r −γ (which is typically positive). This gives rise to the
downward-sloping credit curve at long maturities.

To address this counterfactual implication of many structural models,
Tauren (1999) and Collin-Dufresne and Goldstein (2001a) attribute a target
debt/equity ratio to issuers, and Ericsson and Reneby (2001) assume a
positive growth rate of total nominal debt. The term structure implied by
a modified structural model with a target capital structure is given by the
dotted line in Figure 14.1. With this modification, the term structures from
these structural and reduced-form models are quite similar at the long end
of the yield.

14.4. Empirical Studies of Corporate Bonds

As we set out to review the empirical fits of these pricing models, it is in-
structive to briefly step back and examine some of the descriptive prop-
erties of the term structures of credit spreads. Both the magnitudes and
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the time-series properties of spreads depend in part on the reference yield
curve to which corporate bond yields are spread. Treasury, agency, interest
rate swap, and high-grade corporate yields have all been used as reference
yields for computing spreads.

Furthermore, spreads may reflect economic forces other than default
risk. In cases where Treasury bonds are used for reference yields, spreads
may reflect tax shields on Treasuries (Elton et al., 2001) and special repo
rates for on-the-run Treasuries (Duffie, 1996). The liquidity effects may also
be present for any of the other reference curves typically used in empirical
studies.

For a given credit quality (typically measured by credit rating) Jones
et al. (1984), Sarig and Warga (1989), and He et al. (2000) find that, his-
torically, the term structures of credit spreads for high-grade issuers tend
to be upward sloping, while those for lower-rated investment-grade issuers
(such as Baa) are close to flat, or perhaps hump shaped. The shape of the
term structure of credit spreads for low-grade bonds has been more con-
troversial. Helwege and Turner (1999) argue that the findings in many pre-
vious studies of spreads reflect a selection bias associated with a tendency
for better-quality speculative-grade issuers to issue longer-term bonds. By
matching bonds by issuer and ratings, Helwege and Turner conclude that
spread curves for B-rated U.S. industrial issues are upward sloping. Subse-
quently, He et al. (2000) refined this matching method and expanded the
set of ratings examined. They found that spread curves for CCC and CC
rated firms are downward sloping, but curves for more highly rated firms
tend to be upward sloping.

Turning to the economic factors that drive credit spreads, Duffie and
Singleton (1997) examined the correlations between interest rate swap
spreads and various macroeconomic variables and proxies for market liquid-
ity. They found that roughly 50% of the variation in swap spreads of various
maturities was not explained by (observable) measures of credit or liquidity.
Similarly, Neal et al. (2000) and Collin-Dufresne et al. (2001) examined the
correlations of spreads on corporate bonds and various macroeconomic
variables and proxies for credit and liquidity. The latter study also found
that nearly half of the variation in spreads was unaccounted for by their re-
gressors. Moreover, they found that upon computing principal components
of the residuals from their projections, a single corporate-market specific
factor explained most of the variation in their residuals. All of these studies
point to substantial variability in spreads and co-movements among spreads.
However, the latter co-movement is not necessarily related to our measured
proxies for credit and liquidity risk or to macroeconomic activity.

Equally notable is the difference between the levels of spreads and the
expected loss rates on the underlying bonds. Table 14.1 from Amato and
Remolona (2003) displays the average historical spreads and the expected
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Table 14.1. Spreads and Expected Default Losses by Rating

Maturity

1–3 years 3–5 years 7–10 years

Expected Expected Expected
Rating Spread loss Spread loss Spread loss

AAA 49.5 0.06 63.9 0.18 74.0 0.61
AA 59.0 1.24 71.2 1.44 88.6 2.70
A 88.8 1.12 102.9 2.78 117.5 7.32
BBB 169.0 12.5 170.9 20.12 179.6 34.56
BB 421.2 103.1 364.6 126.7 322.3 148.1
B 760.8 426.2 691.8 400.5 512.4 329.4

Source: Amato and Remolona (2003).

loss rates (based on actual defaults) for U.S. corporate bonds, by rating
over the period January 1997 to August 2003. What is striking about these
calculations, which are based in part on the analysis in Altman and Kishore
(1998), is how large the gap is between bond yield spreads and the average
losses incurred from holding comparably rated defaultable bonds. The gap
is particularly large for the more highly rated bonds. It seems unlikely that
liquidity premia are sufficiently larger, proportionately, at higher ratings to
explain these findings, because the universe of institutional investors who
are eligible to hold investment-grade bonds is much larger than that of
investors who can hold investment and speculative-grade bonds. Therefore,
at first glance anyway, default risk premiums appear to be larger for high-
than for low-grade corporate bonds.

Though descriptive studies of credit spreads often focus on the nature
of the default process when interpreting results, we have seen that recovery
may also play a central role. In fact, there is substantial evidence that recov-
ery varies over the business cycle, with recovery rates being lower during
recessions. Moreover, default rates also vary with the business cycle, being
higher during recessions. Together, these patterns imply a quite strong neg-
ative correlation between speculative-grade default rates and recovery rates,
at least in the aggregate and for corporate bonds. This is documented in Fig-
ure 14.2 for Moody’s universe of rated bonds. While this pattern inw P is now
widely recognized, this correlation is rarely accommodated in econometric
specifications of defaultable bond pricing models. Typically, for pricing, wQ

is assumed to be a known constant. While it is wQ, not w P, that is relevant for
pricing (so a constant wQ is not logically inconsistent with the evidence in
Figure 14.2), further research into the empirical consequences of relaxing
the assumption of constant wQ seems warranted.
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Figure 14.2. Correlation of speculative-grade default and recovery rates. Source:
Moody’s Default and Recovery Report (2003).

14.4.1. Reduced-Form Models

Within the family of reduced-form models with fractional recovery of mar-
ket value, Duffee (1999) examined corporate spreads to the U.S. Treasury
curve, with D(t ,T ) described by an A2(2) affine model for independent
(Y1,Y2) and the instantaneous credit spread st = λ

Q
t L
Q
t given by an affine

function of the independent A1(1) processes (Y1,Y2,Y3). Correlation be-
tween st and rt was induced by their common dependence on (Y1,Y2). This
is not the most flexible affine model for st that could have been exam-
ined as there was no correlation among the Y ’s. Additionally, the market
prices of risk were of the “completely” affine form, being proportional to
the volatilities

√
Yit . We now know that more flexible specifications along

the lines of Cheridito et al. (2003) are possible without introducing arbi-
trage opportunities.

For Lehman Brothers data on trader quotes for noncallable corporate
bonds, Duffee found a model-implied negative correlation between corpo-
rate yield spreads and U.S. Treasury rates, consistent with his earlier de-
scriptive analysis. The average error in fitting noncallable corporate bond
yields was less than 10 basis points. Similarly, Collin-Dufresne and Solnik
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(2000) had rt following a Gaussian A0(2)model and st following a Gaussian
jump-diffusion model with constant jump intensity. Treating the U.S. Trea-
sury curve as the reference curve and using yields on LIBOR contracts as
the defaultable securities, they found that the correlation between rt and st
was also negative. The descriptive evidence in Duffie and Singleton (2003)
suggests that the economic shocks underlying this negative correlation have
short half-lives, dying out in 1 to 3 months.

Interestingly, for the 161 firms that Duffee examined, the median esti-
mate of the mean reversion parameter κQ3 of the credit-spread specific factor
Y3t was less than zero. That is, this factor was explosive under the risk-neutral
measure for more than 50% of the firms examined. There is nothing log-
ically wrong with an explosive intensity λQ or mean loss rate λQLQ under
Q. Evidence of such behavior may simply reflect the very pessimistic view
about survival required to price bonds when treating investors as if they are
neutral toward default risk. An explosive λQ leads, for fixed LQ and horizon
T , to a relatively small survival probability pQ(t ,T ) compared to what would
be obtained with κQ> 0. Of course, an explosive mean loss rate could also
be symptomatic of model misspecification. We revisit this issue later when
we discuss the empirical evidence from other defaultable securities.

Though the preceding studies treated the spread st as a purely latent
process, observable state variables are easily incorporated into reduced-
form models by letting one or more of the Y ’s be an observable economic
time series. In this manner, it is possible to capture part of the “spirit” of
structural models within a reduced-form setting by having λQLQ depend
on information about the balance sheet of an issuer. For instance, Bakshi
et al. (2004) examine a fractional recovery of market value, reduced-form
model in which the default-adjusted discount rate R is an affine function
of r and Yt = firm leverage, Rt = α0 + αr rt + αY Yt . The reference rate
r was determined by a Gaussian A0(2) model and the credit factor Y was
assumed to follow a mean-reverting Gaussian diffusion. Upon estimating
their models using Lehman Brothers data, they found that (after accom-
modating interest rate risk) higher leverage increases the default-adjusted
discount rate, with leverage-related credit risk being more pronounced for
long-dated than for short-dated corporate bonds. Bakshi et al. (2001) com-
pare the relative fits of reduced-form models under various recovery timing
conventions in a recovery of face value model. Janosi et al. (2002) also study
a two-factor model for R in which r follows a one-factor Gaussian process
and the credit factor is related to the level of the S&P500 equity index.

Affine models have also been used in the pricing of sovereign bonds.
Merrick (2001) calibrates a discrete-time model (to Russian and Argen-
tinean bonds) that can be reinterpreted as a model with a constant (state-
independent) intensity. More generally, Pagès (2000) and Keswani (2002)
apply special cases of the recovery of market value model to data on Latin
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American Brady bonds, and Dullmann and Windfuhr (2000) apply a similar
framework to price European government credit spreads under the EMU.

These models presume that holders of sovereign debt face a single
credit event—default with liquidation upon default—and, in particular, do
not allow for restructuring and the associated write-downs of face value.
Among the types of credit events that may be relevant for a sovereign is-
suer are: obligation acceleration, failure to pay, restructuring, and repudi-
ation/moratorium. In addition, there may be changes in political regimes
that affect the credit quality of outstanding bonds. Following Duffie et al.
(2003b) we can view each of these credit events as having its own associated
arrival intensity λQi and loss rate LQi . Then, under the assumption that the
probability that any two of these credit events happen at the same time is
zero, the effective λQt and LQt for pricing sovereign bonds become:

λ
Q
t = λ

Q
acc,t + λ

Q
fail,t + λ

Q
rest,t + λ

Q
repud,t , (14.12)

LQt = λ
Q
acc,t

λ
Q
t

LQacc,t + λ
Q
fail,t

λ
Q
t

LQfail,t + λ
Q
rest,t

λ
Q
t

LQrest,t + λ
Q
repud,t

λ
Q
t

LQrepud,t . (14.13)

The λQi and LQi may, of course, differ across countries. This model is equally
appropriate for pricing corporate bonds in cases where multiple types of
credit events are relevant.

Figure 14.3 displays the prices of Russian Ministry of Finance (MinFin)
bonds, normalized to the value of $100 on July 31, 1998, just prior to the
default on other Russian domestic securities in August 1998.7 A striking
feature of this graph is the substantial decline in market values experienced
by the MinFin bonds during the week of the Russian default. Even though
none of the outstanding MinFins were defaulted upon, these bonds lost
approximately 80% of their market value during this one week. This episode
illustrates how much the “surprise” of default was able to affect market
values, even when investors were well aware of the increasing likelihood of a
Russian default and, commensurately, the prices of MinFin bonds had fallen
substantially. The yield on the MinFins had risen from a low of around 2–
3% in November 1997 to around 10–11% in July 1998! Note also that all of
the MinFin bonds lost approximately the same percentage of market value
during the week of default, suggesting that in this case the assumption of
recovery of market value is a reasonable pricing convention.

There is another feature of the prices of the MinFin3 bond that moti-
vates a further extension of the standard defaultable bond pricing model
developed in Duffie et al. (2003b). The MinFin3 bond was issued in May
1993 with a maturity of May 1999. From Figure 14.3 it is seen that the price

7 These MinFin bonds are dollar denominated and issued under the jurisdiction of do-
mestic Russian law; they are not Eurobonds. The data were obtained from Datastream.
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Figure 14.3. Prices of the Russian MinFin3–7 bonds over the time period from
7/31/1998 ( just prior to default) to 11/12/1999, normalized so that they all have
a market value of 100 at 7/31/1998.

of the MinFin3 gradually increased after the August default and then tended
to settle down at about 40% of its predefault value. The reduced-form pric-
ing models we have considered up to this point would imply that, in the
absence of arbitrage opportunities, the price of this bond should approach
$100 (face value) as the bond approaches maturity. The fact that this did
not happen suggests that investors in Russian bonds had incorporated a
“write-down” effect whereby investors treated a portion of the face value of
the bond as effectively having been repudiated by the issuer. That is, for a
risky payoff ZT , the market price subsequent to a default event (assuming
fractional recovery of market value) becomes

Pt = E Qt
[
e− ∫Tt (rs+λQs LQs )dsZT

]
E Qt [X τ ] , (14.14)

where X τ is the proportional write-down of face value associated with the
prior credit event at date τ . The expectation is included to allow for the pos-
sibility that the final resolution of the impact of the restructuring on the
promised repayment of principal occurs only at the maturity of the bond.
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Duffie et al. applied their model to data on Russian MinFin bonds
around the Russian default in August 1998 and found substantial evidence
for significant write-downs after the 1998 default. Moreover, the model-
implied default intensity in their model was strongly correlated with various
macroeconomic variables related to Russia’s ability to repay bondholders at
the maturity dates of their bonds.

14.4.2. Structural Models

Empirical implementation of structural models requires one to confront
more directly the (often very) complex capital structures of issuers. Among
the issues that must be addressed are: the components of the capital struc-
ture to be included in A and F ; measurement of asset volatility σA and
the correlation ρ between A and r ; and the choice of recovery ratios. The
empirical implementations of structural models have varied widely in their
resolutions of these issues.

Jones et al. (1984) implemented the Merton model for a sample of
callable coupon bonds for the sample period 1977–1981. They found ab-
solute pricing errors of 8.5%: model prices were too high so spreads were
too narrow. Ogden (1987) looked at primary market prices for bonds over
the period 1973–1985. The Merton model underpredicted spreads by an
average of 104 basis points. A major limitation of both of these studies was
their use of callable bond prices.

More recently, Lyden and Sariniti (2000) used Bridge data, which pro-
vides actual transactions prices on noncallable bonds for both financial and
nonfinancial firms. For the Merton model they found mean absolute errors
in yield spreads of 80+ basis points. The model-implied spreads were partic-
ularly low (bond prices were high) for small firms and long maturities. For
a two-factor Longstaff-Schwartz model, in which default occurs when A falls
below the par value of outstanding bonds and any recovery is a constant
fraction w of par value, they obtained roughly the same results. Moreover,
the findings for the Longstaff-Schwartz model were largely insensitive to the
assumed value of ρ. In interpreting these results, one should perhaps bear
in mind that their sample included both financial and nonfinancial firms,
with quite heterogeneous leverage ratios.

Ericsson and Reneby (2001) reach a more optimistic conclusion about
the fit of a structural model with endogenous default and leverage ratios
that reflect growth in both debt and equity values. Using maximum likeli-
hood methods to estimate the parameters of their firm-value process, they
obtain unbiased out-of-sample spread predictions of yield spreads for the
noncallable debt of a small sample of 50 industrial firms.

The most comprehensive empirical comparison of structural models
to date is provided by Eom et al. (2004), who examine versions of the
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Merton (1974), Geske (1977), Longstaff and Schwartz (1995), Leland and
Toft (1996), and Collin-Dufresne and Goldstein (2001a) models. They re-
strict their sample to industrial firms with relatively simple capital struc-
tures, comprised largely of equity and noncallable debt. Consistent with
previous studies, the Merton model predicts spreads that are too small, as
does Geske’s model, though to a lesser extent. Interestingly, the Leland-
Toft, Longstaff-Schwartz, and Collin-Dufresne-Goldstein models all tend
to overpredict spreads, though in different ways. The Leland-Toft model
overpredicts spreads for virtually all ratings and maturities; the Longstaff-
Schwartz model gives excessive spreads for relatively risky bonds, while yield-
ingspreads that are too small for relatively safe bonds; and the Collin-
Dufresne-Goldstein model with mean-reverting leverage ratios reduces the
underprediction of spreads on safe bonds, while still overpredicting spreads
on average.

The difficulty in matching the levels of credit spreads within structural
models does not, by itself, imply that these models are incapable of pre-
dicting how changes in capital structure will affect spreads. Schaefer and
Strebulaev (2004) examine how the hedge ratios predicted by Merton-style
models perform empirically for corporate bonds in Merrill Lynch U.S. cor-
porate bond indices. Letting rj,t denote the excess return on the j th bond,
they estimate the regressions

rj,t = αj,0 + βj,E hE ,j,t r E ,t + αj,rf rf 10y,t + εj,t , (14.15)

where hE ,j,t is the hedge ratio for firm j at time t , as implied by the Merton
model; r E ,t is the excess return on the issuer’s equity; and rf 10y is the excess
return on the 10-year constant maturity U.S. Treasury bond. Under the null
hypothesis that structural models imply the correct hedge ratios, βj,E = 1.

Table 14.2 shows their results for the case of hE ,j,t calculated from the
basic Merton model. Their null hypothesis is not rejected at conventional
significance levels for the entire sample of bonds (column “All”). There

Table 14.2. Estimates of the Coefficients in the Projection (14.15)

All AA A BBB BB B CCC

Constant −0.001 −0.002 −0.002 −0.001 0.001 −0.001 −0.007
(−4.5) (−6.8) (−8.6) (−5.0) (1.3) (−1.2) (−0.85)

βE 1.206 0.552 1.173 0.787 2.498 1.540 0.415
(1.2) (−1.3) (0.61) (−0.63) (3.0) (1.8) (−2.2)

rf 10y,t 0.369 0.815 0.688 0.479 0.140 −0.116 −0.408
(18) (26) (35) (23) (2.2) (−2.2) (−1.4)

R̄2 0.266 0.372 0.371 0.289 0.203 0.128 0.108

Source: Schaefer and Strebulaev (2004).
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is more evidence against the Merton model for bonds below investment
grade, particularly for ratings BB and CCC. Further, the R 2’s are lower than
what would be expected if the structural model fully explained the varia-
tion in spreads. However, overall, their results are suggestive of substantial
predictive content of structural models for the effects of changes in capital
structure on corporate bond spreads.

To achieve a deeper understanding of the limitations of structural pric-
ing models researchers have looked beyond risk-neutral pricing models
such as (14.10) to models in which agents’ preferences are modeled explic-
itly and risk premia are calibrated to both bond and equity market informa-
tion. Huang and Huang (2000) inquire whether the credit risk inherent in
structural models is likely to account for the observed spreads in investment-
grade bonds. Starting from the following P-specification of firm value,

dAt

At
= (

πA
t + r − γ

)
dt + σAdW P

At , (14.16)

they explore the implications of alternative specifications of the asset risk
premium πA

t . Calibrating several structural models to both balance sheet
information and historical default rates simultaneously, they conclude that,
within their models, credit risk accounts for a small fraction of the observed
spreads for investment-grade bonds. Their models are more successful at
explaining the larger spreads for junk bonds.

Chen et al. (2005) extend the complexity of the risk premiums exam-
ined by Huang and Huang by developing models based on (1) habit forma-
tion (Campbell and Cochrane, 1999) and (2) the combination of long-run
risks and Epstein-Zin preferences (Bansal and Yaron, 2004). The former
model, for example, leads to the modified version of (14.16),

dAt

At
= (

πA(st )+ r − γ (st )
)
dt + σA(st )dW P

At , (14.17)

in which the risk premium, payout rate, and volatility of firm value all de-
pend on the habit shocks st (see Section 10.5.2 for a definition of st). While
these models, with their larger time-varying risk premiums, are more suc-
cessful at replicating historical credit spreads, in their basic forms they have
the counterfactual implication that forward default rates are procyclical.
The reason is that low expected returns when the economy is strong are
associated with a higher probability of reaching the default boundary. To
overcome this limitation of their structural models, Chen et al. introduce a
countercyclical default boundary, one that is more countercyclical than the
typical corporate leverage ratios. In this manner they replicate both credit
spreads and the equity premium puzzle, while leaving open the issue of the
economic forces that underlie the needed behavior of the default boundary.
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A common feature of most structural models is that firm value does not
depend directly on macroeconomic information. The interplay between
the dependence of firm-value dynamics on macro information and credit
spreads is explored by Hackbarth et al. (2004) and Tang and Yan (2005).
The former paper develops a model of a firm’s capital structure in which
the cash flows of a firm depend on macroeconomic information as well
as a firm-specific shock. The aggregate shock affecting firm value follows
a regime-shifting model with transitions between regimes governed by a
Poisson process. This generates countercyclical leverage ratios because the
shifts across expansions and contractions affect the present values of future
cash flows and, thereby, the optimal firm leverage ratios. Their calibrations
suggest that these effects on leverage are quantitatively important. Thus,
Hackbarth et al. have provided a potential explanation for the business
cycle patterns in the default boundaries needed to match spreads in the
preceding structural models.

Additionally, the regime-shift process in the model of Hackbarth et al.
induces nonzero credit spreads at short maturities, thereby overcoming
another limitation of structural models. However, this phenomenon arises
primarily during recessions. An interesting question is whether these risks,
at business cycle frequencies, are sufficient to sustain the large spreads
observed historically on many short-term bonds.

14.5. Modeling Interest Rate Swap Spreads

In Chapter 13 we treated a plain-vanilla interest rate swap effectively as a
coupon bond. As discussed in Duffie and Singleton (1997), this approach
to pricing is justified under the special assumptions of symmetric credit
qualities of the counterparties to the swap and that these parties are of
“refreshed” LIBOR quality. That is, the parties remain roughly single- or
double-A rated, firm at least up to the time of default by either counterparty.
Relaxing these assumptions seems to have a small effect on the pricing of
swaps (e.g., Duffie and Huang, 1996).

Nevertheless, the interest rate swap spreads—the spreads between the
swap and Treasury rates—are often large and variable over time. If these
spreads are not due to credit risk, then what economic forces underlie
these spreads? Liu et al. (2006) try to quantify the relative contributions
of credit and liquidity factors to swap spreads.8 Treasury bond yields are
discounted by a “riskless” rate r (t). The liquidity component of the Treasury
rate is captured by inclusion of the “repo” rate (the rate on a 3-month
repurchase agreement): the relevant discount rate for pricing the repo

8 Grinblatt (2001) argues that liquidity is an important factor in driving spreads, though
he does not undertake a formal econometric analysis of this hypothesis.
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contract is r (t) + γQ(t), where γQ represents (risk-neutral) compensation
holding a default-free illiquid bond. Finally, the discount rates implicit in
the swap market are r (t)+ γ (t)+ λQ(t)LQ(t). This formulation extends the
formulation in Duffie and Singleton (1997) by introducing the repo rate
and defining liquidity in terms of the difference between the yields on on-
the-run and off-the-run Treasury bonds. It does not address liquidity risk
that is inherent in the swap market itself.

They find that a significant component of the swap spread is due to
the mean loss rate λQ(t)LQ(t). However, no independent confirmation that
this component is truly due to default is provided [i.e., the model-implied
λQ(t)LQ(t) is not linked to observables]. In previous work Duffie and Single-
ton (1997) found that much of their fitted (latent) mean-loss-rate for swaps
was not explained by proxies for credit risk, even after controlling for repo
specials. Thus, it seems that the nature of the economic forces underlying
variation in swap spreads remains largely an open issue.

14.6. Pricing Credit Default Swaps

More recently, for the purpose of extracting information about λQ, re-
searchers have been using credit default swap spreads.9 In a plain-vanilla
credit default swap (CDS) contract, the buyer is insuring against potential
losses on an underlying loan or bond owing to a credit event. The buyer
agrees to pay a default swap premium SMt for a period of up to M years
(the maturity of the contract). The seller pays the buyer nothing, unless a
relevant credit event occurs, where the relevant credit events are defined as
part of the terms of the CDS contract. If a relevant credit event does occur,
then the buyer receives the difference between the face value of the bond or
loan being insured (say $1) and the market value of the security subsequent
to the event, say R P. CDS contracts may be cash settled, in which case the
insured receives the difference (1 − R P) in cash, or physical delivery, in
which case the buyer delivers the bond to the seller in exchange for face
value. In practice, when the contract specifies physical delivery, more than
one reference bond may be selected for delivery to the seller. So physical
delivery brings with it a “cheapest-to-deliver” option: the option to deliver
the bond, among all admissible bonds for delivery, with the lowest market
value at settlement.

The basic pricing relation for CDS contracts is much like that for the
cash flows of a comparably risky corporate bond. Let R Q denote the (con-
stant) risk-neutral fractional recovery of face value on the underlying

9 A partial list of the literature in this area includes Berndt et al. (2004), Hull and White
(2004), Houweling and Vorst (2005), and Longstaff et al. (2005), for corporate contracts, and
Pan and Singleton (2005) for sovereign contracts.
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(cheapest-to-deliver) bond in the event of a credit event [with associated
loss rate LQ ≡ (1 − R Q)], and λQ denote the risk-neutral arrival rate of a
credit event. An M -year CDS contract with semiannual premium payments
is priced at issue as (see, e.g., Duffie and Singleton, 2003):

SMt

2M∑
j=1

E Qt
[
e− ∫ t+.5j

t (rs+λQs )ds
]

= LQ
∫ t+M

t
E Qt
[
λQue

− ∫u
t (rs+λQs )ds

]
du, (14.18)

where rt is the riskless rate relevant for pricing CDS contracts and SMt is
the annuity rate paid by the purchaser of default insurance. The left-hand
side of (14.18) is the present value of the buyer’s premiums, payable con-
tingent upon a credit event not having occurred. Discounting by rt + λ

Q
t

captures the survival-dependent nature of these payments. The right-hand
side is the present value of the contingent payment by the protection seller
upon a credit event. We have normalized the face value of the underlying
bond to $1 and assumed a constant expected contingent payment (loss rel-
ative to face value) of LQ. In actual implementations, (14.18) is modified
slightly to account for the buyer’s obligation to pay an accrued premium if
a credit event occurs between the premium payment dates.

For some CDS contracts, notably sovereign contracts, there is a menu
of possible credit events that can trigger termination and settlement of the
contract. Moreover, default is not a relevant event in the sense that sovereign
issues are not governed by a bankruptcy court. In such cases, how should
λQ and LQ be interpreted? Once again we follow Duffie et al. (2003b) and
view these constructs as composites as in (14.12). The same idea applies
equally well to corporate CDS contracts when there are multiple relevant
credit events.

Econometric studies of CDS spreads that have allowed for a stochastic
intensity have typically assumed a one-factor model for λQ. The two most
commonly studied models are the lognormal model (log λQt follows a Gaus-
sian diffusion) and the square-root model (λQt follows a CIR-style diffusion).
Evidence reported in Berndt et al. (2004) and Pan and Singleton (2005)
suggests that the lognormal model better fits the fat-tailed feature of both
corporate and sovereign CDS spreads.

Longstaff et al. (2005) use CDS and corporate bond data together to
assess the role of credit risk in corporate bond spreads. The key premise
underlying their analysis is that any liquidity premiums in the markets are
in corporate, not CDS, markets. Under this premise, they follow Duffie and
Singleton (1999) and discount corporate bond cash flows by a composite
discount rate rt + λ

Q
t L
Q
t (fractional recovery of market value) plus a li-

quidity premium �t . On the other hand, CDS cash flows are discounted
by rt + λ

Q
t . The empirical evidence suggests that the default-related spread

λ
Q
t L
Q
t , extracted from CDS data, explains roughly 50% of the variation in
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the corporate bond spreads. If in fact there are no liquidity premiums
embedded in CDS spreads, then their findings suggest that large fractions of
corporate bond spreads—including high-grade corporate bonds—are due
to default-related risks.

A less restrictive interpretation of their analysis is that they are measur-
ing the relative spread sCorp

t − sCDS
t , where s it is the relevant spread over r

for discounting the cash flows of security i. Under this interpretation, we
conclude that the default and liquidity characteristics inherent in the CDS
spread sCDS

t are key factors in explaining the corporate bond spread sCorp
t .

Assessing the fraction that is default related relative to the fraction that is
liquidity related must await more definitive measures of the liquidity factors
in both markets.

Ericsson et al. (2004) relate the CDS spreads on individual corporate
names to various potential determinants of spreads, motivated by struc-
tural models of default. They find that spreads: (1) widen with increases
in firm-level measures of leverage; (2) widen with increases in firm-level
equity volatility; and (3) narrow with increases in the 10-year bond yield.
Approximately 60% of the variation in market quotes was explained by these
three explanatory variables. Within the CDS market, then, a large fraction
of spread variation is explained by precisely those factors that structural eco-
nomic models rely on for modeling default. There is, however, also a sizable
fraction of spread variation that is not explained by these factors. Just as
with the corporate bond market, an interesting question for future research
is whether the remaining variation is due to omitted default-related fac-
tors, state-dependent recoveries that are not modeled, or liquidity-related
factors.

Zhang (2003) and Pan and Singleton (2005) investigate the pricing of
sovereign CDS contracts. Zhang extracts the Q-probability of default im-
plicit in CDS spreads leading up to the default of Argentina. Pan and Single-
ton explore the goodness-of-fit of square-root, lognormal, and three-halves
diffusion models for λQ using data on the term structure of spreads from
Mexico, Russia, and Turkey. Initially, they assume that LQ = 0.75 consis-
tent with industry practice of pricing sovereign contracts with a loss rate
in the 75–80% range (Zhang makes a similar assumption for his study of
Argentina). Upon estimating the mean reversion (κQ), drift “intercept”
(κQθQ), and volatility parameter (σ) by the method of ML, Pan and Sin-
gleton found that κQ<0 for both Mexico and Russia. That is, to fit this his-
torical sovereign CDS data, the likelihood function called for a Q-explosive
credit intensity process. This is reminiscent of the findings in Duffee (1999)
for corporate bonds.

Though it is standard practice in this literature to fix LQ a priori, Pan
and Singleton show, both theoretically and by Monte Carlo simulation, that
(a constant) LQ and the parameters governing λQ are separately identifiable
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using data on the term structure of CDS spreads. When their models were
fitted with LQ unconstrained, the ML estimates were closer to LQ = 0.25.
At the same time, the estimated value of κQθQ was much larger than in the
constrained case of LQ = 0.75. These findings suggest that, at least for the
sample periods and countries considered, the likelihood function trades off
a lower (higher) value of LQ against a higher (lower) intercept for the credit
intensity process. This trade-off is intuitively sensible, because a less desir-
able loss rate is matched with a lower likelihood of experiencing a credit
event, and vice versa. A likelihood ratio test favored the unconstrained es-
timate of LQ = 0.25 at conventional significance levels, but various other
descriptive measures showed that the fits were comparable.

14.7. Is Default Risk Priced?

One of the central issues in the area of modeling defaultable bond prices
is whether or not the jump in price at the event of default is “priced” by
investors in the markets. Equivalently, is 	t in (14.2) nonzero, in which case
agents’ pricing kernel jumps at the arrival date of a credit event? Since the
term “price of default risk” has been used in a variety of nonequivalent ways
in the literature, we introduce this issue by providing a precise description
of the components of priced default risk.

Whatever one’s assumption about recovery, the instantaneous excess
return on a defaultable zero-coupon bond can be expressed as

eBt = 1
B(t ,T )

∂B(t ,T )
∂Y ′ σY�t + wt − B(t ,T )

B(t ,T )
λPt 	t . (14.19)

Compared to (8.52), eBt has an extra component, [wt−B(t ,T )]λPt 	t/B(t ,T ),
representing compensation for the expected loss owing to default. This
component is the product of [wt − B(t ,T )]/B(t ,T ), the percentage loss
of value owing to default; λPt , the historical default arrival intensity; and 	t ,
the market price of default risk. Since bond prices reveal information only
about λQ, to compute λP and eBt it is typically necessary to use additional
information about the P-likelihood of an issuer defaulting.

In expressing excess returns as in (14.19) we have assumed that the
pricing kernel is given by (14.2) and, in particular, that recovery risk is not
priced (i.e.,wt =w Pt =wQt ). If investors are risk averse toward the uncertainty
about the recovery that they will receive at default, then an additional term
needs to be added to (14.19) to reflect the price of recovery risk.

Even abstracting from recovery-magnitude risk, there are two default-
related priced risks implicit in the excess return (14.19). One, just discussed,
is the jump-at-default risk with the market price of risk 	t . It is this risk that
we refer to in answering the question of whether default risk is priced in the
markets.
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In addition, investors are likely to be risk averse toward the unpre-
dictable future variation in the risk-neutral intensity λQ. Where this shows
up is in the first term of (14.19), (∂B(t ,T )/∂Y ′)σY�t . Discounting, under
either fractional recovery of market or face value, involves the constructs
r (t) and λQt . Both of these, in turn, are functions of the underlying state vec-
tor Y . Thus, the market price of factors risks,�t , is linked directly to agents’
concerns about variation in the risk-neutral mean arrival rate of default. As
discussed in Duffie and Singleton (1997), in equilibrium, both r and λQ

are functions of a common set of macro variables and the associated prices
of risk are related to the covariation of these factors with agents’ marginal
rate of substitution. Therefore, it may be difficult to meaningfully associate
some components of �t with r and others with λQ. Whether or not specific
components of Y are associated with variation in λQ, so long as λQ is not
constant, �t typically reflects risk aversion about the default process.

Whereas �t is econometrically identifiable from information on de-
faultable bond prices, this is not true of 	t . Intuitively, the reason is that
the solution to the PDE (14.3) holds only conditional on default not having
occurred. [See Yu (2002) for a heuristic discussion of this point.] The last
term in (14.19) enters only at the time of default. Accordingly, it is necessary
to call upon information other than bond prices in order to estimate λP and,
hence, 	.

If jump-to-default risk is fully diversifiable, then 	t should be zero. Jar-
row et al. (2005) provide formal conditions under which this risk is diversi-
fiable and, hence, under which λQ = λP. They adopt the “doubly stochastic”
model for default, which presumes that, conditional on the paths of the
intensities of all issuers, the defaults of issuers are based on independent
draws from Poisson processes. It follows that in a well-diversified portfolio,
in the limit as the number of issuers represented in a portfolio gets large,
default risk can be diversified away. Das et al. (2005) present evidence that
the historical default experience of U.S. corporations is inconsistent with
the doubly stochastic model: there is too much default clustering relative to
that predicted by the doubly stochastic model. Additionally, Amato and Re-
molona (2005) challenge the presumption that one can effectively diversify
away credit risk: given the highly skewed nature of return distributions, full
diversification requires a very large portfolio, and this is difficult to achieve
in practice. How these observations translate into the magnitude of λQ/λP

is an empirical question to which we turn next.
Driessen (2005), using corporate bond data very similar to the data

used by Duffee (1999), estimates (using quasi-ML methods) fractional re-
covery of market value models for the prices of bonds of several corporate
issuers. This gives him model-implied estimates of λQt by issuer. Then, us-
ing information from Moody’s and S&P about the default rates of corpo-
rate issuers by credit rating category, Driessen computes a constant factor
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of proportionality, µ ≡ λ
Q
t /λ
P
t . His µ is (1−	) under the assumption that

the market price of default risk, 	, is not state dependent. Prior to comput-
ing µ, adjustments are made for the differential tax treatment of corporate
and Treasury securities and for an illiquidity premium on corporate bonds.
Within Driessen’s affine term structure model with latent risk factors Y , he
associates a subset of Y with the pricing of Treasury bonds and another
subset with the determination of λQt L

Q. Thus, by construction, he associates
a component of (∂B(t ,T )/∂Y ′)σY�t in (14.19) with variation in the mean
loss rate that is independent of variation in the riskfree yield curve.

Driessen’s estimate ofµ is 2.3, suggesting that default event risk is priced
with λQ being roughly twice as large as λP. The contribution of priced jump-
at-default risk to expected excess returns can be seen from Figure 14.4,
which displays the model-implied decomposition of excess returns on BBB
rated bonds. Default event risk accounts for roughly 20% of excess returns
at the 10-year maturity and closer to a third of the excess returns on short-
term bonds. Its absolute magnitude is roughly uniform across maturities.
On the other hand, the priced uncertainty about future variation in λQ,
labeled “common factors risk,” contributes an increasingly large amount to
excess returns as maturity increases. At the 10-year maturity point, the latter
risk is as large, or even slightly larger, a component of excess returns than
default event risk. Critical to these results is Driessen’s treatment of taxes, as
the tax adjustment accounts for an even larger proportion of excess returns

-0.20

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Maturity (years)

A
n

n
ua

liz
ed

 R
et

ur
n

 (
%

)

Default Event Risk

Common Factors Risk 

Default-Free Factors 

Firm-Specific Factor Risk

Liquidity Premium

Tax Effect

Figure 14.4. Decomposition of expected excess returns on BBB-rated bonds. Source:
Driessen (2005), by permission of the Society of Financial Studies.
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than does jump-at-default risk. Alternative treatments of taxation might lead
to a reallocation that increases the importance of default risk.

More direct evidence on the nature of default risk premiums is provided
by Berndt et al. (2004). They combine information about historical default
experience from Moody’s/KMV with CDS spreads to infer both λQ and λP

and, hence, default risk premiums. The risk-neutral arrival rate of default
λQ is extracted from CDS spreads, as outlined above, assuming no liquidity
factors for CDS spreads and a known constant loss rate LQ. Their loss rates
differed across industries, but were not company specific, since reliable
information about loss at the company level is not available.

To obtain λP they started with Moody’s/KMV’s EDF, an equity-based
measure of the probability that an issuer will default over the next year.
Placing this measure within the intensity framework, under the assumption
that λP follows a Markov process, EDF is related to survival according to

EDFt = 1 − E P
[
e− ∫ t+1

t λP(s)ds
∣∣λPt ]. (14.20)

Thus, given a model for λP and time-series data on EDF, one can invert
the relation (14.20) for the EDF-implied time series λPt . Berndt et al. pa-
rameterize log λP as a Gaussian process and estimate the parameters of this
process by ML. From the implied λP they conclude that, on average, the
default risk premium µ= (1−	) is between two and three, consistent with
what Driessen found for the corporate market. A key advantage of their
analysis over Driessen’s is that, from the EDF data, Berndt et al. are able
to construct a time series of µt . For a representative oil and gas firm, for
example, they found that λQt /λPt starts out around one in the second half of
2001 (	t = 0, so zero default risk premium), it peaks just over three during
the summer/fall of 2002, and then µ declines steadily thereafter through
2003. During the summer of 2002 speculative-grade default rates (as com-
puted, e.g., by Moody’s) peaked at over 10%. Hence the patterns found in
Berndt et al., which are premised on a constant risk-neutral recovery rate
wQ, suggest that the default risk premium (1−	t ) is increasing in the rate
of corporate defaults.
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15
Equity Option Pricing Models

According to the original Black-Scholes (1973) option pricing model,
the implied volatilities on European options on common stocks should
be the same for options of all maturities and all strike prices. This is an
implication of their assumption that the stock price follows a lognormal
diffusion with constant volatility. In fact, especially subsequent to the “crash”
of October 1987, implied volatilities have exhibited a pronounced smile or
smirk. A typical pattern of implied volatilities is displayed in Figure 15.1 for
November 2, 1993. We see that call options that are deep in the money (put
options that are deep out of the money) have higher implied volatilities than
those that are nearer the money. Moreover, for a given degree of “out-of-
the-moneyness,” options with longer maturities tend to have lower implied
volatilities. Neither of these patterns is consistent with the Black-Scholes
model.

In this chapter we explore some of the models that have been put
forth to explain these departures from the assumptions of the Black-Scholes
model. Most of these models stay within the arbitrage-free framework of
Black and Scholes and relax their strong assumptions about the distribu-
tions of stock prices, though a few examine equilibrium settings starting
with specifications of agents’ preferences. Furthermore, while much of the
empirical work on equity option pricing has focused on S&P500 index op-
tions, recently several researchers have examined the pricing of options on
individual common stocks. In both the study of options on individual stocks
and stock indices, a key question that has been addressed is which risks are
priced in the markets and what are the properties of the associated “market
prices of risk.”

We begin with an overview of no-arbitrage models that directly posit
a pricing kernel with associated market prices of risk. This literature has
focused on the relative contributions of priced volatility and jump risks
in generating volatility smirks. Subsequently, we discuss the literature on
preference-based models for option pricing.

391



Page 392 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

392 15. Equity Option Pricing Models

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[392], (2)

Lines: 29 to 39

———
2.55302pt PgVar
———
Normal Page

* PgEnds: Eject

[392], (2)

0.6 0.7 0.8 0.9 1 1.1 1.2
     6

     8

10

   12

   14

   16

   18

20

   22

   24

Moneyness = Strike/Forward

B
la

ck
-S

ch
ol

es
 I

m
pl

ie
d 

V
ol

at
ili

ty
 (

%
)

17 days 
45 days 
80 days 
136 days
227 days
318 days

Figure 15.1. “Smile curves” implied by S&P500 index options of six different
maturities. Option prices are obtained from market data of November 2, 1993.

15.1. No-Arbitrage Option Pricing Models

In an influential paper in the option-pricing literature, Heston (1993)
showed that the risk-neutral exercise probabilities appearing in the call
option pricing formulas for bonds, currencies, and equities can be com-
puted by Fourier inversion of a conditional characteristic function, which is
known in closed form under his assumption that stochastic volatility follows
a square-root diffusion. Building on this insight,1 researchers have devel-
oped a variety of option pricing models that can potentially explain these
systematic deviations from the Black-Scholes model in the options data.

Initially, following the literature, we focus on the data-generating
process:

dSt = µPS (St , vt )St dt + √
vtSt dWSt + dZSt , (15.1)

1 Early papers examining option prices for the case of state variables following square-root
diffusions are Bates (1996, 2000), Scott (1996, 1997), and Bakshi et al. (1997).
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dvt = κPv
(
v̄ P − vt

)
dt + σv

√
vt

(
ρdWSt +

√
1 − ρ2dWvt

)
+ dZvt , (15.2)

where W = [WS ,Wv]′ is a vector of independent Brownian motions in
R2, ρ ∈ (0, 1) is a constant coefficient controlling correlation between the
Brownian shocks to S and v, and µPS (St , vt ) is a stock price and volatility
dependent component of the drift of dSt/St . The processes (ZS ,Zv) are
jumps with intensities (mean arrival rates) ζSt and ζvt , respectively. The
amplitudes of the jumps, when they occur, may be random.

Heston (1993) considered the special case of (15.1) and (15.2) in which
(ζSt , ζvt ) = 0, so there were no jumps in either prices or volatility. Owing to
his focus on pricing (as contrasted with estimation using time-series data),
Heston assumed that the risk-neutral drift of St was µQSt = rSt and µPS (St , vt )

was left unspecified. (The former is required by the assumption of no ar-
bitrage opportunities—traded assets earn the riskfree rate when agents are
risk neutral.) He allowed for a volatility risk premium that was proportional
to

√
v(t), giving

dvt =
[
κPv
(
v̄ P − vt

)+ ηvvt

]
dt + σv

√
vt dW

Q
vt (15.3)

underQ. Consequently, theP andQ drifts of vt were both affine functions of
v. We refer to his model as model SV (with or without priced volatility risk).

Two recent studies that estimate models with stochastic volatility and
a jump in stock returns (model SVJ) are Chernov and Ghysels (2000) and
Pan (2002). To interpret their assumptions about the market prices of price
and volatility risks, we let µPt = (µPSt , µ

P
vt )

′ denote the drift of (d St/St , d vt )

under the physical measure, and µQt its counterpart under the risk-neutral
measure. Recall that the relation between these two drifts (within this affine
setting) is µQt = µPt − �

√
�tt , where t is the vector of market prices of

risk associated with return and volatility risk,

� =
(

1 0

σvρ σv
√

1 − ρ2

)
, (15.4)

and �t is the 2 × 2 diagonal matrix with vt along the diagonal.
Chernov and Ghysels (2000) abstract from jumps (Z t is omitted) and

replaceµPSt in (15.13) with µ̄PS , a constant. They also treat the riskless interest
rate as a constant r . Straightforward calculation then shows that for the drift
of St to be r under the risk-neutral measure,

S
t = µ̄Ps − r√

vt
. (15.5)

For the volatility process, Chernov and Ghysels assume that the drift under
Q is κQv (v̄

Q − vt ), from which it follows that
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κPv
(
v̄ P − vt

)− σvρ
√

vt
S
t − σv

√
1 − ρ2√vt

v
t = κQv

(
v̄ Q − vt

)
. (15.6)

Substituting in (15.5) and solving for v
t gives

v
t = C 1√

vt
− C 2

√
vt , (15.7)

where

C 1 = κPv v̄
P − κQv v̄ Q − (

µ̄PS − r )σvρ

σv

√
1 − ρ2

, (15.8)

C 2 = κPv − κQv

σv

√
1 − ρ2

. (15.9)

Note that neither component of t in the Chernov-Ghysels model has a
“completely affine” form, which would have the risk premiums proportional
to

√
vt . Instead, they involve multiples of 1/

√
vt .

An implication of their formulation is that as vt approaches its lower
bound of zero, t approaches infinity. As such, their model potentially
admits arbitrage opportunities. This is precisely the same issue that arose in
our discussions of the risk premiums in “essentially” affine DTSMs. There
we constrained the parameters of the market prices of risk to rule out such
arbitrage opportunities (see Chapter 12). Perhaps similar constraints on
the parameters determining (C 1,C 2) could be derived to rule out arbitrage
opportunities in this setting.

Pan (2002) uses a variant of the model in Bates (2000) in which there
are no jumps in volatility (ζvt = 0) and the intensity of the jump process
ZS is an affine function of volatility {ζvt = ζ1vt : t ≥ 0}, for a nonnegative
constant ζ1. At the ith jump time τi , the stock price is assumed to jump from
S (τi−) to S (τi−) exp(U s

i ), where U s
i is normally distributed with mean µPJ

and variance δ2
J , independent of W , of interjump times, and of U s

j for j �= i.
The mean relative jump size is mPSJ = E(exp(U s) − 1) = exp(µPJ + δ2

J /2) − 1.
She assumes that the representation of (S , v) under Q is

dSt =
[
rt − qt − ζ1vtm

Q
SJ

]
St dt + √

vt St dW
Q

St + dZ QSt , (15.10)

dvt =
[
κPv
(
v̄ P − vt

)+ ηvvt

]
dt + σv

√
vt

(
ρ dW Q

St +
√

1 − ρ2dW Q
vt

)
, (15.11)

where r is the riskless interest rate, q is the dividend payout rate, and mQSJ
is the risk-neutral mean of the relative jump size of the stock price. W Q =
(W Q

S ,W Q
v ) is a standard Brownian motion under Q defined by
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W Q
t = Wt +

∫ t

0
u du, 0 ≤ t ≤ T , (15.12)

with t = (S
t ,

v
t )

′ being the market prices of risk associated with the
Brownian motions WS and Wv . Additionally, she assumes that

µPSt =
(

rt − qt + ηsvt − ζ1vtm
Q
SJ

κPv
(
v̄ P − vt

)
)
. (15.13)

From these expressions we infer that Pan assumes the market price of
risk t to be given by

S
t = ηs

√
vt , (15.14)

v
t = − 1√

1 − ρ2

(
ρηs + ηv

σv

)√
vt , (15.15)

with ηs and ηv being constant coefficients.
The risk-neutral mean relative jump size mQSJ differs from its physical

counterpart m PSJ in order to accommodate a premium for jump-size risk.
Pan assumes that there is no risk premium associated with jump-timing risk
(there is no distinction between ζSt under P andQ). Such a premium could
be added by allowing the coefficient ζQ1 for the risk-neutral jump-arrival
intensity to be different from ζ P1 . The motivation for assuming no premium
on jump timing risk seemed to be largely practical: it might be difficult
to econometrically identify separate timing and amplitude premiums. Of
course, by making this assumption, any risk premium in jump timing that
is in fact present is being absorbed into one of the risk premiums that is
allowed.

Two models with jumps in both returns and volatility were introduced
by Duffie et al. (2000). In Chapter 7 we discussed the empirical properties
of these models as descriptions of the historical behavior of returns. In this
chapter we explore some of their implications for the pricing of options.
Recall that model SVIJ assumes that the jump amplitude processes JS and
Jv are independent with respective amplitude distributions

Jvt ∼ exp(mJv) and JSt ∼ N
(
mJS , δ

2
JS

)
. (15.16)

Since Jv follows an exponential distribution, volatility can only jump up.
Further, since Jv and JS are independent, any “leverage” effects must be
induced by the correlation among the diffusive shocks. A critical ingredient
added by the jumps in volatility is the clustering of large return movements.
Following an upward jump in vt , the higher level of volatility persists owing
to its slow reversion to its mean.
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Alternatively, model SVCJ has the jumps in returns and volatility driven
by the same jump process (simultaneous jumps, Zv = ZS) and their ampli-
tudes are correlated:

Jvt ∼ exp(mJv) and JSt | Jvt ∼ N
(
mJS + ρJ Jvt , δ

2
JS

)
. (15.17)

This formulation introduces an additional leverage effect owing to jumps
when ρJ < 0 (see Chapter 7 for an introduction to the leverage effect). A
jump in volatility with a large amplitude Jvt (with ρJ <0), lowers the mean
of the price jump amplitude thereby amplifying the leverage effect. At the
same time, the positive jumps in volatility contribute to the right skewness
of the distribution of volatility. Both features of this model tend to fatten
the tails of the return distribution.

These models are easily extended to allow for state-dependent jump
intensities as in Bates (2000) and Pan (2002). Such a model SVSCJ with
correlated jumps and stochastic arrival rate for jumps in stock prices,

ζSt = ζ0 + ζ1vt , (15.18)

is explored in Eraker (2004). With ζ1 > 0, jumps tend to occur more fre-
quently in high-volatility regimes. Furthermore, as with model SVJ, one can
introduce risk premiums associated with both the jump amplitudes and the
timing of jumps. Like Pan, Eraker assumed the former, but not the latter,
risk was priced.

15.2. Option Pricing

If we let Ct denote the time-t price of a European-style call option on S ,
struck at Kt and expiring at T , and X ′

t = (rt , qt , vt ),

Ct = E Q
[

exp
(

−
∫ T

t
ru du

)
(ST − K )+

∣∣∣∣ St ,Xt

]
. (15.19)

We can price this option using the time-t conditional transform of ln ST ,

ψ(u,Xt ,T − t) = E Q
[

exp
(

−
∫ T

t
rs ds

)
eu ln ST

∣∣∣∣ Xt , St

]
, (15.20)

for any u ∈ C, introduced in Chapter 5. Letting kt = Kt/St be the time-t
“strike-to-spot” ratio gives

Ct = St O(Xt ,T − t , kt ), (15.21)

where O : R3
+ × R+ × R+ → [0, 1] is defined by
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O(x,T − t , k) = �1 − k�2, (15.22)

with

�1 = ψ(1, x,T − t)
2

− 1
π

∫ ∞

0

Im
(
ψ(1 − iu, x,T − t)e i u(ln k)

)
u

du,

�2 = ψ(0, x,T − t)
2

− 1
π

∫ ∞

0

Im
(
ψ(−iu, x,T − t)e i u(ln k)

)
u

du,

(15.23)

where Im(·) denotes the imaginary component of a complex number. The
transform ψ is a known exponential-affine function of Xt .

15.3. Estimation of Option Pricing Models

One easy to implement estimation strategy is to minimize the squared devi-
ations between the market and model-implied option prices. That is, letting

εit ≡ Cit

St
− O(Xt ,Ti − t , kit ), (15.24)

where i indexes options of possibly different strike prices and maturities,
one minimizes the squared deviations ε2

it by choice of the parameter values
of the model. Bakshi et al. (1997) estimate the parameters using a cross sec-
tion of strikes and maturities for a given day. (In this case, St cancels from the
optimization problem.) Conceptually, this approach amounts to changing
the model every period, because different parameter values are obtained
for each date in the sample. As discussed in Chapter 12, such recalibration
may well introduce dynamic arbitrage opportunities when viewed through
the lens of the correct pricing model. Further, though it is common when
using this approach to report the average values of the parameters across
the days in a sample, such averages are often not directly interpretable in
terms of the parameters of a “true” pricing model.

In contrast, Bates (2000) holds the parameters fixed over time and
adopts an error components structure. He groups options according to
their moneyness and maturity and allows the group pricing errors to be
serially correlated with normally distributed, group-specific shocks. In ad-
dition, he allows for an idiosyncratic shock for each option with a variance
that is common to the group. That is, he assumed that for group I

εit = εIt + σI ηit , for i ∈ G (I , t), (15.25)

εIt = ρI εI ,t−1 + νIt , (15.26)

where G (I , t) is the set of observations for group I at date t , νIt is a mean
zero normally distributed shock that is common to all options in group I
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and the νIt may be correlated across groups, and ηit ∼ N (0, 1) and is un-
correlated with νIt . He uses Kalman filtering methods to estimate the error
components and a generalized least-squares fitting criterion to estimate the
parameters.

Chernov and Ghysels (2000) use the SME approach to estimation with
an auxiliary model of the type suggested by Gallant and Tauchen (1996)
(see Chapter 6). They focus on short-term ATM call prices, with ATM de-
fined as kt ∈ [0.97, 1.03], for the sample period November 1985 until Oc-
tober 1994. The resulting series of call prices reflects variation over time in
both the strike price, as ATM changes with market levels, and maturity, as
the maturity of the short-term option that is closest to being ATM changes.

In constructing simulated series, with the simulation length T larger
than the sample size T , one has to make assumptions about the changing
nature of the strike prices and contract maturities of the ATM calls. Chernov
and Ghysels address this issue by cycling through both the set of option
maturities and the degree of moneyness in the data set. The latter was
chosen, instead of strike prices, because the simulated cash prices may be
very different than what was experienced in the historical sample.

A third estimation strategy, implied-state method-of-moments (IS-
GMM), was pursued by Pan (2002).2 Letting yt = ln St − ln St−1 − (r − q)
and (�y �t , �v �

t ) denote �-histories of y and v, Pan constructs M ≥ K moment
conditions of the form E[h(�y �t , �v �

t , θ0)] = 0, where θ0 ∈ RK is the popula-
tion parameter for her model and h : R� × R�+ × � → RM is the function
defining the moments to be used in estimation. Key to her analysis is the
fact that h is constructed using moments of the underlying state vector, the
stock price and volatility in her case, and not moments of the option prices.
The reason is that, since (St , vt ) follows an affine diffusion, its conditional
moments are all known in closed form (see Chapter 5). In contrast, option
prices are nonlinear functions of the state and, in general, their moments
are not known.

What makes it feasible for Pan to focus on moments of the underlying
state vector rather than observed option prices is that she evaluates the mo-
ments with model-implied volatilities in place of the unobserved vt . Specif-
ically, let ct = Ct/St denote the price-to-spot ratio of the option observed
on date t , with time τt to expiration and strike-to-spot ratio kt . Given this
option price, St and a value of the parameter vector θ , we invert the option

2 Pan allows for stochastic interest rates and dividend yields in her empirical analysis.
The processes for interest rates and dividends were estimated first and then the parameters
from these processes were input into the option pricing analysis as if they were the population
parameter values (no adjustment to the standard errors of the option pricing model were made
for two-stage estimation). We abstract from this first stage and discuss estimation as if r and q
are constant or follow known processes.
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pricing model (15.24) for v θ
t . Then, for any θ ∈�, the date-t option-implied

volatility is defined by v θ
t = g (ct , θ, τt , kt ). At θ = θ0, vθ0

t is the true market-
observed (according to this model) volatility. Using these model-implied
volatilities in the construction of h, and the associated sample moments

GT (θ) = 1
T

∑
t≤T

h
( �y �t , �v �θ

t , θ
)
, (15.27)

the IS-GMM estimator is defined as

θT = argmin
θ∈�

GT (θ)
′WTGT (θ), (15.28)

where {WT } is a M ×M positive semidefinite distance matrix.
The moment function h was constructed using the moments E θ[εt |Ft−1]

= 0 with the elements of εt taking the form g (yt ) − E θ
t−1[g (yt )], where g(·)

raised its argument to various integer powers and Ft was the information
set generated by the history of (St , vt ). All of the conditional expectations
are known functions of θ and vt−1.3 For this set of conditional moment re-
strictions based on εt , the optimal set of instruments can be constructed
following Hansen (1985) and the discussions in Chapters 3 and 5. In the
case of IS-GMM estimation, one cannot literally use Hansen’s optimal in-
struments, as they involve terms of the form E [∂εt/∂θ |Ft−1]. The error term
εt depends on θ in two ways: directly through the functional dependence
of the expectations E[·|Ft−1] on θ and indirectly through the parameter
dependence of v θ

t . The contribution of the former term resides in Ft−1 so
the conditioning can be dropped. However, in general, the contribution of
the second term is not in Ft−1 and the conditional expectation of this term
enters the optimal instruments. This expectation is unknown and therefore
implementation of the optimal instruments would, at a minimum, be com-
putationally demanding. Pan circumvented this problem by omitting the
second term; that is, she computed the optimal instruments as if v θ

t was
known (did not depend on θ). The resulting computational simplicity is
traded off against the loss in efficiency from omitting a component of the
truly optimal instruments.

Whether one pursues an estimation strategy based on GMM or ML, the
asymptotic theory from Chapter 3 is often not directly applicable to the
estimation of option pricing models because, for exchange-traded options
in particular, a time series of fixed-maturity options is not generally avail-
able. Therefore, it has become common practice to choose the maturity τt
of the option whose price is observed at date t to be as close as possible to

3 The fact that the conditional characteristic function of yt depends only on vt−1 was seen
in Chapters 5 and 7. This is a feature of this particular formulation of the stochastic volatility
model.
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Figure 15.2. Time series of contract variables: time-to-expiration τ and strike-to-spot
ratios k. Source: Pan (2002: p. 18), with permission from Elsevier.

a given maturity (say 30 days), subject to the requirement that the option
price is not too far out of the money. Typically, this selection rule implies a
repetitive, nearly deterministic time path for {τt }. A representative example
of this problem is displayed in Figure 15.2 from Pan (2002).

To accommodate this problem, following Pan, we let X θ�
t denote the

�-history of Xt = (yt , v θ
t , kt ) and �Y �

t denote the �-history of τt . Suppose that
{Yt } has finitely many outcomes, denoted {1, 2, . . . , I }. For each outcome i
and each positive integer T , we let A(i)

T = {t ≤ T : Yt = i} be the dates, up
to T , on which Y has outcome i. Then, for each i, we assume that there is
some wi ∈ [0, 1], such that

lim
T

#A(i)
T

T
= wi a.s., (15.29)

where #( · ) denotes cardinality.
If X θ

t is geometrically ergodic for given θ ∈ �, we know that functions
of X θ�

t satisfy a strong law of large numbers. For consistency we assume in
addition that a uniform strong law of large numbers is satisfied under the
preceding sampling assumption. That is, for each outcome i of Y , if we let
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G (i)
T (θ) = 1

#A(i)
T

∑
t∈A(i)

T

h
( �X �θ

t , θ, i
)
,

G (i)
∞(θ) = limT G (i)

T (θ) exists and the convergence is uniform over the pa-
rameter space �. To develop more primitive assumptions that would imply
a uniform strong law, we would need to impose some type of Lipschitz con-
dition on h(x, θ, i) as a function of θ as in Chapter 6. See Pan (2000) for
further discussion of these issues.

Finally, MCMC estimation (see Section 6.8) is a potentially attractive
approach when one or more of the state variables are latent. This situation
arises in the analysis of option pricing models when the parameters of the
SVJ model are fit to stock return data alone (volatility is latent) or, more
generally, volatility follows a multifactor process and a smaller number of
asset prices than state variables are used in estimation. The MCMC estimator
is used in Eraker et al. (2003) and Eraker (2004).

15.4. Econometric Analysis of Option Prices

Comparing the results from the estimation of no-arbitrage option pricing
models is complicated by the fact that some authors have estimated their
models using both options and spot market data, whereas others have used
only options data4; various estimation methods have been used; and differ-
ent sample periods for the data are often used. Eraker (2004) uses both
returns and options data (daily) on the S&P500 index over the period Jan-
uary 1987 to December 1990, and then out-of-sample tests are based on the
period January 1991 to December 1996. Pan (2002) uses both returns and
option data (weekly) on the S&P500 index from January 1989 to December
1996. Bakshi et al. (1997) use only options data on the S&P500 index from
June 1988 to May 1991. Bates (2000) uses S&P500 index options data from
January 1988 to December 1993. Finally, Broadie et al. (2004) use data on
S&P futures options from 1987 through 2003.

Representative estimates of the parameters of models with jumps, esti-
mated using options or both options and return data, are shown in Tables
15.1 and 15.2.5 Focusing first on the parameters of the diffusion part of the
models (Table 15.1), there is a notable similarity across these studies even
though they used different sample periods and very different methods of
estimation. The rate of mean reversion of the volatility, κv , is low under both

4 In this chapter we focus primarily on studies that have used options prices directly in the
estimation. Studies of the distribution of the underlying stock price processes were reviewed
in Chapter 7.

5 We follow the convention in Eraker (2004) and present the results for a daily time inter-
val. Annualized numbers referenced in the subsequent discussions are obtained by multiplying
by 252 (approximate number of trading days per year). We are grateful to Bjorn Eraker for
assistance with the conversions of the annualized estimates reported in other papers.
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Table 15.1. Estimates of the Diffusion Parameters
Using Data on S&P500 Index Options Prices

Diffusion parameter estimates

Author Model κ
Q
v v̄ σv ρ ηv

Bakshi et al. SVJ 0.008 1.60 0.15 −0.57 NA
Pan SVJ 0.013 0.61 0.12 −0.53 0.012
Eraker SVJ 0.011 1.65 0.20 −0.59 0.009

SVCJ 0.011 1.35 0.16 −0.58 0.013
SVSCJ 0.006 0.94 0.14 −0.54 0.017

Table 15.2. Estimates of the Jump Parameters Using Data on the S&P500 Index

Jump parameter estimates

Author Model ζv E[ζS ] mQSJ (%) mPSJ (%) δJ (%) ρJ mvJ

Bakshi et al. SVJ NA 0.002 −5.00 NA 7.00 NA NA
Pan SVJ NA 0.001 −19.2 −0.80 3.87 NA NA
Eraker SVJ NA 0.002 −2.00 −0.39 6.63 NA NA

SVCJ = ζS 0.002 −7.51 −6.06 3.36 −0.69 1.64
SVSCJ = ζS 0.002 −7.90 −1.54 2.07 −2.24 1.50

Q and P consistent with a high degree of persistence in volatility, which was
documented in Chapter 7.6 These studies also consistently find evidence
for a substantial “leverage” effect in that the estimates of ρ are all roughly
−0.5. The most notable difference is Pan’s relatively lower estimate of the
long-run mean of the volatility process, v̄.

All three studies also show a positive volatility risk premium (ηv >0)—
investors tend to be adverse to increases in volatility. Thus when volatility is
high, option prices are higher than what would be obtained by using his-
torical volatility in pricing. Eraker reports that ηv is statistically significant
(at conventional levels) in model SVCJ, but not in model SVJ. Precise es-
timation of the risk premium parameters is difficult, partly because of the
limited history of options data available for estimation and (in some cases)
limited availability or use of prices on options far out of the money. More-
over, as illustrated by the calculations in Das and Sundaram (1999), the drift
of the volatility process (and hence the volatility risk premium) has a very
small impact on the pricing of OTM puts and calls. Analogous to the case
of dynamic term structure models for bond yields, an analysis of the term
structure of implied volatilities would likely lead to more precision in the

6 The mean reversion under P, κPv , is obtained as κP = κQ+ηv . What is new here, relative
to the insights learned from the study of stock returns alone (see Chapter 7), is that volatility
remains persistent under Q, after adjusting for the volatility risk premium.
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estimation of ηv . However, options with long maturities are relatively illiq-
uid, so they are typically not included in these empirical studies.

Where these studies differ is in their implications for the role of jumps
in option pricing. The model-implied average arrival rates of jumps E[ζS]
(which is just the estimated stock price jump intensity when ζS is state
independent) suggest that jumps in returns occur about 0.002 times per
day, or once every 2 years. Interestingly, this is a different picture than
the one that emerged from the studies of stock return data alone. For
example, Eraker et al. (2003), in their study of jump diffusions estimated
with stock returns alone, obtained an arrival rate closer to two jumps per
year. Eraker re-estimated model SVCJ for the sample period underlying
Table 15.2 using return data alone and obtained an arrival rate of about
one jump per year. While the estimates clearly differ with sample period,
these patterns do suggest that inclusion of the options data tends to reduce
the predicted frequency of jumps over what is obtained from return data
alone. One possible explanation for this pattern is that when only return
data are studied, the jump parameters are used by the likelihood function
to provide a better fit to the time-varying volatility of returns. An extreme
version of this was seen in Chapter 7, where a pure-jump diffusion model
(with no stochastic volatility) gave rise to nearly 200 jumps per year! With
the inclusion of options data, much more weight in the likelihood function
is given to the role of jumps matching the volatility skew in this market. The
estimated jump frequency also depends on the actual incidence of jumplike
behavior during the sample period.

Table 15.2 reveals differences across studies in the average size of jumps
in returns when they do occur, particularly under Q. Whereas the mean
jump sizes range between −5 to −10% for most studies, Pan obtains a
mean of −19%. Thus her analysis gives somewhat less frequent jumps,
with much more severe (under Q) amplitudes for those that do occur.
Using a similar model, but a different data set, Bates (2000) also finds ev-
idence for somewhat more severe jump amplitudes. These larger (in ab-
solute value) amplitudes generate a more pronounced volatility skew in
model-implied Black-Scholes volatilities. Perhaps Pan’s inclusion of an in-
the-money call in her empirical analysis of model SVJ underlies her larger
estimate of mQSJ.

Note that, comparing Pan’s results for model SVJ with Eraker’s results
for model SVSCJ (the two models share a stochastic arrival rate for return
jumps), quite similar estimates of mPSJ are obtained. As stressed by Eraker,
mPSJ is difficult to estimate precisely, because it affects the distribution of
stock returns but not option prices. Nevertheless, these findings suggest that
differences in mQSJ across studies arise owing to very different estimates of the
jump-amplitude risk premiums.

In order to preserve positivity of the volatility process, jumps in volatil-
ity in models SVCJ and SVSCJ are constrained to have (constant) positive
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amplitudes. As such, these models are by construction incapable of captur-
ing abrupt declines in volatility, such as occurred after the period of high
volatility during the 1987 crash. Similar observations have led some authors
to examine multifactor models for volatility; see, for example, Bates (2000)
and Chernov et al. (2000). Pan (2002) and Eraker (2004) find evidence in
support of such an extension, but we are not aware of any systematic studies
of option prices using a two-factor model for volatility.

How much does the enrichment of these models through additions of
jumps to returns and volatility improve their fits to options prices and volatil-
ity skews? Bakshi et al. (1997) find a substantial improvement in model SV’s
usefulness in hedging options positions, over the Black-Scholes model with
constant volatility. However, adding jumps in returns (extending to model
SVJ) does not lead to a further improvement in hedging performance.
Though the pricing errors are on average smaller with than without jumps,
Bates (2000) and Pan (2002) also find substantial improvements in fit for
model SVJ over model SV to the volatility smirks, over a wide range of mar-
ket conditions. These findings are in contrast to those of Eraker (2004),
who finds that jumps in returns or volatility lead to quite small improve-
ments in pricing errors. Similar results were obtained in his out-of-sample
analysis. Finally, using a much longer time series of (futures) options prices
than these other studies, Broadie et al. (2004) find that jumps in returns
and volatility both contribute substantially to the improved pricing perfor-
mance of their models. Their findings also suggest that jump risk premiums
are time varying.

The differences across these studies may be partly attributable to the
different estimation strategies used. Some studies choose the parameter es-
timates to minimize squared pricing errors, whereas others use estimation
methods that do not minimize pricing errors (e.g., MCMC). Differences
in conclusions could also arise from the ways pricing errors are measured,
though most studies adopted the convention of measuring errors in terms
of dollars and cents. Alternative measures, such as pricing errors as a per-
centage of the price of the underlying option, would effectively change the
weights given to contracts by maturity and degree of moneyness.

Overall it seems that to explain the presence and temporal behavior of
implied-volatility smirks, jumps in returns or volatility, or some other non-
diffusing behavior of returns, are necessary. We also found in Chapter 7
that such extensions of the basic lognormal diffusion model with stochastic
volatility are necessary to model conditional distributions of stock returns.

15.5. Options and Revealed Preferences

Two complementary approaches to linking preferences and option prices
have been pursued in the literature. Ait-Sahalia and Lo (2000), Jackwerth
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(2000), and Rosenberg and Engle (2002) use nonparametric and semi-
parametric estimates of the marginal rate of substitution (or alternatively the
pricing kernel) to back out the implied risk aversion of the representative
agent. Alternatively, Garcia et al. (2003) and Liu et al. (2005) explore specific
parametric specifications of preferences and state variables with the goal of
generating the empirical characteristics observed in option pricing data.

15.5.1. Nonparametric/Semiparametric Approaches

The objective of this literature is to back out from option prices information
about the risk aversion of market participants. In Chapter 8 we saw that the
pricing kernel transforms the historical to the risk-neutral distribution of
the state vector Y underlying risk in an economy. Suppose that we are in
an economic environment where the pricing kernel q∗ is a representative
agent’s marginal rate of substitution,

q ∗
t+1 = mt+1 ≡ U ′

t+1

U ′
t
, (15.30)

where U denotes the period utility function including agents’ subjective
discount factor. Then, using (8.25), we can write

mt+1 = e−rt f Q(Yt+1|Yt )

f P(Yt+1|Yt )
. (15.31)

It follows that from knowledge of the historical and risk-neutral distributions
of the state, we can infer agents’ marginal rate of substitution.

Using results from Leland (1980), we can use this observation to con-
struct a measure of agents’ coefficient of absolute risk aversion (CRA).
Specifically, assume markets are economically complete, there is one traded
risky asset, and that the representative agent’s consumption (Ct) is equal to
her wealth, which, in turn, is equal to the value of the risky asset (St), Ct =St .
In this setting, agents’ coefficient of relative risk aversion,

CRAt+1 = −U ′′
t+1

U ′
t+1

= −∂mt+1/∂Ct+1

mt+1
, (15.32)

can be expressed in terms of the densities f P and f Q:

CRAt+1 = ∂f P(St+1|St )/∂St+1

f P(St+1|St )
− ∂f Q(St+1|St )/∂St+1

f Q(St+1|St )
. (15.33)

It follows that, if the density functions f P and f Q can be estimated non-
parameterically, then the risk aversion implicit in security prices can be
computed without having to specify U (·) explicitly.
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Ait-Sahalia and Lo (2000) and Jackwerth (2000) pursue this idea by
using kernel density estimators of f P constructed from historical return
data. To compute f Q, Ait-Sahalia and Lo (2000) exploit the insight of Banz
and Miller (1978) and Breeden and Litzenberger (1978) that the state-price
density can be computed from the second derivative of an option price with
respect to the strike price of the option. That is, lettingO(St ,K ) denote the
price of an option on the market index S struck at K and maturing at date
t + 1. They obtain

f Q(St+1 = K |St ) = e rt+1
∂2O(St ,K )

∂K 2
. (15.34)

Next, following Ait-Sahalia and Lo (1998), market option prices and kernel
regression techniques are used to estimate the function O(St ,K ) nonpara-
metrically. This estimate is then differentiated with respect to K to estimate
f Q(St+1|St ).

Alternatively, Jackwerth (2000) follows the approach of Jackwerth and
Rubenstein (1996) in estimating f Q. The risk-neutral density is chosen non-
parametrically to fit a cross section of option-implied volatilities, subject to
exogenously given smoothness constraints on the shape of the conditional
density. Rosenberg and Engle (2002) pursue a third approach by working
with a parametric model of the pricing kernel and modeling the equity in-
dex return process using an asymmetric GARCH process (see Chapter 7).

Depending on the model and choice of nonparametric estimator, the
resulting pricing kernel is not always monotonically decreasing in the wealth
level of investors. Consequently, in the studies of Jackwerth (2000) and
Rosenberg and Engle (2002) there are regions of negative risk aversion.
Ait-Sahalia and Lo (2000) find that relative risk aversion is positive, but non-
monotonic, and varies greatly (from 1 to 60 in the specified range, with the
weighted average being 12.7). These authors also find that the marginal rate
of substitution is nonmonotonic in wealth levels. Together these studies sug-
gest that the CRRA model of preferences (see Chapter 10) is not consistent
with the options data. Jackwerth (2000) finds that before the 1987 crash,
the physical and the risk-neutral distributions for the S&P500 were more
“lognormal”-like than after the crash. Additionally, after the crash, the risk-
neutral distribution is more left skewed and more peaked (leptokurtic).

A natural question is: how robust are these findings to assumptions be-
ing made about the underlying economic environment and the dimension-
ality of the state vector? These studies presume that stock prices follow a
univariate process and, in particular, rule out stochastic volatility. Prefer-
ences are also defined over this single state variable, wealth. Garcia et al.
(2004) illustrate how the approach taken by Rosenberg and Engle (2002)
can lead to incorrect inferences about risk aversion, essentially because of a
missing factor in the pricing kernel. It seems plausible that their concerns
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about nonparametric estimates of risk aversion are equally applicable to the
other fitting methods applied to date. If agents’ pricing kernels are state
dependent—depend on more than the price of the security underlying the
option being priced—then conclusions drawn about agents’ preferences
may well be misleading.

15.5.2. Preference-Based Models of Option Prices

With these cautionary observations in mind, we turn next to the literature
that has used parametric specifications of preferences in an attempt to
generate volatility smirks like those observed historically. Two specifications
that are natural candidates for exploration in this setting are the recursive
preferences of Epstein and Zin (1989) and preferences that accommodate
habit formation.

Garcia et al. (2003) explore the properties of options prices implied by
a model in which preferences are given by the recursive form (8.21) and
(8.22). Consumption and dividend growths are assumed to follow a joint
i.i.d. process conditional on a latent state variable that follows a Markov
switching process. Three different models are compared: their most gen-
eral option pricing model implied by the Epstein-Zin-style preferences, the
special case of expected utility (the CRRA is equal to the inverse of the
intertemporal elasticity of substitution), and a preference-free model that
amounts to a discrete-time version of the model examined in Hull and
White (1987). The latter model adjusts the basic Black-Scholes model to ac-
commodate stochastic volatility that is not priced. They find that, on average,
their most general model has the smallest pricing errors and the preference-
free model has the largest errors.

In a complementary study, these authors also examine the implications
of their model for volatility smiles. Several features of their results suggest
that Epstein-Zin preferences, along with their Markov switching model for
the state, cannot generate the smirklike patterns observed in index options
markets. Most notably, from Garcia et al. (2001: fig. 10), one sees that, hold-
ing the CRRA constant across models, the added flexibility of Epstein-Zin
preferences over the nested expected utility model shifts the Black-Scholes
implied volatility surface horizontally to the right. This is approximately true
in both of their regimes. Given their quoting convention, moving to the
right highlights call options that are more in the money and put options that
are deeper out of the money. The pronounced volatility smirk in actual mar-
kets implies that these options should be more expensive (have higher im-
plied volatilities). However, for the parameters chosen, the graphs suggest
that the model with recursive Epstein-Zin preferences generates cheaper,
rather than more expensive, out-of-the money put option prices than the
nested expected utility model. In other words, it appears that Epstein-Zin
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preferences generate even less of a volatility smirk than the expected utility
model.

Interestingly, relatively less attention has been given to investigating the
properties of option prices in models of habit formation. Bansal et al. (2004)
price options on an aggregate consumption claim using a model with habit
formation that is calibrated to U.S. aggregate data. However, they do not
explore the implications of their model for volatility smiles in depth.

Driessen and Maenhout (2004) take the complementary route of
examining, in a partial equilibrium setting, the question of who would
optimally want to buy puts and straddles in the face of the risk premiums
documented in the empirical literature. They find that investors with CRRA
preferences always hold economically short positions in OTM puts and ATM
straddles (among other things, this implies that portfolio insurance is never
optimal). Moreover, the desire to hold short positions in options also ex-
tends to loss-averse and disappointment-averse investors. This is true even
though these investors avoid stock market risk entirely in the absence of
derivatives. Driessen and Maenhout argue that their findings are robust to
various frictions, including transaction costs, margin requirements, crash-
neutral derivatives strategies, and time-varying portfolio weights. Within the
contexts of the families of preferences that they consider, it appears that the
jump and volatility risk premia documented empirically are economically
substantial.

The premise of the general equilibrium analysis of Liu et al. (2005)
is that standard recursive formulations of preferences are unlikely to be
able to generate volatility smirks like those observed in the data because of
“rare event” premia implicit in the options prices. These authors consider
a representative agent model in which the representative agent’s aggregate
endowment is affected by a diffusion component and a jump component,
with the latter being the source of rare and unpredictable events. The agent
is risk averse over both components.

More precisely, in the reference model, the agent’s endowment process
under P is given by the following special case of (15.1):

dYt = µYtdt + σYtdWt + (
e Jt − 1

)
Yt−dZ t , (15.35)

where the Poisson jump process Z (with intensity λ) has been scaled by its
random amplitude and Jt ∼N (mJ, δ

2
J ). The mean percentage jump in the

endowment is k ≡ exp{mj + δ2
j /2} − 1.

A special feature of the jump component is that the agent is not fully
informed about the parameters of the distribution of this component. That
is, with regard to the jump (but not the return) component there is uncer-
tainty of the type formalized by Knight (1921). To capture this uncertainty,
the agent is presumed to consider alternative models for the jump process
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that are characterized by their Radon-Nikodym derivatives ξT with respect
to the reference model:

dξt =
(
ea+bJt−bmJ− 1

2 b
2δ2

J − 1
)
ξt−dZ t − (ea − 1)λξt dt , ξ0 = 1. (15.36)

Relative to the reference model with jump arrival intensity λ and mean jump
size k, agents examine alternative models with arrival intensities and mean
jump sizes (k) in the set

λξ = λea and 1 + kξ = (1 + k)e b σ
2
J, (15.37)

for predictable processes a and b . As agents roam over different choices of a
and b , they are effectively considering alternative models of the underlying
economy with a = 0 and b = 0 giving the reference economy.

Finally, the representative agent is assumed to solve a “robust control”
problem (see Anderson et al., 2000) with preferences defined over the
admissible a and b as

Ut = inf
a,b

E ξ
t

[ ∫ T

t
e−ρ(s−t)

(
1
φ
ψ(Us)H (as , bs) + c1−γ

s

1 − γ

)
ds
]
, (15.38)

where H is the cost of deviating from the reference model:

H (a, b) = λ

[
1 +

(
a + 1

2
b2δ2

J − 1
)
ea + β

(
1 + ea

(
ea+b2δ2

J − 2
))]

. (15.39)

Since out of the money options are more sensitive to large movements
( jumps), they are able to separately identify the risk premia associated with
risk aversion and uncertainty aversion. Introducing uncertainty aversion
over the jump component increases the implied volatility for ATM options
and also adds flexibility in fitting the OTM option prices so as to allow
them to match the implied volatility smile/smirk patterns observed in the
data. Absent this uncertainty aversion, their model (with what amounts to
standard CRRA preferences) generates a relatively small smile. The authors
argue further that extending the benchmark model to allow for habit for-
mation (without uncertainty aversion) would probably not produce the re-
quired smirk in implied volatilities.

Ultimately, whether or not models with standard recursive preferences
are able to replicate the volatility smiles observed historically depends on
how preferences are matched with the underlying uncertainty in the econ-
omy. Benzoni et al. (2005) reach a more optimistic conclusion about our
ability to explain the high implied volatilities of OTM put options. Follow-
ing Bansal and Yaron (2004), they combine Epstein-Zin preferences with a
dividend process driven by a persistent stochastic growth variable that can
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jump. Their model is calibrated so that it simultaneously matches the eq-
uity premium and the prices of ATM and deep OTM puts, while at the same
time matching the level of the riskfree rate. An important question in this
literature going forward is: To what degree are volatility smiles induced by
investors’ attitudes toward risk and uncertainty versus fat-tailed or skewed
shocks that agents face in making their investment/consumption decisions?

15.6. Options on Individual Common Stocks

Bakshi and Kapadia (2003) and Bakshi et al. (2003) document a number
of empirical observations about individual stock options, especially in com-
parison to index options, offer intuition for these differences, and dis-
cuss some of their implications for pricing. Among the empirical obser-
vations they highlight are: (1) index volatility smiles are more negatively
sloped than individual volatility smiles; (2) individual stocks are mildly neg-
atively skewed (and sometimes positively skewed) and are generally less
negatively skewed than the index (which is never observed to be positively
skewed); (3) implied volatilities for individual options are higher than the
corresponding historical return volatilities, but the differences are smaller
than for index returns; and (4) volatility risk premiums are smaller for in-
dividual stock options than for the index options.

Underlying these empirical observations is the proposition that any
payoff function with bounded expectation is spanned by a continuum of
option prices (Bakshi and Madan, 2000). Drawing upon this result, Bak-
shi et al. (2003) introduce payoffs that are powers of the return R(t , τ ) =
log(S (t + τ)) − log(S (t)), and show that the particular prices V (t , τ ) =
E Q[e−r τR(t , τ )2], W (t , τ ) = E Q[e−r τR(t , τ )3], and X (t , τ ) = E Q[e−r τR(t ,
τ )4], determine SkewQ(t , τ ) and KurtQ(t , τ ). Furthermore, the prices (V,W,

X ) can be computed directly from call and put prices.
These authors also show that for a model with power utility with CRRA

γ , up to first order in γ , the risk-neutral skewness and the physical moments
of the index are related by7:

SkewQ(t , τ ) ≈ SkewP(t , τ ) − γ
(
KurtP(t , τ ) − 3

)
STDP(t , τ ). (15.40)

From (15.40) it is seen that skewness under P induces skewness underQ. At
the same time, even if SkewP = 0, the risk-neutral distribution tends to be
skewed if the stock return exhibits excess kurtosis under P. In general, these
expressions for risk-neutral skews do not aggregate linearly across time if the
P distribution of stock returns exhibits serial correlation. Interestingly, a

7 This approximation actually holds somewhat more generally, to first order, and in
particular applies to certain models with time-varying γ .
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positive autocorrelation tends to induce a U-shaped term structure of skew-
ness, whereas negative autocorrelation gives skews of short-term returns that
are more negative than their counterparts for long-term returns.

With moneyness denoted by y = S/K , these calculations also suggest
that the Black-Scholes implied volatility σi(y; t , τ ) is related to the higher-
order moments of the Q distribution according to

σi(y; t , τ ) ≈ αi[y] + βi[y]SkewQi (t , τ ) + θi[y]KurtQi (t , τ ). (15.41)

This expression is useful for its direct linkage of SkewQ and KurtQ to the
shape of the volatility skew. Bakshi et al. show that firms with more negative
skewness have larger implied volatilities at low levels of moneyness, and
firms with larger kurtoses have larger implied volatilities for both OTM
and ITM put options. Further, whereas skewness is a first-order effect on
the shape of the volatility smile, making it steeper, kurtosis is a second-
order effect on the smile and affects out-of-the money call and put prices
symmetrically.

To explore the higher-moment properties of stock returns implicit in
options data, Bakshi et al. (2003) use daily spot and options prices of the
thirty largest stocks (by market capitalization) and the S&P500. Though the
options on individual stocks are “American” options, the authors found that
their results were largely insensitive to ignoring the early exercise premium.
So they treated these options as “European” in their analysis. They found
that the slope of the volatility curve tends to be much steeper for the index
than for the individual stocks. Additionally, the at-the-money implied volatil-
ity for the index is lower than that of most individual stocks. The relatively
high volatilities of returns on individual stocks imply that large P-moves are
possible even with relatively small P skewnesses and kurtoses. These pat-
terns are naturally manifested in relatively flat implied volatility surfaces for
options on individual stocks. Consistent with (15.41), individual stocks that
exhibit more negative risk-neutral skewness also exhibited steeper volatility
smile.

In a complementary study, Bakshi and Kapadia (2003) estimate the
gains or losses on delta-hedged positions in individual stock options in order
to assess the magnitude of the volatility risk premium in the markets for
options on individual common stocks. They find that the premiums are
negative, but less so on average than for the index option market.
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16
Pricing Fixed-Income Derivatives

Two quite distinct approaches to the pricing of fixed-income derivatives
have been pursued in the literature. One approach takes the yield curve as
given—essentially the entire yield curve is the current state vector. Then, as-
suming no arbitrage opportunities, prices for derivative claims with payoffs
that depend on the yield curve are derived. Examples of models in this first
group are the widely studied “forward-rate” models of Heath et al. (1992),
Brace et al. (1997), and Miltersen et al. (1997). Since the yield curve is an
input, there is typically no associated DTSM; the model used to price deriva-
tives does not price the underlying bonds. The second approach starts with a
DTSM, often in one of the families discussed in Chapter 12, which is used to
simultaneously price the underlying fixed-income securities and the deriva-
tives written against those securities, all under the assumption that there
are no arbitrage opportunities. With the growing availability of time-series
data on the implied volatilities of fixed-income derivatives, both approaches
have been pursued in exploring the fits of pricing models to the historical
implied volatilities of fixed-income derivatives.

In discussing the pricing of fixed-income derivatives, we place particu-
lar emphasis on the formulations of the pricing models underlying recent
empirical studies of derivatives pricing models. We begin with a review of
pricing with affine DTSMs.1 This is followed by an introduction to pricing
with forward-rate-based models. Since these models are being introduced
for the first time, we deal with the various pricing measures that have been
used to price derivatives in some depth. We then turn to a discussion of
some of the more striking empirical challenges that have been raised based

1 See Leippold and Wu (2002) for a discussion of the pricing of fixed-income derivatives
in the class of quadratic-Gaussian DTSMs. Many of the solutions discussed subsequently to the
pricing problems faced with affine DTSMs carry over, in suitably modified forms, to the QG
class of models.

412
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on examination of the historical data on implied volatilities in the LIBOR-
based derivativesmarkets.We conclude this chapter with a discussion of how
well various models address these challenges.

16.1. Pricing with Affine DTSMs

Particular attention has been given to the pricing of caps/floors and swap-
tions in the LIBOR/swap markets, no doubt in part because of the size and
importance of these markets. To fix the notation for the tenor structure,
let us suppose that, at time t = 0, there are N consecutive interest rate
reset dates Tn , n = 1, 2, . . . ,N . The relevant rate for the time interval δn ,
δn =Tn+1−Tn , is the Eurodollar deposit rate with tenor δn , n=1, 2, . . . ,N
(with TN+1 ≡ TN +δN ). For t greater than zero and less than or equal to TN ,
we let n(t) = infn≤N {n : Tn ≥ t} denote the next delivery date on forward
contracts.

Let B(t ,T ) be the LIBOR discount factor at time t with maturity date
T . Then, since LIBOR rates are set on a simple-interest basis,

B(Tn,Tn+1) = 1
1+ δnR(Tn)

, (16.1)

where R is the quoted LIBOR rate for tenor δn at date Tn . The time-t
forward LIBOR rate for a loan spanning the period [Tn,Tn+1] is therefore
given by

Ln(t) = 1
δn

[
B(t ,Tn)

B(t ,Tn+1)
− 1

]
. (16.2)

Note that Ln(Tn) = R(Tn), the LIBOR rate at date Tn .
A cap is a loan at a variable interest rate that is capped at some prespec-

ified level. To price a cap, it is convenient to break up the cash flows into
a series of “caplets” that capture the value of the interest rate cap in each
period. Specifically, a caplet is a security with payoff δn [Ln(Tn)− k]+, deter-
mined at the reset date Tn and paid at the settlement date Tn+1 (payment
in arrears), where Ln(Tn) is the spot LIBOR rate at Tn and k is the strike
rate. The market value at time 0 of the caplet paying at date Tn+1 is

Caplet0(n) = EQ
[
exp

(
−
∫ Tn+1

0
ru du

)
δn (Ln(Tn)− k)+

]

= EQ
[
exp

(
−
∫ Tn+1

0
ru du

)(
1

B(Tn,Tn+1)
− (1+ δnk)

)+]
. (16.3)
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Within an affine DTSM, 1/B(Tn,Tn+1) = e−γ0(δn )−γY (δn )′YTn [see (12.7)].2

Therefore, valuing a caplet in this setting is equivalent to pricing a call
option with contingent payoff e−γ0(δn )−γY (δn )′YTn at date Tn and strike price
(1 + δnk). Referring back to the transform analysis for affine processes of
Duffie et al. (2000) discussed in Section 5.4, we see that the transform
(5.39) can be applied directly to (16.3) to price the caplets and, hence,
a cap.

Looking ahead to the case of coupon bonds, we find it instructive to
elaborate briefly on the pricing of an option on a zero-coupon bond. If we
use the S -forward measure QS

t induced on Q by the price of a zero-coupon
bond issued at date t and maturing at time S , B(t , S ) (see Section 8.3.2 for
a discussion of the forward measure), the price C (t ,Yt ; S ,T ,K ) of a call
option with strike K and maturity S written on a zero-coupon bond with
maturity T is

C (t ,Yt ; S ,T ,K ) = EQt
[
e− ∫S

t rudu(B(S ,T )− K )+
]

= B(t ,T )EQ
T

t
[
1{B(S ,T )>K }

]− KB(t , S )EQ
S

t
[
1{B(S ,T )>K }

]
= B(t ,T )PrTt {B(S ,T ) > K } − KB(t , S )PrSt {B(S ,T ) > K },

where PrSt {X > K } is the conditional probability of the event {X > K },
based on the S -forward measure QS

t . For the entire family of affine term
structure models, these forward probabilities are easily computed using the
known conditional characteristic functions of affine diffusions and Levý
inversion (Bakshi and Madan, 2000; Duffie et al., 2000). That is, since
{B(S ,T )>K } ≡ {γ0(T − S )+ γY (T − S )′YS > lnK } and the characteristic
function of γY (T − S )′YS conditional on Yt is known in closed form, two
one-dimensional Fourier transforms give the requisite probabilities under
the two forward measures. Note that only one-dimensional transforms are
needed, even though the dimension of Y might be much larger.

The difficulty that arises in extending these ideas to the case of coupon
bond options is that the exercise region is defined implicitly and, there-
fore, its probability is often difficult to compute. To illustrate the nature
of the problem, let Vt = V (t ,Yt ; {c i}Ni=1, {Ti}Ni=1) be the price of a fixed-
income instrument with certain cash flows c1, c 2, . . . , cN payable at dates
T1,T2, . . . ,TN . Then the price of a European option on this bondwith strike
K and maturity S is given by

2 See Duffie et al. (2000) for a discussion of pricing caps when the payoff is expressed
directly in terms of the floating rate R(Tn). Also, see Jarrow et al. (2004) for a discussion of
pricing the payoff (Ln(Tn)− k)+ using the transform methods in Duffie et al. (2000) applied
to the forward measure when log Ln(t) follows a square-root diffusion.
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C
(
t ,Yt ; S ,K , {c i}Ni=1, {Ti}Ni=1

) = EQt
[
e− ∫S

t rudu (VS − K )+
]

=
N∑
i=0

ciB(t ,Ti)Pr
Ti
t {VS > K } − KB(t , S )PrSt {VS > K }. (16.4)

The exercise region of this call option is

{VS > K } ≡
{

N∑
i=1

ciB(S ,Ti) > K

}
≡
{

N∑
i=1

ci eγ0(Ti−S )eγY (Ti−S )·YS > K

}
,

where we are assuming that there are N remaining cash flows after the
expiration date of the option.

If all the future cash flows ci are positive, then this exercise boundary
is a concave surface. Figure 16.1 illustrates these observations by plotting
exercise boundaries for 5-year at-the-money calls on 30-year 10% coupon
and discount bonds implied by the two-factor square-root model [an A2(2)
model], with parameter values taken from Duffie and Singleton (1997) and
the state variables evaluated at their long-run means.

Various approximations to the option price (16.4) have been proposed
in the literature. Singleton and Umantsev (2002) exploit properties of the
conditional distribution of the state variables in typical affine DTSMs to
locally approximate the exercise boundaries in Figure 16.1 with straight-
line segments. This leads to a very accurate approximate pricing formula in
terms of the values of options on zero-coupon bonds. Alternatively, Collin-
Dufresne and Goldstein (2002b) propose another accurate approximation
strategy based on an Edgeworth expansion of the probability distribution
of the future value of the underlying bond.

Turning to the specific case of a swaption,3 we see that the value of a
(settled in arrears) swap today (date t) that matures at date Tn is given by

Vt = c
n∑

i=it
B(t ,Ti)+ B(t ,Tn)− B(t ,Tit )

B(Tit−1,Tit )
, (16.5)

where the Ti are the cash-flow dates and it is the index of the next cash-
flow date at time t . The last term in (16.5) appears because the LIBOR
floating side of the contract is settled in arrears using the LIBOR rate at
the preceding cash-flow date. An important consequence of this settlement
convention is that Vt depends not only on the current state, but also on the
value of the state on the previous cash-flow date. Only on cash-flow dates

3 This discussion follows Singleton and Umantsev (2002) where a more detailed discus-
sion of the implementation of the pricing formulas can be found.
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Figure 16.1. Exercise boundaries for 5-year ATM calls on 30-year 10% coupon and
zero-coupon bonds implied by an A2(2) affine term structure model. Source: Singleton
and Umantsev (2002).

when the last term simplifies to unity does the direct parallel between a
swap and a coupon bond emerge.

On cash-flow dates, the floating side of a swap is at par so the swaption
price is equal to the price of a call of the same maturity and strike of one
written on a coupon bond with maturity and coupon rate equal to those
of the swap. Specifically, with T = TN − S at the inception of a “T-in-S”
swaption—the right to enter into a T -period swap at some future date S—
the swaption price is

EQt

[
e− ∫St rudu

(
c

N∑
i=iS

B(S ,Ti)+ B(S ,TN )− 1
)+]

, (16.6)

where rt is being set to the discount rate implicit in the pricing of swaps. We
could easily extend this valuation approach to the case where the counter-
parties in the swaption contract had different ratings than those (say AA)
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underlying the pricing of generic swaps by introducing a different discount
rate for pricing swaptions versus pricing swaps.

The pricing of both swaps and swaptions recognizes the two-sided na-
ture of the credit risk of swaps. However, following Duffie and Singleton
(1997), we are assuming that the counterparties have symmetric credit risks.
(See Chapter 14 for further discussion of one- versus two-sided default risk.)
Within this framework, the pricing of newly issued swaptions proceeds as in
the case of a coupon-bond option.

16.2. Pricing Using Forward-Rate Models

A significant part of the literature on the pricing of fixed-income derivatives4

has focused on forward-rate models in which the terminal payoff Z (T ) is as-
sumed to be completely determined by the discount function (B(t ,T ) : T ≥
t) (as in Ho and Lee, 1986), or equivalently, the forward curve ( f (t ,T ) :
T ≥ t) (as in Heath et al., 1992) defined by

f (t ,T ) = −∂ log B(t ,T )
∂T

, for any T ≥ t . (16.7)

The time-t price of a fixed-income derivative with terminal payoff Z (T ) =
Z ( f (T ,T + x) : x ≥ 0) is then given by

Z (t) = EQ
[
e− ∫Tt f (u,u)duZ ( f (T ,T + x) : x ≥ 0)

∣∣∣ f (t , t + x) : x ≥ 0
]
. (16.8)

For this model to be free of arbitrage opportunities, Heath et al. (1992)
show that the risk-neutral dynamics of the forward curve must be given by

df (t ,T ) =
[
σ(t ,T )

∫ T

t
σ(t ,u) du

]
dt + σ(t ,T ) dW (t), for any T ≥ t ,

(16.9)

and for a suitably chosen volatility function σ(t ,T ). This forward-rate repre-
sentation of prices is particularly convenient in practice because the forward
curve can be taken as an input for pricing derivatives and once the functions
σ(t ,T ), for all T ≥ t , are specified, then so are the processes f (t ,T ) under
Q. This approach, as typically used in practice, allows the implied r t and
�t to follow general Ito processes (up to mild regularity conditions); there
is no presumption that the underlying state is Markov in this forward-rate
formulation. Additionally, taking ( f (t ,T ) : T ≥ t) as an input for pricing
means that a forward-rate-based model can be completely agnostic about
the behavior of yields under the actual data-generating process.

4 This section draws extensively from Dai and Singleton (2003a).
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Building on the original insights of Heath, Jarrow, and Morton (HJM),
a variety of different forward-rate-based models have been developed and
used in practice. The finite dimensionality of W Q was relaxed by Musiela
(1994), who models the forward curve as a solution to an infinite-dimen-
sional stochastic partial differential equation (SPDE) (see Da Prato and
Zabczyk, 1992, and Pardoux, 1993) for some mathematical characteriza-
tions of the SPDE). Specific formulations of infinite-dimensional SPDEs
have been developed under the labels of “Brownian sheets” (Kennedy,
1994), “random fields” (Goldstein, 2000), and “stochastic string shocks”
(Santa-Clara and Sornette, 2001). The high dimensionality of these models
gives a better fit to the correlation structure, particularly at high frequen-
cies. Since solutions to SPDEs can be expanded in terms of a countable basis
(cylindrical Brownian motions—see, e.g., Da Prato and Zabczyk, 1992, and
Cont, 2005), the SPDE models can also be viewed as infinite-dimensional
factor models. Though these formulations are mathematically rich, in prac-
tice they often add little generality beyond finite-state forward-rate models,
because practical considerations tend to leadmodelers to work with a finite-
dimensional Brownian motions W Q.

Key to all of these formulations is the specification of the volatility
function, since this determines the drift of the relevant forward rates under
Q (as in Heath et al., 1992). Amin and Morton (1994) examine a class of
one-factor models with the volatility function given by

σ(t ,T ) = [σ0 + σ1(T − t)] e−λ(T−t)f (t ,T )γ . (16.10)

This specification nests many widely used volatility functions, including the
continuous-time version of Ho and Lee (1986) (σ(t ,T ) = σ0), the log-
normal model (σ(t ,T ) = σ0 f (t ,T )), and the Gaussian model with time-
dependent parameters as in Hull and White (1993). When γ = 0, (16.10)
is a special case of the “separable specification” σ(t ,T ) = ξ(t ,T )η(t) with
ξ(t ,T ) a deterministic function of time and η(t) a possibly stochastic func-
tion of Y . The state vector may include the current spot rate r (t) (see, e.g.,
Jeffrey, 1995), a set of forward rates with fixed time-to-maturity, or an au-
tonomous Markovian vector of latent state variables (Brace and Musiela,
1994; Cheyette, 1994; Andersen et al., 1999b). In practice, the specification
of η(t) has been kept simple to preserve computational tractability, often
simpler than the specifications of stochastic volatility in yield-based models.
On the other hand, Y often has a large dimension (many forward rates
are used) and ξ(t ,T ) is given a flexible functional form. Thus, there is the
risk with forward-rate models of misspecifying the dynamics through restric-
tive specifications of η(t), while “overfitting” to current market information
through the specification of ξ(t ,T ).
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More discipline, as well as added computational tractability, is obtained
by imposing a Markovian structure on the forward-rate processes. Two log-
ically distinct approaches to deriving Markov HJM models have been ex-
plored in the literature. Ritchken and Sankarasubramanian (1995), Bhar
and Chiarella (1997), and Inui and Kijima (1998) ask under what condi-
tions, taking as given the current forward-rate curve, the evolution of future
forward rates can be described by aMarkov process in anHJMmodel. These
papers show that anN -factor HJMmodel can be represented, under certain
restrictions, as aMarkov system in 2N state variables.While these results lead
to simplifications in the computation of the prices of fixed-income deriva-
tives, they do not build a natural bridge to Markov spot-rate-based DTSMs.
The distributions of both spot and forward rates depend on the date and
shape of the initial forward rate curve.

Carverhill (1994), Jeffrey (1995), and Bjork and Svensson (2001) ex-
plore conditions under which an N -factor HJM model implies an N -factor
Markov representation of the short rate r . In the case of N =1, the question
can be posed as: Under what conditions does a one-factor HJM model—
which by construction matches the current forward curve—imply a diffu-
sionmodel for r with drift and volatility functions that depend only on r and
t? Under the assumption that the instantaneous variance of the T -period
forward rate is a function only of (r , t ,T ), σ 2f (r , t ,T ), Jeffrey proved the
remarkable result that σ 2f (r , t ,T )must be an affine function of r (with time-
dependent coefficients) in order for r to follow aMarkov process. Put differ-
ently, his result essentially says that the only family of “internally consistent”
one-factor HJM models (see also Bjork and Christensen, 1999) that match
the current forward curve and imply a Markov model for r is the family of
affine DTSMs with time-dependent coefficients. Bjork and Svensson discuss
the multifactor counterpart to Jeffrey’s result.

An important recent development in the HJM modeling approach,
based on the work of Brace et al. (1997), Jamshidian (1997), Miltersen et al.
(1997), and Musiela and Rutkowski (1997), is the construction of arbitrage-
free models for forward LIBOR rates at an observed discrete tenor struc-
ture. Besides the practical benefit of working with observable forward rates
(in contrast to the unobservable instantaneous forward rates), this shift
overcomes a significant conceptual limitation of continuous-rate formula-
tions. Namely, as shown byMorton (1988) and Sandmann and Sondremann
(1997), a lognormal volatility structure for f (t ,T ) is inadmissible, because
it may imply zero prices for positive-payoff claims and, hence, arbitrage
opportunities. With the use of discrete-tenor forwards, the lognormal as-
sumption becomes admissible. The resulting LIBOR market model (LMM)
is consistent with the industry-standard Black model for pricing interest
rate caps.
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In addition to taking full account of the observed discrete-tenor struc-
ture, the LMM framework also facilitates tailoring the choice of “pricing
measures” to the specific derivative products. (See Section 8.3.2 for a discus-
sion of the pricing measures m(P ) based on the numeraire P .) The LIBOR
market model is based on either one of the following two pricing measures:
the terminal (forward) measure proposed by Musiela and Rutkowski (1997)
and the spot LIBOR measure proposed by Jamshidian (1997).

Letting Cn(t) denote the price of the caplet, Brace et al. (1997) show
that, in the absence of arbitrage, both B(t ,Tn)/B(t ,Tn+1) [and hence Ln(t)]
and Cn(t)/B(t ,Tn+1) are martingales under the forward measure, Qn+1 ≡
m(B(t ,Tn+1)), induced by the LIBOR discount factor B(t ,Tn+1). Further-
more, under the assumption thatLn(t) is lognormally distributed,5 the Black
model for caplet pricing obtains:

Cn(t) = δnB(t ,Tn+1) [Ln(t)N (d1)− k N (d 2)] , (16.11)

d1 ≡ log(Ln(t)/k)+ vn/2√
vn

, d 2 ≡ log(Ln(t)/k)− vn/2√
vn

, (16.12)

where N (·) is the cumulative normal distribution function and vn is the cu-
mulative volatility of the forward LIBOR rate from the trade date to the
delivery date: vn ≡∫ Tn

t σn(u)′σn(u) du. The price of a cap is simply the sum
of all unsettled caplet prices (including the value of the caplet paid at settle-
ment date Tn(t), which is known at t).

The Black-Scholes type pricing formula (16.11) and (16.12) for caps
is commonly referred to as the cap market model . Its simplicity derives from
the facts that: (1) each caplet with reset date Tn and payment date Tn+1
is priced under its own forward measure Qn+1; (2) we can be completely
agnostic about the exact nature of the forward measures and their relation-
ship with each other; and (3) we can be completely agnostic about the factor
structure: the caplet price Cn does not depend on how the total cumulative
volatility vn is distributed across different shocks W n .

The simplicity of the cap market model does not immediately extend
to the pricing of securities whose payoffs depend on two or more spot
LIBOR rates with different maturities, or equivalently two or more for-
ward LIBOR rates with different reset dates. A typical example is a European
swaption with expiration date n≥n(t), final settlement dateTN+1, and strike
k. Let

5 That is,

dLn(t)
Ln(t)

= σn(t)′ dW n(t),

where W n is a vector of standard and independent Brownian motions under Qn , and σn(t) is
a deterministic vector commensurate with W n .
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Sn,N (t) = B(t ,Tn)− B(t ,TN+1)∑N
j=n δjB(t ,Tj+1)

be the forward swap rate, with delivery date Tn and final settlement date
TN+1; the payoff of the payer swaption at Tn is a stream of cash flows paid
at Tj+1 and in the amount δj[Sn,N (Tn) − k]+, n ≤ j ≤ N , where the
spot swap rates Sn(Tn) are completely determined by the forward LIBOR
rates L j (Tn), n ≤ j ≤ N . The market value of these payments, as of Tn , is
given by

N∑
j=n

δjB(Tn,Tj+1)[Sn(Tn)− k]+ =
[
1− B(Tn,TN+1)− k

N∑
j=n

δjB(Tn,Tj+1)

]+
.

In order to price instruments of this kind, we need the joint distribution
of the forward LIBOR rates {L j (t) : n ≤ j ≤ N , 0 ≤ t ≤ Tn}, under a single
measure. The LMM arises precisely in order to meet this requirement.

Musiela and Rutkowski (1997) show that under the terminal measure
Q∗ ≡ QN+1, that is, the probability measure induced by the LIBOR dis-
count factor B(t ,TN+1), the forward LIBOR rates can be modeled as a
joint solution to the following stochastic differential equations (SDEs): for
n(t) ≤ ∀n ≤ N ,

dLn(t)
Ln(t)

= σn(t)′
[

−
N∑

j=n+1

δjL j (t)
1+ δjL j (t)

σj (t) dt + dW ∗(t)

]
, (16.13)

whereW ∗ is a vector of standard and independent Brownianmotions under
Q∗. These SDEs have a recursive structure that can be exploited in simu-
lating the LIBOR forward rates: first, the drift of LN (t) is identically zero,
because it is a martingale under Q∗; second, for n < N , the drift of Ln(t) is
determined by L j (t), n< j ≤ N .

Jamshidian (1997) proposes an alternative construction of the LIBOR
market model based on the so-called spot LIBOR measure, QB , induced by
the price of a “rolling zero-coupon bond” or “rolling CD” (rather than
a continuously compounded bank deposit account that induces the risk-
neutral measure):

B(t) ≡ B(t ,Tn(t))

B(0,T1)

n(t)−1∏
j=1

[
1+ δjL j (Tj )

]
.

He shows that, under this measure, the set of LIBOR forward rates can be
modeled as a joint solution to the following set of SDEs: for n(t) ≤ ∀n ≤ N ,
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dLn(t)
Ln(t)(t)

= σn(Ln(t)(t), t)′
[ n∑
j=n(t)

δjL j (t)
1+ δjL j (t)

σi(Li(t), t)dt + dW B(t)

]
,(16.14)

whereWB is a vector of standard and independent Brownianmotions under
QB and the possible state dependence of the volatility function is also made
explicit. These SDEs also have a recursive structure: starting at n = n(t),
Ln(t)(t) solves an autonomous SDE; for n > n(t), the drift of Ln(t) is deter-
mined by L j (t), n(t) ≤ j ≤ n.

Under the LMM, the time-t price of a security with payoff g ({L j (Tn) :
n ≤ j ≤ N }) at Tn is given by

Pt = B(t ,TN+1)E ∗
t

[
g
({L j (Tn) : n ≤ j ≤ N })

B(Tn,TN+1)

]

= B(t ,Tn(t))EB
t

[
g
({L j (Tn) : n ≤ j ≤ N })∏n−1
j=n(t)

(
1+ δjL j (Tj )

)
]
,

(16.15)

where E ∗
t [·] denotes the conditional expectation operator under the ter-

minal measure Q∗ and E B
t [·] denotes the conditional expectation operator

under the spot LIBOR measure QB . The Black model for caplet pricing or
the cap market model is recovered under the assumption that the propor-
tional volatility functions σj (t) are deterministic.6

According to (16.15), the price of a payer swaption with expiration date
Tn and final maturity date TN+1 is given by

Pn,N (t) = B(t ,TN+1)E ∗
t

[(
1− B(Tn,TN+1)− k

∑N
j=n δjB(Tn,Tj+1)

)+
B(Tn,TN+1)

]

= B(t ,Tn(t))EB
t

[(
1− B(Tn,TN+1)− k

∑N
j=n δjB(Tn,Tj+1)

)+
∏n−1

j=n(t)(1+ δjL j (Tj ))

]
.

Under the assumption of deterministic proportional volatility for forward
LIBOR rates, the above expression cannot be evaluated analytically. In or-
der to calibrate theoretical swaption prices directly to market quoted Black

6 The pricing equation (16.15) holds even when the proportional volatility of the forward
LIBOR rates are stochastic. Narrowly defined, the LMM refers to the pricing model based on
the assumption that the proportional volatilities of the forward LIBOR rates are deterministic.
Broadly defined, the LMM refers to the pricing model based on any specification of state-
dependent proportional volatilities (as long as appropriate Lipschitz and growth conditions
are satisfied).



Page 423 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

16.2. Pricing Using Forward-Rate Models 423

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[423], (12)

Lines: 291 to 331

———
1.6436pt PgVar
———
Normal Page
PgEnds: TEX

[423], (12)

volatilities for swaptions, a more tractablemodel for pricing European swap-
tions is desirable. Jamshidian (1997) shows that such a model can be ob-
tained by assuming that the proportional volatilities of forward swap rates,
rather than those of forward LIBOR rates, are deterministic. The resulting
model is referred to as the swaption market model .

The swap market model is based on the forward swap measure, Qn,N ,
induced by the price of a set of fixed cash flows paid at Tj+1, n ≤ j ≤ N,
namely,

Bn,N (t) ≡
N∑
j=n

δjB(t ,Tj+1), t ≤ Tn+1.

Under Qn,N , the forward swap rate Sn,N (t) is a martingale:

dSn,N (t)
Sn,N (t)

= σn,N (t)′dW n,N ,

where Wn,N is a vector of standard and independent Brownian motions
under Qn,N . Thus, the price of a European payer swaption with expiration
date Tn and final settlement date TN+1 is given by

Pn,N (t) = Bn,N (t)E
n,N
t

[(
Sn,N (Tn)− k

)+]
, t ≤ Tn . (16.16)

Under the assumption that the proportional volatility of the forward swap
rate is deterministic, the swaption is priced by a Black-Scholes type formula:

Pn,N (t) = Bn,N (t)
[
Sn,NN (d1)− kN (d 2)

]
,

d1 ≡ log(Sn,N /k)+ vn,N /2√
vn,N

, d 2 ≡ log(Sn,N /k)− vn,N /2√
vn,N

,

where vn,N ≡ ∫Tn
t σn,N (u)′σn,N (u) du is the cumulative volatility of the for-

ward swap rate from the trade date to the expiration date of the swaption.
Several approaches have been taken to translate these ideas into econo-

metrically tractable models for the analysis of time-series data on derivatives
prices. Longstaff et al. (2001a) use a version of the LMM to price caps and
swaptions.7 They take the LIBOR forward rates Fi = F (t ,Ti,Ti + 1/2) to be

7 Though these authors refer to their model as a “string” model, they construct their
pricing model using a finite number of forward rates with discrete tenors. Therefore, the
resulting framework is usefully thought of as an LMM. See Kerkhof and Pelsser (2002) for
a formal discussion of the equivalence of the LMM and discrete string models.
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the fundamental variables driving the term structure, and assume that their
Q dynamics are

dFi = αiFidt + σiFidW
Q
i . (16.17)

The shocks dW Q
i are correlated across forward rates with the time-

homogeneous covariance matrix�. To obtain the model-implied represen-
tation of zero-coupon bond prices, Longstaff et al. note that Fi = (360/a)
(B(t ,Ti)/B(t ,Ti + 1/2)− 1), where a is the actual number of days between
Ti and Ti + 1/2, and then they use Ito’s lemma to obtain

dB = rBdt + J−1σF dW Q, (16.18)

where σFdW Q is formed by stacking the σiFidWi and the Jacobian matrix
J , obtained from the mapping from bond prices to forwards, has a banded
diagonal form.

As noted above, the LMM does not lead to closed-form expressions for
the prices of European swaptions. Longstaff et al. (2001a) proceed using
simulation methods, based on their full characterization of the joint dis-
tribution of forward rates, to compute prices. Calibration then amounts
to choosing � to match the market data on derivatives prices. They pro-
ceed from the spectral decomposition of the historical correlation matrix
of changes in forward rates,H =U�U ′. The relevant covariance matrix for
the forward rates is assumed to be of the form �=U�U ′. In other words,
the eigenvectors of H are assumed to be those of � in the pricing model,
and all that remains is to select the eigenvalues of �, diag[�], to match the
historical swaption prices. The assumption that H and � share the same
eigenvectors amounts to imposing a special structure on the P drifts of the
forward rates.

Han (2004) extends the LMMmodel in Longstaff et al. (2001a) to allow
for stochastic volatility. Starting directly with bond prices, he assumes that

dB(t ,T )
B(t ,T )

= r (t)dt −
N∑
k=1

βk(T − t)
√
vk(t) dZ

Q
k (t), (16.19)

where the volatility factors vk(t) are assumed to follow square-root diffusions
[A1(1) processes]. Rather than using simulation methods to price caps and
swaptions, Han depends on certain approximate analytic pricing formulas.

More recently, Jarrow et al. (2004) develop a model in which

dLn(t)
Ln(t)

= αn(t)dt + σn(t)dW P
L,n+1(t)+ dZ Pn (t) (16.20)
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where W P
L,n+1 is a standard Brownian motion and Z P is an independent

jumpprocess underP. To reduce the dimensionality of the parameter space,
Jarrow et al. follow Longstaff et al. (2001a) and Han (2004) and assume
that the instantaneous covariance matrix of changes in LIBOR rates takes
the form �t = U�tU ′, where U is the N ×3 (N is the number of forward
LIBOR rates included)matrix of the first three eigenvectors of the historical
covariance matrix of LIBOR rates. In other words, they assume that there
are three factors underlying the temporal variation in the instantaneous
variances and covariances of LIBOR rates. The ith diagonal element of
�t , vi(t), is the instantaneous variance of the ith common factor and it is
assumed to follow a square-root diffusion. The jump is assumed to take the
same form as that in Pan’s (2002) study of equity options, including her
assumption that the jump timing risk is not priced (see Chapter 15).

To complete their model, Jarrow et al. (2004) assume that the risk pre-
miums associated with both the jump amplitude and stochastic volatilities
are linear functions of time to maturity. A richer parameterization is not
identified econometrically because they are not studying both the cash and
derivatives prices simultaneously. Finally, cap prices are obtained using the
transforms in Duffie et al. (2000) applied under various forward measures.
The model is estimated using cap data and a variant of the implied-state
GMM methods proposed by Pan (2002) (see Section 15.3).

16.3. Risk Factors and Derivatives Pricing

Much of the recent literature applying DTSMs to the pricing of derivatives
has focused on two features of the distributions of swap rates and implied
volatilities on LIBOR-based derivatives. First, a substantial portion of the
variation in the prices of options on fixed-income securities is uncorrelated
with the variation in the prices of the underlying bonds onwhich the options
are based. Second, developing a model that prices various types of options
written on the same underlying securities has been challenging, particularly
for the case of caps and swaptions. We briefly review each of these puzzles
prior to discussing the econometric studies of derivative pricing models.

16.3.1. Unspanned Stochastic Volatility

Heidari and Wu (2003) document that the common interest rate factors
that explain more than 99% of the variation in the yield curve can explain
less than 60% of the variation in swaption implied volatilities. These results
come from examining yields on LIBOR contracts with maturities ranging
between 1 and 12 months; interest rate swaps with maturities ranging be-
tween 2 and 30 years; and at-the-money (ATM) swaptions on 1- up to 10-year
swap contracts with maturities of 1, 3, and 6 months. Their sample period
was from October 1995 to July 2001.
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The interest rate factors—the first three principal components of
LIBOR and swap yields—have the familiar interpretation of “level,” “slope,”
and “curvature” factors (see Chapter 12). To these three factors they add
three volatility-related factors extracted from the swaptions data. Adding
these sequentially to the interest rate factors increases the average varia-
tion of implied volatilities explained to 85, 96, and almost 98%, respectively.
Thus, their findings suggest that a large fraction of the variation in implied
volatilities on swaption contracts is largely uncorrelated with the sources of
variation in the underlying swap rates.

Similarly, Collin-Dufresne and Goldstein (2002a) explore how much of
the variation in straddles (of ATM caps and floors) can be explained by the
variation in swap rates. These authors focus on straddles because they are
relatively insensitive to small changes in the level of yields while being highly
sensitive to changes in bond-price volatility. The data for their analysis were
the 6-month LIBOR rate and swap rates for 1 through 10 years to maturity
from the United States, United Kingdom, and Japan; and straddles ranging
in maturity from 6 months to 10 years for the United States, and 6 months
to 11 years for the United Kingdom and Japan. Their sample period was
February 1995 through December 2000.

When they regressed the changes in straddle prices on changes in swap
rates, they obtained relatively low (adjusted) R 2’s: 0.085–0.391% for the
United States, −0.071–0.134% for the United Kingdom, and 0.044–0.254%
for Japan. To put these low numbers in perspective, the authors simulated
data from an estimated A1(3) affine DTSM and used these data to rerun the
regressions. They obtained R 2 of roughly 90%, clearly well above those ob-
served in the historical data. Based on this evidence, the authors conclude
that bonds do not span the fixed-incomemarkets, and specifically floors and
caps seem to be sensitive to stochastic volatility, which cannot be hedged by
a position solely in bonds.

To better understand the nature of this unspanned stochastic volatil-
ity (USV), Collin-Dufresne and Goldstein (2002a) construct the principal
components of the covariance matrix of the residuals from their historical
regressions of straddle prices on swap yields. The first PC explained more
than 80% of this residual variation and the second explained an additional
10% or more for all three countries. Thus, the portions of the option prices
that are not spanned by the bond yields appear to have a common factor
that accounts formost of their variations.Of course, this USVpuzzle, though
striking, is not logically inconsistent with arbitrage-free pricing. We saw in
Section 12.3.2 that factors can affect the distribution of the short rate r , but
not the yields on bonds of all maturities.

Fan et al. (2003) raise several caveats about interpreting the empirical
evidence in the studies by Collin-Dufresne and Goldstein (2002a) and Hei-
dari and Wu (2003) as indicative of USV or, more generally, economically
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incomplete markets. First, an ATM straddle has a highly convex payout
structure while at the same time being nearly delta neutral with respect
to changes in the underlying bond yields. The latter property implies that
shocks (at least small ones) to the PCs of swap rates should have small effects
on the prices of straddles. Large shocks to bond yields, on the other hand,
will have an effect through the nonlinear (highly convex) dependence of
straddles on their underlying risk factors. Second, in assessing the degree
of economic incompleteness of a market, one is interested in how changes
in the prices of straddles are related to changes in the prices of traded se-
curities. Changes in swap rates do not correspond to the changes in prices
of relevant replicating portfolios of bonds. It remains an empirical ques-
tion then as to whether DTSMs with low-dimensional factor structures are
capable of describing the time-series behavior of derivatives prices.

16.3.2. Relative Pricing of Caps and Swaptions

Though financial theory predicts a close link between the prices of caps
and swaptions (as they are both LIBOR-based derivatives), developing a
model that simultaneously prices both contracts has proved challenging.
Explanations for this “swaption/cap puzzle” often focus on the nature of the
model-implied factor volatilities and/or correlations and their roles in de-
termining prices. For instance, Rebonato and Cooper (1997) and Longstaff
et al. (2001b) compare the correlations among forward swap rates with
those implied by low-dimensional factor models and find that the correla-
tions implied by the models are much larger than those in the data. Brown
and Schaefer (1999) and Carverhill (2002) find similar results using Trea-
sury strip yields.

We can anticipate the difficulty standard DTSMs have in matching yield
correlations by comparing historical andmodel-implied correlations among
weekly changes in the yield spreads for nonoverlapping segments of theU.S.
dollar swap yield curve. The correlation 3–2/4–3, for example, in Table 16.1
represents the correlation of daily changes in the 3-year–2-year swap spread
with changes in the 4-year–3-year spread. The rows labeled 2 PC and 4 PC

Table 16.1. Correlations of Changes in Swap
Yield Spreads for Various Yield-Curve Segments

Segment 3–2/4–3 4–3/5–4 5–4/7–5 7–5/10–7

Historical 0.34 0.09 0.13 0.14
2 PC 0.99 0.99 0.99 0.99
4 PC 0.81 0.96 0.84 0.32

Note: 3–2/4–3, for example, indicates the correlation between changes in
the 3-year–2-year yield spread and the 4-year–3-year yield spread.
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present the corresponding correlations for fitted spreads from projections
onto the first two and four principal components (PCs), respectively. No-
tably, even using four PCs the segment correlations are larger than their
sample counterparts, and the match is much worse using only two PCs (in
the spirit of a two-factor DTSM).

Not surprisingly, when we compute model-implied segment correla-
tions from the affine AM (N ) models with N ≤ 3, using swap data, they are
all substantially larger than their historical counterparts. The same is true
for the fitted, relative to the historical, treasury yields from the study of QG
models by Ahn et al. (2002).

Closely related to this swaptions/caps pricing puzzle, many have found
that model-implied volatilities extracted from cap prices tend to be larger
than those backed out from swaption prices. One interpretation of this puz-
zle is based on the observation that a cap can be viewed as a portfolio of
options on forward LIBOR rates, whereas a swaption can be viewed as an op-
tion on a portfolio of forward LIBOR rates. As such, cap prices are relatively
insensitive to the correlation structure of forward LIBOR rates, whereas the
swaption prices depend crucially on the correlation structure. Indeed, a
one-factor model can be calibrated exactly to all ATM cap prices, but it will
likely misprice swaptions because forward rates are perfectly correlated in
such a model. If swaptions and caps have different sensitivities to a model’s
(in)ability to match yield curve segments or forward-rate correlations, then
this could resolve the pricing puzzles. However, the literature is not fully in
agreement about the relative responses of the prices of caps and swaptions
to changes in factor volatilities or correlations.

16.4. Affine Models of Derivatives Prices

Empirical work addressing the fit of DTSMs to the joint distributions of swap
and swaption prices has been limited. Upon fitting an A3(3)model (with in-
dependent factors) to historical swap yields, Jagannathan et al. (2003) find
that theirmodel is incapable of accurately pricing caps and swaptions.8 How-
ever, in the light of the preceding discussion, reliable pricing of swaptions
would seem to depend onusing swaption data in estimation in order to “pick
up” the effectively unspanned factors. That is, if one fits anAM (3)model, for
example, to swap rates alone, then the likelihood function tends to select
factors that (suitably rotated) are highly correlated with the first three PCs
of swap rates. Including option prices directly changes the “weight” given by
the likelihood function to matching the structure of volatility and will likely
lead to a different factor structure.

8 To value the swaptions, Jagannathan et al. (2003) use a method developed by Chen and
Scott (1995) that is specific to multifactor AN (N ) (CIR) models.
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This is confirmed by Umantsev (2001), who estimated AM (3) models
using data on swap rates and swaption volatilities simultaneously over the
sample period 1997 though 2001. He finds that AM (3)models, forM = 1, 2,
fit the data notably better than an A3(3) model. Moreover, as anticipated
by the descriptive findings of Heidari and Wu (2003), the third factor is
related more to volatility in the swaption market than to “curvature” in the
swap curve (the more typical third factor in DTSMs fit to yield data alone).
Relating Umantsev’s findings back to those of Collin-Dufresne et al. (2004),
the latter study found that the third factor (beyond the first two PCs of bond
yields) in A1(3) models was either the curvature factor or a proxy for the
volatility of the short rate. However, with only three factors, an A1(3)model
was not capable of matching both the curvature factor and the volatility
factor. By explicitly including the implied volatilities of options into his ML
estimation, Umantsev effectively forced selection of a volatility factor as the
third factor. The results of Collin-Dufresne et al. suggest that adding a fourth
factor may allow a match to both the curvature factor and the common
volatility factor that Heidari and Wu found in swaption volatilities.

16.5. Forward-Rate-Based Pricing Models

Longstaff et al. (2001a) examined data on swap rates between July 1992
and July 1999, and a cross section of thirty-four swaptions and cap prices
from January 1997 to July 1999. Working with a four-factor (N = 4) model,
the first three eigenvectors, constructed from the P-covariance matrix of
the forwards, were the familiar level, slope, and curvature factors, and the
fourth factor affected the very short end of the yield curve.9 In this regard,
they extended the complementary analysis in Hull andWhite (2000), where
a three-factor LMM was examined.

The probability model for forward rates was obtained by solving for the
eigenvalues in � (from the decomposition � = U�U ′ of the covariance
matrix of forward rates) thatminimized the pricing errors for the swaptions.
This minimization was done cross sectionally so � was updated every week.
The temporal variation in the elements of � suggests the presence of time-
varying conditional second moments of the forward rates, a feature of the
data that was not formally taken into account in the pricing of swaptions
or caps. The presence of such stochastic volatility/correlation motivates the
analyses of Collin-Dufresne and Goldstein (2001b) and Han (2004).

Longstaff et al. found that their four-factor model did a quite good
job of matching the cross section of thirty-four swaption prices, except dur-
ing the fall of 1998 period, when Russia defaulted on its domestic debt.

9 See Chapter 13 for a discussion of the role of this factor in explaining the properties of
the very short end (under 1 year) of the yield curve.
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However, when they used the model calibrated to swaption prices to price
ATM caps, they foundmean pricing errors ranging from 23% for 2-year caps
to 5% for 5-year caps, with caps being undervalued relative to swaptions.

In a more systematic study of forward-rate and LIBOR market models
Driessen et al. (2003) examine the effect of the number of factors on the
pricing and hedging of caps and swaptions. Their HJM-style models have

df (t ,T ) = µf (t ,T , ω)dt +
K∑
i=1

σf ,i(t ,T , ω) dWi(t). (16.21)

For their LMM, LIBOR rates are assumed to follow the processes

dLn(t) = . . . dt +
K∑
i=1

σL,i(t ,n, ω)Ln(t)dWi(t). (16.22)

Up to three-factor models are considered with the time-homogeneous vola-
tility specifications: a parametricHJMmodel in which σf ,i(T−t) = σi e κi (T−t);
and an LMM in which σL,i(T − t) = hi(T − t), where the hi are deterministic
functions. The data set for this analysis covers moneymarket and swap rates,
swaptions, and caps for the period January 1995 to June 1999. In both the
HJM and LIBOR market models, the three factors resemble the standard
PCs of swap yields, level, slope, and curvature, which together explain more
than 96% of the variation in yields.

The smallest pricing errors are obtained for the models estimated over
rolling windows, so that parameters are allowed to change over time. Fur-
ther, incorporation of the options data directly into the estimation improves
the fit of both the cap and swaption pricing models. Consistent with previ-
ous studies, the three-factor model of Driessen et al. (the largest number of
factors considered) fits the best.

Jarrow et al. (2004) use cap price data from SwapPX to examine volatil-
ity smiles in fixed-income derivatives markets. The smile is asymmetric with
ITM caps having a stronger skew than OTM caps. Furthermore, the smile
is more pronounced after September 2001. Particular attention is given to
the relative performance of alternative LMMs in explaining these smiles.
Toward this end, the authors used data on caps of maturities from 1 to 10
years and ten different strike prices, and they divide their sample period
into four subsamples: September 2000 toMarch 2001,March 2001 to August
2001, November 2001 to May 2002, and May 2002 to November 2002.

Consistent with previous studies using similar models, the first three
principal components underlying the construction of �t corresponded to
the level, slope, and curvature of the LIBOR yield curve. Based on cap
data for the sample period June 1997 through July 2000, the level factor
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had the most volatile stochastic volatility (vit), and the slope factor was the
least volatile. Allowing all three factors to have stochastic volatilities led to
notably smaller pricing errors for caps than when a subset of the three
factors had constant volatilities. However, even in their most flexible model
with stochastic volatility, they found significant underpricing of ITM and
overpricing of OTM caps. These patterns suggest a potentially important
role for jumps and are indicative of misspecification of previous LMMs with
constant or stochastic volatility and no jumps (e.g., Longstaff et al., 2001a,
and Han, 2004).

The model in Jarrow et al. with stochastic volatility is not capable of cap-
turing a volatility smile because the volatility factors underlying �t and the
Brownian motions W P

n (t) driving forward rates are mutually independent.
We saw in Sections 7.7 and 15.4 that negative correlation between volatil-
ity and price shocks is a potentially important contributor to skewness in
returns and smile in equity options markets. However, in equity markets,
this “leverage” effect does not generate sufficient skewness to match the
observed smile in implied volatilities of options.

Introducing jumps in LIBOR rates (while preserving the independence
between LIBOR and volatility shocks) substantially improves the fit of the
LMM. Analogously to prior findings for equity markets, introducing jumps
lowers volatilities of the factors vi . At the same time, there is evidence of
large negative jumps in LIBOR rates under the forward measure. The esti-
mated arrival intensities of jumps were between 2 and 6% per year with very
large mean relative jumps sizes (between −50 and −90%).

16.6. On Model-Based Hedging

An alternative, informative means of assessing model performance, apart
from the magnitudes of pricing errors, is the effectiveness of hedge po-
sitions based on an estimated model. This approach to model assessment
seems particularly relevant in this literature because of the ongoing debates
about the importance of unspanned risk factors in the bond markets. The
low correlations between the PCs of bond yields and implied option volatili-
ties suggest, at first glance, that hedges of option positions constructed from
bond positions should be ineffective against key sources of risk in the op-
tions markets.

Longstaff et al. (2001a) used their four-factor model and the nested
Black model to compute hedge ratios for each of the swaptions in their data
base. From these ratios, they computed hedging errors, defined to be the
change in swaption price less the change in value of the hedge portfolio.
For the Black model, each swaption has its own hedge instrument (the
underlying swap rate), whereas in the four-factor model there are only four
common instruments. Nevertheless, the performance of the two models



Page 432 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

432 16. Pricing Fixed-Income Derivatives

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[432], (21)

Lines: 502 to 508

———
-0.38695pt PgVar
———
Normal Page
PgEnds: TEX

[432], (21)

Table 16.2. Root-Mean-Squared Errors (in Basis Points) of the Hedged and Unhedged
Portfolios 1 Week Out-of-Sample, with and without recalibration of the Models

Number of factors in the model

Expiry Swap Unhedged
With recalibration Without recalibration

(years) maturity (years) swaption 1 2 3 4 1 2 3 4

1 2 13.1 5.5 3.3 3.3 3.2 6.1 3.9 3.9 3.8
3 18.9 6.6 4.4 4.1 4.6 7.1 4.8 4.7 4.8
4 24.1 7.8 5.7 5.4 5.7 8.5 6.4 6.3 6.3
5 28.9 8.4 6.5 6.3 6.2 8.8 7.0 6.8 6.7

5 2 10.8 5.5 4.0 3.9 4.5 5.9 4.3 4.3 4.5
3 16.4 7.9 5.7 5.8 5.7 8.4 6.2 6.2 6.2
4 21.5 10.1 7.2 7.2 7.1 10.7 7.9 7.9 7.9
5 26.3 12.0 8.6 8.6 9.5 12.6 9.3 9.3 11.2

R2, 1 week out-of-sample 0.83 0.92 0.92 0.91 0.80 0.90 0.90 0.90
R2, 4 weeks out-of-sample 0.67 0.86 0.92 0.91 0.62 0.80 0.86 0.86

Source: Fan et al. (2003).

was almost indistinguishable (89.28 versus 89.35% of variability explained).
Notably, a large percentage of the variation in changes in swaption prices
was explained by the hedge portfolios.

The question of whether a small number of hedge instruments might
lead to effective hedges for swaptions is the primary focus of the analysis
in Fan et al. (2003). Table 16.2 shows the absolute hedging errors (in basis
points)10 for biweekly swaption data from March 1, 1998, to October 31,
2000. The number of factors N is the number of factors underlying the
covariation in forward LIBOR rates, and it determines the number of in-
struments used to construct the hedge portfolios. The difference between
the columns with and without “recalibration” is that in the former case the
parameters are recalibrated every week, whereas in the latter case they are
fixed for 4 weeks at the values used for the first week of hedging.

The results show a substantial decline in the root mean-squared errors
of the hedged positions with the addition of factors out to N = 3. The im-
provement in hedging performance with the addition of one more factor
(N = 4) is economically small and statistically insignificant. Furthermore,
the (unadjusted) R 2 show that, for a 1-week horizon, the hedges account for
more than 90% of the variation in the unhedged positions. Even over hori-
zons of 4 weeks, the percentage of the variation in the unhedged positions
explained by the hedges remains large.

10 The authors multiply the root mean square of the hedging errors for a contract by
10,000 so that it becomes interpretable as a basis point error.
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Fan et al. (2003) repeat their hedging analysis with straddles, moti-
vated in large part by the earlier findings by Collin-Dufresne and Goldstein
(2002a) that a significant fraction of the variation of changes in the prices
of straddles was unrelated to variation in swap rates. Again they find that
large percentages (over 80%) of the variation of the unhedged straddle po-
sitions were explained by the bond-based hedge portfolios. Fan et al. argue
that a primary reason for the difference between their findings and those
of Collin-Dufresne and Goldstein is that they are using actual traded bonds
to construct hedges rather than running regressions of straddle prices on
swap yields. Indeed, when Fan et al. regressed the corresponding straddle
volatilities (computed from swaption contracts as opposed to cap contracts)
onto swap yields, they obtained low R 2’s, comparable to those reported in
Collin-Dufresne and Goldstein (2002a) for their analysis of straddle prices.
Overall Fan et al. (2003) conclude that the role of USV in understanding
the prices of LIBOR-based derivatives is likely to be economically small.

Driessen et al. (2003) undertake a similar analysis of hedging, exam-
ining both caps and swaptions and a wider variety of models and methods
for computing hedge ratios. They also find that a large percentage of the
variation in prices of unhedged positions in derivatives is explained by
changes in the prices of hedge portfolios constructed from bonds. However,
these percentages are smaller than those documented by Fan et al. As a re-
sult, the authors reach amoremeasured conclusion regarding the potential
importance of USV, noting a potentially important role for stochastic volatil-
ity and jumps in understanding the behavior of cap and swaption prices.

16.7. Pricing Eurodollar Futures Options

A different perspective on the pricing of fixed-income derivatives is offered
by the study of Bikbov and Chernov (2004) of options on Eurodollar fu-
tures contracts. These authors examine A0(3), A1(3), and A1(3)–USV affine
DTSMs estimated using weekly data on Eurodollar futures and options over
the sample period January 1994 through June 2001. The model with USV
is obtained by imposing the constraints on the canonical A1(3) model that
lead to the volatility factor having no effect on bond prices for all maturities
(see Collin-Dufresne and Goldstein, 2002a, and Section 12.3.2). The mar-
ket prices of risk were of the form proposed by Cheridito et al. (2003) as
an extention of Duffee’s (2002) essentially affine formulation (see Chapter
12). Call prices were computed using the transform results in Duffie et al.
(2000). All of the futures and options contracts were allowed to be priced
with errors (no contracts were priced perfectly by the models), and estima-
tion was accomplished using QML and Kalman filtering.

When only futures data were used in estimation, signified by the su-
perscript “f ,” Bikbov and Chernov found that the volatility factor is highly
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correlated with a “butterfly” Eurodollar futures position (long the 6-month
and 10-year futures and short two times the 2-year futures) for model A1(3)f,
while in model A1(3)f –USV it was most highly correlated with the long end
of the futures curve. Thus, imposing the USV constraint seems to effect
a factor rotation, a feature of constraints that we discussed in Chapter 13.
When both options and futures data were used in estimation, signified by
the superscript “fo,” the volatility factor was most highly correlated with the
slope of the futures curve (10-year minus 6-month futures) inmodel A1(3)fo,
while it was highly correlated with the implied variance from the options
market inmodel A1(3)fo–USV. Thus, only in this final model did the authors
find that the volatility factor is closely matched to the implied volatility in
the options market. Perhaps the most surprising aspect of these results is
the labeling of the factors for model A1(3)fo. One might have expected, as
for example in Umantsev (2001), that inclusion of options prices in the
estimation would lead to at least one of the factors matching up closely with
the implied volatilities in this market.

Of particular interest to the issues raised in this chapter about risk fac-
tors in cash and options markets is Bikbov and Chernov’s formal analysis of
the USV restrictions on model A1(3). Comparing models A1(3)fo to model
A1(3)fo–USV, they find a notable deterioration in the fit (measured by pric-
ing errors) for both the futures and the options data. The percentage errors
in options prices are more than twice as large at the 6-month expiration
and more than six times as large at the 1-year expiration. Formal likelihood
ratio tests of the USV constraints also indicate rejection at conventional sig-
nificance levels.

Furthermore, a familiar tension arises: the models are able to fit certain
moments at the expense of others. The A1(3) models “fo” without USV
match the kurtosis in the data quite well, but fail to match the historical
volatilities. Imposing the USV constraints increases this tension relative to
that in the canonical A1(3) model.



Page 435 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[First Page]

[435], (1)

Lines: 0 to 48

———
-10.0pt PgVar
———
Normal Page
PgEnds: TEX

[435], (1)

References

Abel, A. (1990). Asset Prices under Habit Formation and Catching Up with
the Jones. American Economic Review Paper and Proceedings 80, 38–42.

Ahn, C., and H. Thompson (1988). Jump Diffusion Processes and Term
Structure of Interest Rates. Journal of Finance 43, 155–174.

Ahn, D., and B. Gao (1999). A Parametric Nonlinear Model of Term Struc-
ture Dynamics. Review of Financial Studies 12, 721–762.

Ahn, D., R. Dittmar, and A. Gallant (2002). Quadratic Term Structure
Models: Theory and Evidence. Review of Financial Studies 15, 243–288.

Ahn, D., R. Dittmar, B. Gao, and A. Gallant (2003). Purebred or Hybrid? Re-
producing the Volatility in Term Structure Dynamics. Journal of Econo-
metrics 116, 147–180.

Ait-Sahalia, Y. (1996). Testing Continuous-Time Models of the Spot Interest
Rate. Review of Financial Studies 9(2), 385–426.

(2001). Closed-Form Likelihood Expansions for Multivariate Diffu-
sions. Working Paper, Princeton University.

(2002). Maximum-Likelihood Estimation of Discretely-Sampled
Diffusions: A Closed-Form Approximation Approach. Econometrica 70,
223–262.

Ait-Sahalia, Y., and A. W. Lo (1998). Nonparametric Estimation of State-
Price Densities Implicit in Financial Asset Prices. Journal of Finance 53,
499–547.

(2000). Nonparametric Risk Management and Implied Risk Aver-
sion. Journal of Econometrics 94, 9–51.

Akaike, H. (1973). Information Theory and an Extension of the Likelihood
Principle. In B. Petrov and F. Csaki (Eds.), Proceedings of the Second Inter-
national Symposium of Information Theory. Budapest: Akademiai Kiado.

Altman, E., and V. Kishore (1998). Defaults and Returns on High Yield
Bonds: Analysis through 1997. Working Paper, New York University
Salomon Center.

Alvarez, F., and U. Jermann (2001). Quantitative Asset Pricing Implications
of Endogenous Solvency Constraints. Review of Financial Studies 14,
1117–1151.

435



Page 436 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

436 References

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[436], (2)

Lines: 48 to 91

———
12.0pt PgVar
———
Normal Page
PgEnds: TEX

[436], (2)

Amato, J., and E. Remolona (2003). The Credit Spread Puzzle. BIS Quarterly
Review December, 51–63.

(2005). The Pricing of Unexpected Credit Losses. Working Paper,
Bank for International Settlements.

Amemiya, T. (1974). The Nonlinear Two-Stage Least-Squares Estimator.
Journal of Econometrics 2, 105–110.

(1985). Advanced Econometrics. Cambridge: Harvard University Press.
Amin, K. I., and A. J. Morton (1994). Implied Volatility Function in

Arbitrage-Free Term Structure Models. Journal of Financial Economics
35, 141–180.

Andersen, T., and J. Lund (1997a). Estimating Continuous Time Stochastic
Volatility Models of the Short Term Interest Rate. Journal of Econometrics
72, 343–337.

(1997b). Estimating Continuous-Time Stochastic Volatility Models
of the Short-Term Interest Rate. Journal of Econometrics 72, 343–377.

(1998). Stochastic Volatility and Mean Drift in the Short Term Inter-
est Rate Diffusion: Sources of Steepness, Level and Curvature in the
Yield Curve. Working Paper, Northwestern University.

Andersen, T., H. Chung, and B. Sorensen (1999a). Efficient Method of
Moments Estimation of a Stochastic Volatility Model: A Monte Carlo
Study. Journal of Econometrics 91, 61–87.

Andersen, T. G., H.-J. Chung, and B. E. Sorensen (1999b). Efficient Method
of Moments Estimation of a Stochastic Volatility Model: A Monte Carlo
Study. Journal of Econometrics 91, 61–87.

Andersen, T., L. Benzoni, and J. Lund (2002). An Empirical Investigation of
Continuous-Time Equity Return Models. Journal of Finance 57, 1239–
1284.

Anderson, E., L. Hansen, and T. Sargent (2000). Robustness, Detection and
the Price of Risk. Working Paper, University of North Carolina.

Anderson, R. W., and S. M. Sundaresan (1996). The Design and Valuation
of Debt Contracts. Review of Financial Studies 9, 37–68.

Andrews, D. W. (1991). Heteroskedasticity and Autocorrelation Consistent
Covariance Matrix Estimation. Econometrica 59, 817–858.

Ang, A., and G. Bekaert (2002). Regime Switches in Interest Rates. Journal
of Business and Economic Statistics 20, 163–182.

(2003a). Stock Return Predictability: Is It There? Working Paper,
Columbia University.

(2003b). The Term Structure of Real Rates and Expected Inflation.
Working Paper, Columbia University.

Ang, A., and M. Piazzesi (2003). A No-Arbitrage Vector Autoregression of
Term Structure Dynamics with Macroeconomic and Latent Variables.
Journal of Monetary Economics 50, 745–787.



Page 437 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

References 437

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[437], (3)

Lines: 91 to 144

———
0.0pt PgVar
———
Normal Page
PgEnds: TEX

[437], (3)

Ang, A., G. Bekaert, and J. Liu (2005a). Why Stocks May Disappoint. Journal
of Financial Economics 76, 471–508.

Ang, A., S. Dong, and M. Piazzesi (2005b). No-Arbitrage Taylor Rules. Work-
ing Paper, Columbia University.

Artzner, P., and F. Delbaen (1995). Default Risk Insurance and Incomplete
Markets. Mathematical Finance 5, 187–195.

Back, K. (1996). Yield Curve Models: A Mathematical Review. In I. Nelkin
(Ed.), Option Embedded Bonds: Price Analysis, Credit Risk, and Investment
Strategies. Chicago: Irwin.

Backus, D. K., and S. E. Zin (1994). Reverse Engineering the Yield Curve.
NBER Working Paper 4676.

Backus, D., S. Foresi, and C. Telmer (1998a). Discrete-Time Models of Bond
Pricing. Working Paper, New York University.

Backus, D., S. Foresi, and S. Zin (1998b). Arbitrage Opportunities in
Arbitrage-Free Models of Bond Pricing. Journal of Business and Economic
Statistics 16, 13–26.

Backus, D., S. Foresi, A. Mozumdar, and L. Wu (2001). Predictable Changes
in Yields and Forward Rates. Journal of Financial Economics 59, 281–311.

Backus, D., B. Routledge, and S. Zin (2004). Exotic Preferences for Macro-
economists. NBER Working Paper 10597.

Baille, R., and T. Bollerslev (1989). The Message in Daily Exchange Rates: A
Conditional Variance Tale. Journal of Business and Econmic Statistics 7,
297–305.

Bakshi, G., and Z. Chen (1996). The Spirit of Capitalism and Stock Market
Prices. American Economic Review 86, 133–157.

Bakshi, G., and N. Kapadia (2003). Volatility Risk Premium Embedded in In-
dividual Equity Options: Some New Insights. The Journal of Derivatives
Fall, 45–54.

Bakshi, G., and D. Madan (2000). Spanning and Derivative-Security Valua-
tion. Journal of Financial Economics 55, 205–238.

Bakshi, G., C. Cao, and Z. Chen (1997). Empirical Performance of Alterna-
tive Option Pricing Models. Journal of Finance 52, 2003–2049.

Bakshi, G., D. Madan, and F. Zhang (2001). Understanding the Role of
Recovery in Default Risk Models: Empirical Comparisons and Implied
Recovery Rates. Working Paper, Federal Reserve Board.

Bakshi, G., N. Kapadia, and D. Madan (2003). Stock Return Characteristics,
Skew Laws, and the Differential Pricing of Individual Equity Options.
Review Of Financial Studies 16, 101–143.

Bakshi, G., D. Madan, and F. Zhang (2004). Investigating the Sources of
Default Risk: Lessons from Empirically Evaluating Credit Risk Models.
Working Paper, University of Maryland.

Balduzzi, P., and Y. Eom (2000). Non-linearities in U.S. Treasury Rates: A
Semi-Nonparametric Approach. Working Paper, Boston College.



Page 438 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

438 References

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[438], (4)

Lines: 144 to 198

———
0.0pt PgVar
———
Normal Page
PgEnds: TEX

[438], (4)

Balduzzi, P., S. R. Das, S. Foresi, and R. K. Sundaram (1996). A Simple
Approach to Three Factor Affine Term Structure Models. Journal of
Fixed Income 6, 43–53.

Balduzzi, P., S. R. Das, and S. Foresi (1998). The Central Tendency: A Sec-
ond Factor in Bond Yields. Review of Economics and Statistics 80, 62–72.

Bansal, R., and A. Yaron (2004). Risks for the Long Run: A Potential Reso-
lution of Asset Pricing Puzzles. Journal of Finance 59, 1481–1509.

Bansal, R., and H. Zhou (2002). Term Structure of Interest Rates with
Regime Shifts. Journal of Finance 57, 1997–2043.

Bansal, R., R. Gallant, and G. Tauchen (2004). Rational Pessimism, Ratio-
nal Exuberance, and Markets for Macro Risks. Working Paper, Duke
University.

Banz, R. (1981). The Relationship Between Return and Market Value of
Common Stocks. Journal of Financial Economics 9, 3–18.

Banz, R., and M. Miller (1978). Prices for State-Contingent Claims: Some
Estimates and Applications. Journal of Business 51, 653–672.

Barberis, N., and M. Huang (2001). Mental Accounting, Loss Aversion, and
Individual Stock Returns. Journal of Finance 61, 1247–1292.

Basu, S. (1983). The Relationship Between Earning Yield, Market Value,
and Return for NYSE Common Stocks: Further Evidence. Journal of
Financial Economics 12, 129–156.

Basu, S., and A. Dassios (1999). Approximating Prices of Bonds with Log-
Normal Interest Rate. Working Paper, London School of Economics.

Bates, D. (1996). Jumps and Stochastic Volatility: Exchange Rate Processes
Implicit in PHLX Deutschemake Options. Review of Financial Studies 9,
69–107.

(2000). Post-’87 Crash Fears in the S&P500 Futures Option Market.
Journal Of Econometrics 94, 181–238.

Beaglehole, D. R., and M. S. Tenney (1991). General Solutions of Some
Interest Rate–Contingent Claim Pricing Equations. Journal of Fixed In-
come September, 69–83.

Bekaert, G., and R. Hodrick (2001). Expectations Hypotheses Tests. Journal
of Finance 56, 1357–1394.

Bekaert, G., and J. Liu (2004). Conditioning Bounds Information and Vari-
ance on Pricing Kernels. Review of Financial Studies 17, 339–378.

Bekaert, G., R. Hodrick, and D. Marshall (1997). On Biases in Tests of
the Expectations Hypothesis of the Term Structure of Interest Rates.
Journal of Financial Economics 44, 309–348.

Bekaert, G., E. Engstrom, and S. Grenadier (2004). Stock and Bond Returns
with Moody Investors. Working Paper, Stanford University.

Bekaert, G., S. Cho, and A. Moreno (2005). New-Keynesian Macroecono-
mics and the Term Structure. Working Paper, Columbia University.

Benzoni, L., P. Collin-Dufresne, and R. Goldstein (2005). Can Standard



Page 439 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

References 439

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[439], (5)

Lines: 198 to 257

———
0.0pt PgVar
———
Normal Page
PgEnds: TEX

[439], (5)

Preferences Explain the Prices of Out-of-the-Money S&P500 Put Op-
tions? Working Paper, University of Minnesota.

Bernanke, B. (1990). On the Predictive Power of Interest Rates and Interest
Rate Spreads. New England Economic Review Nov/Dec, 51–68.

Berndt, A., R. Douglas, D. Duffie, M. Ferguson, and D. Schranzk (2004).
Measuring Default Risk Premia from Default Swap Rates and EDFs.
Working Paper, Stanford University.

Berndt, E., and N. Savin (1977). Conflict among Criteria for Testing in the
Multivariate Linear Regression Model. Econometrica 45, 1263–1278.

Bester, C. (2004). Random Field and Affine Models for Interest Rates: An
Empirical Comparison. Working Paper, University of Chicago.

Bhar, R., and C. Chiarella (1997). Transformation of Heath-Jarrow-Morton
Models to Markovian Systems. European Journal of Finance 3, 1–26.

Bielecki, T., and M. Rutkowski (2004). Modeling of the Defaultable Term
Structure: Conditionally Markov Approach. IEEE Transactions on Auto-
matic Control 49, 361–373.

Bikbov, R., and M. Chernov (2004). Term Structure and Volatility: Lessons
from the Eurodollar Markets. Working Paper, Columbia Business
School.

Billingsley, P. (1968). Convergence of Probability Measures. New York: Wiley.
Billingsley, P. (1979). Probability and Measure. New York: Wiley.
Bjork, T., and B. J. Christensen (1999). Interest Rate Dynamics and Consis-

tent Forward Rates Curves. Mathematical Finance 9(4), 323–348.
Bjork, T., and L. Svensson (2001). On the Existence of Finite-Dimensional

Realizations for Nonlinear Forward Rate Models.Mathematical Finance
11(2), 205–243.

Black, F. (1972). Capital Market Equilibrium with Restricted Borrowing.
Journal of Business 45, 444–454.

(1976). Studies in Stock Price Volatility Changes. In Proceedings of the
1976 Meetings of the Business and Economic Statistics Section, pp. 177–181.
American Statistical Association.

Black, F., and J. Cox (1976). Valuing Corporate Securities: Liabilities: Some
Effects of Bond Indenture Provisions. Journal of Finance 31, 351–367.

Black, F., and P. Karasinski (1991). Bond and Option Pricing when Short
Rates are Lognormal. Financial Analysts Journal 47, 52–59.

Black, F., and M. Scholes (1973). The Pricing of Options and Corporate
Liabilities. Journal of Political Economy 81, 637–654.

Black, F., E. Derman, and W. Toy (1990). A One-Factor Model of Interest
Rates and Its Application to Treasury Bond Options. Financial Analysts
Journal 46, 33–39.

Blume, M., and R. Stambaugh (1983). Biases in Computed Returns: An
Application of the Size Effect. Journal of Financial Economics 12, 387–
404.



Page 440 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

440 References

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[440], (6)

Lines: 257 to 314

———
0.0pt PgVar
———
Long Page
PgEnds: TEX

[440], (6)

Bobadilla, G. (1999). Choose the Right Error in Term Structure Models.
Working Paper, CEMFI.

Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroske-
dasticity. Journal of Econometrics 31, 307–327.

(1987). A Conditionally Heteroskedastic Time Series Model for
Speculative Prices and Rates of Return.Review of Economics and Statistics
69, 542–547.

Bollerslev, T., and J. Wooldridge (1992). Quasi-Maximum Likelihood Esti-
mation in Dynamic Models with Time-Varying Covariances. Economet-
ric Reviews 11, 143–172.

Bollerslev, T., R. Chou, and K. Kroner (1992). ARCH Modeling in Finance:
A Review of Theory and Empirical Evidence. Journal of Econometrics 52,
5–59.

Bollerslev, T., R. Engle, and D. Nelson (1994). ARCH Models. In R. Engle
and D. McFadden (Eds.), Handbook of Econometrics, Volume IV. Amster-
dam: Elsevier Science B.V.

Boudoukh, K., and M. Richardson (1993). The Statistics of Long-Horizon
Regressions. Mathematical Finance 4, 103–120.

Boudoukh, J., M. Richardson, and R. Whitelaw (1994). A Tale of Three
Schools: Insights on Autocorrelations of Short-Horizon Stock Returns.
Review of Financial Studies 7, 539–573.

Boudoukh, J., M. Richardson, R. Stanton, and R. F. Whitelaw (1998). The
Stochastic Behavior of Interest Rates: Implications from a Multifac-
tor, Nonlinear Continuous-Time Model. Working Paper, New York
University.

Brace, A., and M. Musiela (1994). A Multifactor Gauss Markov Implemen-
tation of Heath, Jarrow, and Morton. Mathematical Finance 4, 259–
283.

Brace, A., D. Gatarek, and M. Musiela (1997). The Market Model of Interest
Rate Dynamics. Mathematical Finance 7, 127–154.

Brandt, M., and D. Chapman (2002). Comparing Multifactor Models of the
Term Structure. Working Paper, Duke University.

Brandt, M., and P. Santa-Clara (2001). Simulated Likelihood Estimation of
Diffusions with an Application to Exchange Rate Dynamics in Incom-
plete Markets. Working Paper, Wharton School.

Brandt, M., and A. Yaron (2001). Time-Consistent, No-Arbitrage Models of
the Term Structure. Working Paper, Wharton School.

Breeden, D. (1979). An Intertemporal Asset Pricing Model with Stochastic
Consumption and Investment Opportunities. Journal of Financial Eco-
nomics 7, 265–296.

(1986). Consumption, Production, and Interest Rates: A Synthesis.
Journal of Financial Economics 16, 3–39.

Breeden, D., and R. Litzenberger (1978). Prices of State-Contingent Claims
Implicit in Option Prices. Journal of Finance 51, 621–651.



Page 441 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

References 441

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[441], (7)

Lines: 314 to 366

———
0.0pt PgVar
———
Long Page
PgEnds: TEX

[441], (7)

Breiman, L. (1968). Probability. Reading, Mass.: Addison-Wesley.
Brenner, R. J., R. H. Harjes, and K. F. Kroner (1996). Another Look at Mod-

els of the Short Term Interest Rate. Journal of Financial & Quantitative
Analysis 31(1), 85–107.

Breusch, T., and A. Pagan (1980). The Lagrange Multiplier Test and Its Ap-
plication to Model Specification in Econometrics. Review of Economic
Studies 47, 239–254.

Brito, R., and R. Flores (2001). A Jump-Diffusion Yield-Factor Model of
Interest Rates. Working Paper, EPGE/FGV.

Briys, E., and F. de Varenne (1997). Valuing Risky Fixed Rate Debt: An
Extension. Journal of Financial and Quantitative Analysis 32, 239–248.

Broadie, M., M. Chernov, and M. Johannes (2004). Model Specification
and Risk Premiums: The Evidence from the Futures Options. Working
Paper, Columbia University.

Brock, W. (1980). Asset Prices in a Production Economy. In J. J. McCall
(Ed.), The Economics of Uncertainty. Chicago: University of Chicago
Press.

Brown, D., and M. Gibbons (1985). A Simple Econometric Approach for
Utility-Based Asset Pricing Models. Journal of Finance 40, 359–381.

Brown, R. H., and S. M. Schaefer (1994). The Term Structure of Real Inter-
est Rates and the Cox, Ingersoll and Ross Model. Journal of Financial
Economics 35, 3–42.

(1999). Why Long Forward Interest Rates (Almost) Always Slope
Downwards. Working Paper, London Business School.

Brown, S. J., and P. H. Dybvig (1986). Empirical Implications of the Cox,
Ingersoll, Ross Theory of the Term Structure of Interest Rates. Journal
of Finance 41, 143–172.

Buraschi, A., and F. Corielli (2000). Staying Ahead of the Curve: Model Risk
and the Term Structure. Working Paper, London Business School.

Buraschi, A., and A. Jiltsov (2004). Time-Varying Inflation Risk Premia and
the Expectations Hypothesis: A Monetary Model of the Treasury Yield
Curve. Journal of Financial Economics, 75, 429–490.

Cai, J. (1994). A Markov Model of Unconditional Variance in ARCH. Journal
of Business and Economic Statistics 12, 309–316.

Campbell, J. (1991). A Variance Decomposition for Stock Returns. Economic
Journal 101, 157–179.

(1993). Intertemporal Asset Pricing without Consumption Data.Am-
erican Economic Review 83, 487–512.

(1999). Asset Prices, Consumption, and the Business Cycle. InHand-
book of Macroeconomics, Chapter 19, pp. 1–72. Amsterdam: Elsevier Sci-
ence B.V.

Campbell, J., and J. Cochrane (1999). By Force of Habit: A Consumption-
Based Explanation of Aggregate Stock Market Behavior. Journal of Po-
litical Economy 107, 205–251.



Page 442 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

442 References

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[442], (8)

Lines: 366 to 416

———
12.0pt PgVar
———
Normal Page
PgEnds: TEX

[442], (8)

Campbell, J., and J. Cochrane (2000). Explaining the Poor Performance of
Consumption-Based Asset Pricing Models. Journal of Finance 55, 2863–
2878.

Campbell, J., and R. Shiller (1988). Stock Prices, Earnings, and Expected
Dividends. Journal of Finance 43, 661–676.

(1989). The Dividend-Price Ratio and Expectations of Future Divi-
dends and Discount Factors. Review of Financial Studies 1, 195–228.

(1991). Yield Spreads and Interest Rate Movements: A Bird’s Eye
View. Review of Economic Studies 58, 495–514.

Carrasco, M., M. Chernov, J. Florens, and E. Ghysels (2005). Efficient Esti-
mation of Jump Diffusions and General Dynamic Models with a Con-
tinuum of Moment Conditions. Working Paper, University of North
Carolina.

Carverhill, A. (1994). When Is the Short Rate Markovian. Mathematical Fi-
nance 4, 305–312.

(2002). Predictability and the Dynamics of Long Forward Rates.
Working Paper, University of Hong Kong.

Cathcart, L., and L. El-Jahel (1998). Valuation of Defaultable Bonds. The
Journal of Fixed Income June, 66–78.

Chacko, G. (1999). Continuous-Time Estimation of Exponential Separable
Term Structure Models: A General Approach. Working Paper, Har-
vard University.

Chacko, G., and S. Das (2001). Pricing Interest Rate Derivatives: A General
Approach. Review of Financial Studies 15, 195–241.

Chacko, G., and L. Viceira (2005). Dynamic Consumption and Portfolio
Choice with Stochastic Volatility. Review of Financial Studies 18, 1369–
1402.

Chan, L., Y. Hamao, and J. Lakonishok (1991). Fundamentals and Stock
Returns in Japan. Journal of Finance 46, 1739–1789.

Chapman, D., and N. Pearson (2001). What Can be Learned From Recent
Advances in Estimating Models of the Term Structure? Financial Ana-
lysts Journal 57, 77–95.

Chen, L. (1996). Stochastic Mean and Stochastic Volatility—A Three-Factor Model
of the Term Structure of Interest Rates and Its Application to the Pricing of
Interest Rate Derivatives. Oxford: Blackwell.

Chen, L., P. Collin-Dufresne, and R. Goldstein (2005). On the Relation Be-
twen Credit Spread Puzzles and the Equity Premium Puzzle. Working
Paper, University of California, Berkeley.

Chen, R., and L. Scott (1993). Maximum Likelihood Estimation for a Mul-
tifactor Equilibrium Model of the Term Structure of Interest Rates.
Journal of Fixed Income 3, 14–31.

Chen, R., and L. Scott (1995). Interest Rate Options in Multifactor Cox-



Page 443 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

References 443

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[443], (9)

Lines: 416 to 465

———
0.0pt PgVar
———
Normal Page
PgEnds: TEX

[443], (9)

Ingersoll-Ross Models of the Term Structure. Journal of Fixed Income
Winter, 53–72.

Cheridito, R., D. Filipovic, and R. Kimmel (2003). Market Price of Risk
in Affine Models: Theory and Evidence. Working Paper, Princeton
University.

Chernov, M., and E. Ghysels (2000). A Study towards a Unified Approach
to the Joint Estimation of the Objective and Risk Neutral Measures
for the Purpose of Option Valuation. Journal of Financial Economics 56,
407–458.

Chernov, M., R. Gallant, E. Ghysels, and G. Tauchen (2000). A New Class
of Stochastic Volatility Models with Jumps: Theory and Estimation.
Working Paper, Columbia University.

Cheyette, O. (1994). Markov Representation of the Heath-Jarrow-Morton
Model. Working Paper, BARRA Inc.

Christoffersen, P., F. Diebold, and T. Schuermann (1998). Horizon Prob-
lems and Extreme Events in Financial Risk Management. Economic Pol-
icy Review, FRB New York November, 109–118.

Chumacero, R. (1997). Finite Sample Properties of the Efficient Method of
Moments. Studies in Nonlinear Dynamics and Econometrics 2, 35–51.

Chung, K. (1974). A Course in Probability Theory (2nd edition). New York:
Academic.

Clarida, R., J. Galí, and M. Gertler (1999). The Science of Monetary Policy:
A New Keynesian Perspective. Journal of Economic Literature 37, 1661–
1707.

Cochrane, J. (1988). How Big is the Random Walk in GNP? Journal of Political
Economy 96, 893–920.

(1996). A Cross-Sectional Test of an Investment-Based Asset Pricing
Model. Journal of Political Economy 104, 572–621.

Cochrane, J., and L. Hansen (1992). Asset Pricing Explorations for Macro-
economics. In NBER Macroeconomics Annual 1992. Cambridge, MIT
Press.

Cochrane, J., and M. Piazzesi (2005). Bond Risk Premia. American Economic
Review 95, 138–160.

Collin-Dufresne, P., and R. Goldstein (2001a). Do Credit Spreads Reflect
Stationary Leverage Ratios? Journal of Finance 56, 1929–1958.

(2001b). Stochastic Correlation and the Relative Pricing of Caps
and Swaptions in a Generalized Affine Framework. Working Paper,
Carnegie Mellon University.

(2002a). Do Bonds Span the Fixed Income Markets? Theory and
Evidence for “Unspanned” Stochastic Volatility. Journal of Finance 57,
1685–1730.

(2002b). Pricing Swaptions within an Affine Framework. Journal of
Derivatives 10, 1–18.



Page 444 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

444 References

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[444], (10)

Lines: 465 to 526

———
12.0pt PgVar
———
Long Page
PgEnds: TEX

[444], (10)

Collin-Dufresne, P., and B. Solnik (2000). On the Term Structure of Default
Permia in the Swap and LIBOR Markets. Journal of Finance 56, 1095–
1115.

Collin-Dufresne, P., R. Goldstein, and C. Jones (2004). Can Interest Rate
Volatility Be Extracted from the Cross Section of Bond Yields? An In-
vestigation of Unspanned Stochastic Volatility. Working Paper, NBER
10756.

Collin-Dufresne, P., R. S. Goldstein, and J. Martin (2001). The Determinants
of Credit Spread Changes. Journal of Finance 56, 2177–2208.

Constantinides, G. (1990). Habit Formation: A Resolution of the Equity
Premium Puzzle. Journal of Political Economy 98, 519–543.

(1992). A Theory of the Nominal Term Structure of Interest Rates.
Review of Financial Studies 5, 531–552.

Cont, R. (2005). Modeling Term Structure Dynamics: An Infinite Dimen-
sional Approach. International Journal of Theoretical and Applied Finance
8, 357–380.

Corradi, V. (2000). Reconsidering the Continuous Time Limit of the
GARCH(1,1) Process. Journal of Econometrics 96, 145–153.

Cox, J., J. Ingersoll, and S. Ross (1980). An Analysis of Variable Loan Con-
tracts. Journal of Finance 35, 389–403.

(1985a). An Intertemporal General Equilibrium Model of Asset
Prices. Econometrica 53, 363–384.

(1985b). A Theory of the Term Structure of Interest Rates. Econo-
metrica 53, 385–407.

Dai, Q. (2001). Asset Pricing in a Neoclassical Model with Limited Partici-
pation. Working Paper, New York University.

(2003). Term Structure Dynamics in a Model with Stochastic Inter-
nal Habit. Working Paper, University of North Carolina.

Dai, Q., and K. Singleton (2000). Specification Analysis of Affine Term
Structure Models. Journal of Finance 55, 1943–1978.

(2002). Expectations Puzzles, Time-Varying Risk Premia, and Affine
Models of the Term Structure. Journal of Financial Economics 63, 415–
441.

(2003a). Fixed-Income Pricing. In C. Constantinides, M. Harris, and
R. Stulz (Eds.), Handbook of Economics and Finance. Amsterdam: North-
Holland.

(2003b). Term Structure Dynamics in Theory and Reality. Review of
Financial Studies 16, 631–678.

Dai, Q., K. Singleton, and W. Yang (2003). Regime Shifts in a Dynamic
Term Structure Model of U.S. Treasury Bond Yields. Working Paper,
Stanford University.

Dai, Q., A. Le, and K. Singleton (2005). Nonlinear Dynamic Term Structure
Models. Working Paper, New York University.



Page 445 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

References 445

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[445], (11)

Lines: 526 to 588

———
0.0pt PgVar
———
Long Page
PgEnds: TEX

[445], (11)

Daniel, K., and S. Titman (1997). Evidence on the Characteristics of Cross
Sectional Variation in Stock Returns. Journal of Finance 52, 1–33.

Da Prato, G., and Z. Zabczyk (1992). Stochastic Equations in Infinite Dimen-
sions. New York: Cambridge University Press.

Darolles, S., C. Gourieroux, and J. Jasiak (2001). Compound Autoregressive
Processes. Working Paper, CREST.

Das, S. (2002). The Surprise Element: Jumps in Interest Rates. Journal of
Econometrics 106, 27–65.

Das, S., and S. Foresi (1996). Exact Solutions for Bond and Option Prices
with Systematic Jump Risk. Review of Derivatives Research 1, 7–24.

Das, S., and R. Sundaram (1999). Of Smiles and Smirks: A Term Structure
Perspective. Journal of Financial and Quantitative Analysis 34, 211–239.

Das, S., D. Duffie, N. Kapadia, and L. Saita (2005). Common Failings: How
Corporate Defaults Are Correlated. Working Paper, Stanford Univer-
sity.

Davis, J., E. Fama, and K. French (2000). Characteristics, Covariances, and
Average Returns: 1929 to 1997. Journal of Finance 55, 389–406.

DeGroot, M. (1970). Optimal Statistical Decisions. New York: McGraw-Hill.
Dickey, D., and W. Fuller (1979). Distribution of the Estimators for Auto-

regressive Time Series with a Unit Root. Journal of the American Statisti-
cal Association 74, 427–431.

(1981). Likelihood Ratio Statistics for Autoregressive Time Series
with a Unit Root. Econometrica 49, 1057–1072.

Diebold, F., A. Inoue, A. Hickman, and T. Schuermann (1998). Scale Mod-
els. Risk 11, 104–107.

Doob, J. (1953). Stochastic Processes. New York: Wiley.
Driessen, J. (2005). Is Default Event Risk Priced in Corporate Bonds? Review

of Financial Studies 18, 165–195.
Driessen, J., and P. Maenhout (2004). A Portfolio Perspective on Option

Pricing Anomalies. Working Paper, University of Amsterdam.
Driessen, J., B. Melenberg, and T. Nijman (2000). Common Factors in In-

ternational Bond Returns. Working Paper, Tilburg University.
Driessen, J., P. Klaassen, and B. Meleberg (2003). The Performance of Multi-

Factor Term Structure Models for Pricing and Hedging Caps and
Swaptions. Journal of Financial and Quantitative Analysis 38, 635–672.

Drost, F., and T. Nijman (1993). Temporal Aggregation of GARCH Pro-
cesses. Econometrica 61, 909–927.

Duan, J. (1997). Augmented GARCH(p, q) Process and its Diffusion Limit.
Journal of Econometrics 79, 97–127.

Duan, J., and J. Simonato (1999). Estimating and Testing Exponential-
Affine Term Structure Models by Kalman Filter. Review of Quantitative
Finance and Accounting 13, 111–135.

Duarte, J. (2004). Evaluating an Alternative Risk Preference in Affine Term
Structure Models. Review of Financial Studies 17, 379–404.



Page 446 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

446 References

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[446], (12)

Lines: 588 to 654

———
0.0pt PgVar
———
Long Page
PgEnds: TEX

[446], (12)

Duffee, G. (1999). Estimating the Price of Default Risk. The Review of Finan-
cial Studies 12, 197–226.

(2002). Term Premia and Interest Rate Forecasts in Affine Models.
Journal of Finance 57, 405–443.

Duffee, G., and R. Stanton (2001). Estimation of Dynamic Term Structure
Models. Working Paper, University of California, Berkeley.

Duffie, D. (1996). Special Repo Rates. Journal of Finance 51, 493–526.
(1998). Defaultable Term Structure Models with Fractional Recov-

ery of Par. Working Paper, Graduate School of Business, Stanford Uni-
versity.

(2001). Dynamic Asset Pricing Theory (3rd edition). Princeton: Prince-
ton University Press.

Duffie, D., and P. Glynn (2004). Estimation of Continuous-Time Markov
Processes Sampled at Random Times. Econometrica 72, 1773–1808.

Duffie, D., and M. Huang (1996). Swap Rates and Credit Quality. Journal of
Finance 51, 921–949.

Duffie, D., and R. Kan (1996). A Yield-Factor Model of Interest Rates. Math-
ematical Finance 6, 379–406.

Duffie, D., and D. Lando (2001). Term Structures of Credit Spreads with
Incomplete Accounting Information. Econometrica 69, 633–664.

Duffie, D., and J. Liu (2001). Floating-Fixed Credit Spreads. Financial Ana-
lysts Journal 57, 76–88.

Duffie, D., and K. Singleton (1993). Simulated Moments Estimation of Mar-
kov Models of Asset Prices. Econometrica 61, 929–952.

(1997). An Econometric Model of the Term Structure of Interest
Rate Swap Yields. Journal of Finance 52, 1287–1321.

(1999). Modeling Term Structures of Defaultable Bonds. Review of
Financial Studies 12, 687–720.

(2003). Credit Risk. Princeton: Princeton University Press.
Duffie, D., J. Pan, and K. Singleton (2000). Transform Analysis and Asset

Pricing for Affine Jump-Diffusions. Econometrica 68, 1343–1376.
Duffie, D., D. Filipovic, and W. Schachermayer (2003a). Affine Processes

and Applications in Finance. Annals of Applied Probability 13, 984–1053.
Duffie, D., L. Pedersen, and K. Singleton (2003b). Modeling Credit Spreads

on Sovereign Debt: A Case Study of Russian Bonds. Journal of Finance
55, 119–159.

Dullmann, K., and M. Windfuhr (2000). Credit Spreads between German
and Italian Sovereign Bonds—Do One-Factor Affine Models Work?
Canadian Journal of Administrative Sciences 17, 166–181.

Dunn, K., and K. Singleton (1983). An Empirical Analysis of the Pricing of
Mortgage Backed Securities. Journal of Finance 36, 769–799.

(1986). Modeling the Term Structure of Interest Rates under Non-
separable Utility and Durability of Goods. Journal of Financial Economics
17, 27–55.



Page 447 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

References 447

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[447], (13)

Lines: 654 to 707

———
0.0pt PgVar
———
Long Page
PgEnds: TEX

[447], (13)

Dybvig, P., and J. Ingersoll (1982). Mean-Variance Theory in Complete
Markets. Journal of Business 55, 233–251.

Eichenbaum, M., and L. Hansen (1990). Estimating Models with Intertem-
poral Substitution Using Aggregate Time Series Data. Journal of Busi-
ness and Economic Statistics 8, 53–69.

Eichenbaum, M., L. Hansen, and S. Richard (1987). The Dynamic Equilib-
rium Pricing of Durable Consumption Goods. Working Paper, Carne-
gie Mellon University.

Eichenbaum, M., L. Hansen, and K. Singleton (1988). A Time Series Analy-
sis of Representative Agent Models of Consumption and Leisure
Choice under Uncertainty. Quarterly Journal of Economics 103, 51–78.

Elton, E., M. Gruber, D. Agrawal, and C. Mann (2001). Explaining the Rate
Spread on Corporate Bonds. Journal of Finance 56, 247–277.

Engle, R. (1982). Autoregressive Conditional Heteroskedasticity with Esti-
mates of the Variance of U.K. Inflation. Econometrica 50, 987–1008.

(1984). Wald, Likelihood Ratio, and Lagrange Multiplier Tests in
Econometrics. In Z. Griliches and M. Intriligator (Eds.), Handbook of
Econometrics, Volume II, pp. 776–826. Elsevier Science Publishers.

Eom, Y. (1998). An Efficient GMM Estimation of Continuous-Time Asset Dy-
namics: Implications for the Term Structure of Interest Rates. Working
Paper, Yonsei University.

Eom, Y., J. Helwege, and J.-Z. Huang (2004). Structural Models of Corporate
Bond Pricing: An Empirical Analysis. Review of Financial Studies 17,
499–544.

Epstein, L., and S. Zin (1989). Substitution, Risk Aversion, and the Tem-
poral Behavior of Consumption and Asset Returns: An Theoretical
Framework. Econometrica 57, 937–969.

(1991). Substitution, Risk Aversion, and the Temporal Behavior of
Consumption and Asset Returns: An Empirical Investigation. Journal
of Political Economy 99, 263–286.

Eraker, B. (2004). Do Stock Prices and Volatility Jump? Reconciling Ev-
idence from Spot and Option Prices. Journal of Finance 59, 1367–
1403.

Eraker, B., J. Johannes, and N. Polson (2003). The Impact of Jumps in
Volatility and Returns. Journal of Finance 53, 1269–1300.

Ericsson, J., and J. Reneby (2001). The Valuation of Corporate Liabilities:
Theory and Tests. Working Paper, McGill University.

Ericsson, J., K. Jacobs, and R. Oviedo-Helfenberger (2004). The Determi-
nants of Credit Default Swap Premia. Working Paper, McGill Uni-
versity.

Evans, C., and D. Marshall (2001). Economic Determinants of the Nominal
Treasury Yield Curve. WP2001-16, Federal Reserve Bank of Chicago.

Evans, M. (2000). Regime Shifts, Risk and the Term Structure. Working
Paper, Georgetown University.



Page 448 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

448 References

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[448], (14)

Lines: 707 to 764

———
0.0pt PgVar
———
Normal Page
PgEnds: TEX

[448], (14)

Fama, E. (1965). The Behavior of Stock Market Prices. Journal of Business 38,
34–105.

(1970). Efficient Capital Markets: A Review of Theory and Empirical
Work. Journal of Finance 25, 383–417.

(1984a). The Information in the Term Structure. Journal of Financial
Economics 13, 509–528.

(1984b). Term Premiums in Bond Returns. Journal of Financial Eco-
nomics 13, 529–546.

Fama, E. F., and R. R. Bliss (1987). The Information in Long-Maturity For-
ward Rates. American Economic Review 77(4), 680–692.

Fama, E., and K. French (1988). Permanent and Temporary Components
of Stock Prices. Journal of Political Economy 96, 246–273.

(1989). Business Conditions and Expected Returns on Stocks and
Bonds. Journal of Financial Economics 25, 23–49.

(1992). The Cross-Section of Expected Stock Returns. Journal of Fi-
nance 47, 427–465.

(1993). Common Risk Factors in the Returns on Stocks and Bonds.
Journal of Financial Economics 33, 23–49.

Fama, E., and J. MacBeth (1973). Risk, Return, and Equilibrium: Empirical
Tests. Journal of Political Economy 81, 607–636.

Fan, R., A. Gupta, and R. Ritchken (2003). Hedging in the Possible Presence
of Unspanned StochasticVolatility: Evidence from Swaption Markets.
Journal of Finance 58, 2219–2248.

Feller, W. (1951). Two Singular Diffusion Problems. Annals of Mathematics
54, 173–182.

Ferson, W. (1983). Expectations of Real Interest Rates and Aggregate Con-
sumption: Empirical Tests. Journal of Financial and Quantitative Analysis
18, 477–497.

Ferson, W., and G. Constantinides (1991). Habit Formation and Durability
in Aggregate Consumption: Empirical Tests. Journal of Financial Eco-
nomics 28, 199–240.

Ferson, W., and C. Harvey (1999). Conditioning Variables and the Cross-
section of Stock Returns. Journal of Finance 54, 1325–1360.

Ferson, W., and A. Siegel (2003). Stochastic Discount Factor Bounds with
Conditioning Information. Review of Financial Studies 16, 567–595.

Feuerverger, A. (1990). An Efficiency Result for the Empirical Character-
istic Function in Stationary Time Series Models. Canadian Journal of
Statistics 18, 155–161.

Feuerverger, A., and P. McDunnough (1981). On the Efficiency of Empir-
ical Characteristic Function Procedures. Journal of the Royal Statistical
Society, Series B 43, 20–27.

Fisher, L. (1966). Some New Stock Market Indices. Journal of Business 39,
191–225.



Page 449 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

References 449

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[449], (15)

Lines: 764 to 821

———
0.0pt PgVar
———
Normal Page
PgEnds: TEX

[449], (15)

Fisher, M., and C. Gilles (1996). Estimating Exponential Affine Models of
the Term Structure. Working Paper, Federal Reserve Bank of Atlanta.

Fleming, M. J., and E. Remolona (1999). The Term Structure of Announce-
ment Effects. FRB New York Staff Report No. 76.

Fuhrer, J. (2000). Habit Formation in Consumption and Its Implications for
Monetary-Policy Models. American Economic Review 90, 367–390.

Fuller, W. (1976). Introduction to Statistical Time Series. New York: Wiley.
Gallant, A. R., and D. W. Jorgenson (1979). Statistical Inference for a Sys-

tem of Simultaneous, Nonlinear, Implicit Equations in the Context of
Instrumental Variables Estimation. Journal of Econometrics 11, 275–302.

Gallant, A. R., and J. R. Long (1997). Estimating Stochastic Differential
Equations Efficiently by Minimum Chi-Square. Biometrika 84, 125–141.

Gallant, A. R., and G. Tauchen (1989). Seminonparametric Estimation of
Conditionally Constrained Heterogeneous Processes: Asset Pricing
Implications. Econometrica 57, 1091–1120.

(1996). Which Moments to Match? Econometric Theory 12, 657–681.
(1997). Estimation of Continuous Time Models for Stock Returns

and Interest Rates. Macroeconomic Dynamics 1, 135–168.
(1998). Reprojecting Partially Observed Systems with Application to

Interest Rate Diffusions. Journal of American Statistical Association 93,
10–24.

Gallant, R., and H. White (1988). A Unified Theory of Estimation and Inference
for Nonlinear Dynamic Models. Oxford: Blackwell.

Gallant, A., L. Hansen, and G. Tauchen (1990). Using Conditional Moments
of Asset Payoffs to Infer the Volatility of Intertemporal Marginal Rates
of Substitution. Journal of Econometrics 45, 141–179.

Garcia, R., R. Lugar, and E. Renault (2001). Asymmetric Smiles, Leverage
Effects and Structural Parameters. Working Paper, Cirano, University
of Montreal.

(2003). Empirical Assessment of an Intertemporal Option Pricing
Model with Latent Variables. Journal of Econometrics 116, 49–83.

Garcia, R., E. Ghysels, and E. Renault (2004). The Econometrics of Option
Pricing. In Y. Aı̈t-Sahalia and L. Hansen (Eds.), Handbook of Financial
Econometrics. Amsterdam: Elsevier-North Holland.

Gerlach, S., and F. Smets (1997). The Term Structure of Euro-Rates: Some
Evidence in Support of the Expectations Hypothesis. Journal of Inter-
national Money and Finance 16, 305–321.

Geske, R. (1977). The Valuation of Corporate Securities as Compound Op-
tions. Journal of Financial and Quantitative Analysis 12, 541–552.

Gibbons, M. (1982). Multivariate Tests of Financial Models: A New Ap-
proach. Journal of Financial Economics 10, 3–27.

Gibbons, M., S. Ross, and J. Shanken (1989). A Test of the Efficiency of a
Given Portfolio. Econometrica 57, 1121–1152.



Page 450 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

450 References

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[450], (16)

Lines: 821 to 885

———
0.0pt PgVar
———
Long Page
PgEnds: TEX

[450], (16)

Gibson, R., F. Lhabitant, and D. Talay (2001). Modeling the Term Structure
of Interest Rates: A Review of the Literature. Working Paper, HEC.

Glosten, L., R. Jagannathan, and D. Runkle (1993). On the Relation be-
tween the Expected Value and the Volatility of the Nominal Excess
Returns on Stocks. Journal of Finance 48, 1779–1801.

Goldstein, R. (2000). The Term Structure of Interest Rates as a Random
Field. Review of Financial Studies 13, 365–384.

Gordon, S., and P. St-Amour (2004). Asset Returns and State-Dependent
Risk Preferences. Journal of Business and Economic Statistics 22, 241–252.

Gourieroux, C., and J. Jasiak (2001). Autoregressive Gamma Processes.
Working Paper, CREST.

Gourieroux, C., A. Monfort, and V. Polimenis (2002). Affine Term Structure
Models. Working Paper, University of Toronto.

Grauer, F., L. Litzenberger, and R. Stehle (1976). Sharing Rules and Equi-
librium in an International Capital Market under Uncertainty. Journal
of Financial Economics 3, 233–256.

Gray, S. (1996). Modeling the Conditional Distribution of Interest Rates as
a Regime Switching Process. Journal of Financial Economics 42, 27–62.

Grinblatt, M. (2001). An Analytic Solution for Interest Rate Swap Spreads.
Review of International Finance 2, 113–149.

Grossman, S., and R. Shiller (1981). The Determinants of the Variability of
Stock Market Prices. American Economic Review 71, 222–227.

Gul, F. (1991). A Theory of Disappointment Aversion. Econometrica 59, 667–
686.

Hackbarth, D., J. Miao, and E. Morellec (2004). Capital Structure, Credit
Risk, and Macroeconomic Conditions. Working Paper, Indiana Uni-
versity.

Hall, R. (1988). Intertemporal Substitution and Consumption. Journal of
Political Economy 96, 339–357.

Hamilton, J. (1988). Rational-Expectations Econometric Analysis of Changes
in Regime: An Investigation of the Term Structure of Interest Rates.
Journal of Economic Dynamics and Control 12, 385–423.

(1989). A New Approach to the Economic Analysis of Nonstationary
Time Series and the Business Cycle. Econometrica 57, 357–384.

(1994). Time Series Analysis. Princeton: Princeton University Press.
Hamilton, J., and R. Susmel (1994). Autoregressive Conditional Heteroske-

dasticity and Changes in Regime. Journal of Econometrics 64, 307–333.
Han, B. (2004). Stochastic Volatilities and Correlations of Bond Yields.

Working Paper, Ohio State University.
Hannan, E. J. (1973). Central Limit Theorems for Time Series Regressions.

Zeitschrift furWahrscheinlichkeitstheorie und Verwandte Gebeite 26, 157–170.
Hansen, B. (1992). The Likelihood Ratio Test under Nonstandard Condi-

tions: Testing the Markov Switching Model of GNP. Journal of Applied
Econometrics 7, S61–S82.



Page 451 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

References 451

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[451], (17)

Lines: 885 to 959

———
0.0pt PgVar
———
Long Page
PgEnds: TEX

[451], (17)

Hansen, L. (1982a). Consumption, Asset Markets, and Macroeconomic
Activity: A Comment. Carnegie-Rochester Conference Series on Public Policy
17, 239–250.

(1982b). Large Sample Properties of Generalized Method of Mo-
ments Estimators. Econometrica 50, 1029–1054.

(1985). A Method for Calculating Bounds on the Asymptotic Covari-
ance Matrices of Generalized Method of Moments Estimators. Journal
of Econometrics 30, 203–238.

(2005). Law of Large Numbers for Random Functions. Working
Paper, University of Chicago.

Hansen, L., and R. Hodrick (1980). Forward Exchange Rates as Optimal
Predictors of Future Spot Rates: An Economic Analysis. Journal of Po-
litical Economy 88, 829–854.

Hansen, L., and R. Jagannathan (1991). Implications of Security Market
Data for Models of Dynamic Economies. Journal of Political Economy
99, 225–262.

(1997). Assessing Specification Errors in Stochastic Discount Factor
Models. Journal of Finance 52, 557–590.

Hansen, L., and S. Richard (1987). The Role of Conditioning Information
in Deducing Testable Restrictions Implied by Dynamic Asset Pricing
Models. Econometrica 55, 587–613.

Hansen, L., and J. Scheinkman (1995). Back to the Future: Generating Mo-
ment Implications for Continuous-Time Markov Processes. Economet-
rica 63, 767–804.

Hansen, L., and K. Singleton (1982). Generalized Instrumental Variables
Estimation of Nonlinear Rational Expectations Models. Econometrica
50, 1269–1286.

(1983). Stochastic Consumption, Risk Aversion, and the Temporal
Behavior of Asset Returns. Journal of Political Economy 91, 249–265.

(1984). Errata. Econometrica 52, 267–268.
(1990). Computing Semiparametric Efficiency Bounds for Linear

Time Series Models with Moving Average Errors. In W. Barnett,
J. Powell, and G. Tauchen (Eds.), Nonparametric and Seminonparametric
Methods in Econometrics and Statistics. Cambridge: Cambridge University
Press.

(1996). Efficient Estimation of Linear Asset Pricing Models with
Moving Average Errors. Journal of Business and Economic Statistics 14,
53–68.

Hansen, L., S. Richard, and K. Singleton (1982). Testable Implications
of the Intertemporal Capital Asset Pricing Model. Working Paper,
Carnegie Mellon University.

Hansen, L., J. Heaton, and M. Ogaki (1988). Efficiency Bounds Implied by
Multiperiod Conditional Moment Restrictions. Journal of the American
Statistical Association 83, 863–871.



Page 452 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

452 References

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[452], (18)

Lines: 959 to 1039

———
12.0pt PgVar
———
Long Page
PgEnds: TEX

[452], (18)

Hansen, L., J. Heaton, and E. Luttmer (1995). Econometric Evaluation of
Asset Pricing Models. Review of Financial Studies 8, 237–274.

Hardouvelis, G. (1994). The Term Structure Spread and Future Changes
in Long and Short Rates in the G7 Countries. Journal of Monetary
Economics 33, 255–283.

Harrison, M., and D. Kreps (1979). Martingales and Arbitrage in Multi-
period Securities Markets. Journal of Economic Theory 20, 381–408.

Hayashi, F., and C. Sims (1983). Nearly Efficient Estimation of Time Series
Models with Predetermined, but not Exogenous, Instruments. Econo-
metrica 51, 783–789.

He, J., W. Hu, and L. Lang (2000). Credit Spread Curves and Credit Ratings.
Working Paper, Chinese University of Hong Kong.

Heath, D., R. Jarrow, and A. Morton (1992). Bond Pricing and the Term
Structure of Interest Rates: A New Methodology. Econometrica 60, 77–
105.

Heaton, J. (1995). An Empirical Specification of Asset Pricing with Tempo-
rally Dependent Preference Specifications. Econometrica 63, 681–717.

Heaton, J., and D. Lucas (1995). The Importance of Investor Heterogeneity
and Financial Market Imperfections for the Behavior of Asset Prices.
Carnegie Rochester Conference Series on Public Policy 42, 1–32.

Heidari, M., and L. Wu (2003). Are Interest Rate Derivatives Spanned by
the Term Structure of Interest Rates? Journal of Fixed Income 13, 75–86.

Helwege, J., and C. Turner (1999). The Slope of the Credit Yield Curve for
Speculative-Grade Issuers. Journal of Finance 54, 1869–1884.

Heston, S. (1993). A Closed-Form Solution for Options with Stochastic
Volatility, with Applications to Bond and Currency Options. Review of
Financial Studies 6, 327–344.

Heston, S. L., and S. Nandi (2000). A Closed-form GARCH Option Pricing
Model. Review of Financial Studies 13, 585–625.

Ho, T. S., and S. Lee (1986). Term Structure Movements and Pricing Inter-
est Rate Contingent Claims. Journal of Finance 41, 1011–1028.

Hodrick, R. (1992). Dividend Yields and Expected Stock Returns: Alterna-
tive Procedures for Inference and Measurement. Review of Financial
Studies 5, 357–386.

Hodrick, R., and X. Zhang (2001). Evaluating the Specification Errors of
Asset Pricing Models. Journal of Financial Economics 62, 327–376.

Honore, P. (1998). Five Essays on Financial Econometrics in Continuous-
Time Models. Ph.D. Dissertation, Aarhus School of Business.

Hordahl, P., O. Tristani, and D. Vestin (2003). A Joint Econometric Model
of Macroeconomic and Term Structure Dynamics. Working Paper,
European Central Bank.

Houweling, P., and T. Vorst (2005). Pricing Default Swaps: Empirical Evi-
dence. Journal of International Money and Finance 24, 1200–1225.



Page 453 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

References 453

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[453], (19)

Lines: 1039 to 1103

———
0.0pt PgVar
———
Long Page
PgEnds: TEX

[453], (19)

Hsieh, D. (1989). Modeling Heteroskedasticity in Daily Foreign-Exchange
Rates. Journal of Business and Economic Statistics 7, 307–317.

Huang, J., and M. Huang (2000). How Much of the Corporate-Treasury
Yield Spread is Due to Credit Risk? A New Calibration Approach.
Working Paper, Stanford University.

Hull, J., and A. White (1987). The Pricing of Options on Assets with Stochas-
tic Volatilities. Journal of Finance 52, 281–300.

(1993). One-Factor Interest-Rate Models and the Valuation of
Interest-Rate Derivative Securities. Journal of Financial and Quantitative
Analysis 28, 235–254.

(2000). Forward Rate Volatilities, Swap Rate Volatilities, and the Im-
plementation of the LIBOR Market Model. Journal of Fixed Income 10,
46–62.

(2004). The Relationship Between Credit Default Swap Spreads,
Bond Yields, and Credit Rating Announcements. Working Paper, Uni-
versity of Toronto.

Ikeda, N., and S. Watanabe (1981). Stochastic Differential Equations and Diffu-
sion Processes. Amsterdam: North-Holland.

Inui, K., and M. Kijima (1998). A Markovian Framework in Multi-factor
Heath-Jarrow-Morton Models. Journal of Financial and Quantitative
Analysis 33(3), 423–440.

Jackwerth, J. C. (2000). Recovering Risk Aversion from Option Prices and
Realized Returns. Review of Financial Studies 13, 433–451.

Jackwerth, J., and M. Rubinstein (1996). Recovering Probability Distribu-
tions from Option Prices. Journal of Finance 51, 1611–1631.

Jacquier, E., N. Polson, and P. Rossi (1994). Bayesian Analysis of Stochas-
tic Volatility Models. Journal of Business and Economic Statistics 12, 70–
87.

Jagannathan, R., and Wang, Z. (1996). The Conditional CAPM and the
Cross-section of Expected Returns. Journal of Finance 51, 3–54.

Jagannathan, R., A. Kaplan, and S. Sun (2003). An Evaluation of Multifactor
CIR Models Using LIBOR, Swap Rates, and Swaption Prices. Journal of
Econometrics 116, 113–146.

Jamshidian, F. (1997). Libor and Swap Market Models and Measures. Fi-
nance Stochastics 1, 293–330.

Janosi, T., R. Jarrow, and Y. Yildirim (2002). Estimated Expected Losses and
Liquidity Discounts Implicit in Debt Prices. Journal of Risk 5, 1–38.

Jarrow, R., and S. Turnbull (1995). Pricing Options on Financial Securities
Subject to Default Risk. Journal of Finance 50, 53–86.

Jarrow, R., H. Li, and F. Zhao (2004). Interest Rate Caps Smile Too! But
Can the LIBOR Market Models Capture It? Working Paper, Cornell
University.

Jarrow, R. A., D. Lando, and F. Yu (2005). Default Risk and Diversification:
Theory and Empirical Implications. Mathematical Finance 15, 1–26.



Page 454 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

454 References

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[454], (20)

Lines: 1103 to 1174

———
12.0pt PgVar
———
Normal Page
PgEnds: TEX

[454], (20)

Jeffrey, A. (1995). Single Factor Heath-Jarrow-Morton Term Structure Mod-
els Based on Markov Spot Interest Rate Dynamics. Journal of Financial
and Quantitative Analysis 30, 619–642.

Jegadeesh, N. (1991). Seasonality in Stock Price Mean Reversion: Evidence
from the U.S. and U.K. Journal of Finance 46, 1427–1444.

Jegadeesh, N., and G. Pennacchi (1996). The Behavior of Interest Rates
Implied by the Term Structure of Eurodollar Futures. Journal of Money,
Credit, and Banking 28, 426–446.

Jennrich, R. (1969). Asymptotic Properties of Non-Linear Least Squares
Estimators. Annals of Mathematical Statistics 40, 633–643.

Jiang, G., and J. Knight (1997). A Non-Parametric Approach to the Esti-
mation of Diffusion Processes, with an Application to a Short-Term
Interest Rate Model. Econometric Theory 13, 615–645.

(1999). Efficient Estimation of the Continuous Time Stochastic Vol-
atility Model via the Empirical Characteristic Function. Working Pa-
per, University of Western Ontario.

Johannes, M. (2004). The Statistical and Economic Role of Jumps in Interest
Rates. Journal of Finance 59, 227–260.

Johannes, M., and N. Polson (2005). MCMC for Financial Econometrics. In
Y. Aı̈t-Sahalia and L. Hansen (Eds.), Handbook of Financial Econometrics.
Amsterdam: Elsevier-North-Holland.

Johnsen, T., and J. Donaldson (1985). The Structure of Intertemporal Pref-
erences under Uncertainty and Time Consistent Plans. Econometrica
53, 1451–1458.

Jones, E., S. Mason, and E. Rosenfeld (1984). Contingent Claims Analysis
of Corporate Capital Structures: An Empirical Investigation. Journal of
Finance 39, 611–625.

Jorgenson, D., and J. Laffont (1974). Efficient Estimation of Nonlinear
Simultaneous Equations with Additive Errors. Annals of Economic and
Social Measurement 3, 615–640.

Jorion, P. (1988). On Jump Processes in the Foreign Exchange and Stock
Markets. Review of Financial Studies 1, 427–445.

Kahneman, D., and A. Tversky (1979). Prospect Theory: An Analysis of
Decision under Risk. Econometrica 49, 263–291.

Keim, D., and R. Stambaugh (1986). Predicting Returns in the Stock and
Bond Markets. Journal of Financial Economics 17, 357–390.

Kendall, M. (1954). Note on Bias in the Estimation of Autocorrelation.
Biometrika 41, 403–404.

Kennedy, D. P. (1994). The Term Structure of Interest Rates as a Gaussian
Random Field. Mathematical Finance 4, 247–258.

Kerkhof, J., and A. Pelsser (2002). Observational Equivalence of Discrete
String Models and Market Models. Journal of Derivatives 10, 55–61.



Page 455 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

References 455

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[455], (21)

Lines: 1174 to 1247

———
12.0pt PgVar
———
Normal Page
PgEnds: TEX

[455], (21)

Keswani, A. (2002). Estimating a Risky Term Structure of Brady Bonds.
Working Paper, Lancaster University.

Kiefer, N. (1978). Discrete Parameter Variation: Efficient Estimation of a
Switching Regression Model. Econometrica 46, 427–434.

Kim, D. (2004). Time-Varying Risk and Return in the Quadratic-Gaussian
Model of the Term Structure. Working Paper, Federal Reserve Board.

Kim, J., K. Ramaswamy, and S. Sundaresan (1993). Does Default Risk in
Coupons Affect the Valuation of Corporate Bonds? A Contingent
Claims Model. Financial Management 22, 117–131.

Kim, S., N. Shephard, and S. Chib (1998). Stochastic Volatility: Likelihood
Inference and Comparison with ARCH Models. Review of Economic
Studies 65, 361–394.

Kloeden, P., and E. Platen (1992). Numerical Solutions of Stochastic Differential
Equations. Berlin: Springer-Verlag.

Knight, F. (1921). Risk, Uncertainty and Profit. Boston: Houghton, Mifflin.
Knight, J., and J. Yu (2002). Empirical Characteristic Function in Time

Series Estimation. Econometric Theory 18, 691–721.
Kogan, L., S. Ross, J. Wang, and M. Westerfield (2006). The Price Impact of

Survival of Irrational Traders. Journal of Finance 61.
Kraus, A., and J. Sagi (2004). Asset Pricing with Unforeseen Contingencies.

Working Paper, University of California, Berkeley.
Kreps, D., and E. Porteus (1978). Temporal Resolution of Uncertainty and

Dynamic Choice Theory. Econometrica 46, 185–200.
Kugler, P. (1997). Central Bank Policy Reaction and Expectations Hypothe-

sis of the Term Structure. International Journal of Financial Economics 2,
217–224.

Lamont, O. (2001). Economic Tracking Portfolios. Journal of Econometrics
105, 164–181.

Landen, C. (2000). Bond Pricing in a Hidden Markov Model of the Short
Rate. Finance and Stochastics 4, 371–389.

Lando, D. (1998). On Cox Processes and Credit Risky Securities. Review of
Derivatives Research 2, 99–120.

Langetieg, T. (1980). A Multivariate Model of the Term Structure. Journal
of Finance 35, 71–97.

Law, P. (2005). Macro Factors and the Yield Curve. Ph.D. Dissertation, Stan-
ford University.

Lee, B., and B. Ingram (1991). Simulation Estimation of Time Series Mod-
els. Journal of Econometrics 47, 197–205.

Leippold, M., and L. Wu (2002). Asset Pricing under the Quadratic Class.
Journal of Financial and Quantitative Analysis 37, 271–295.

(2003). Design and Estimation of Quadratic Term Structure Models.
European Finance Review 7, 47–73.



Page 456 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

456 References

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[456], (22)

Lines: 1247 to 1306

———
12.0pt PgVar
———
Normal Page
PgEnds: TEX

[456], (22)

Leland, H. (1980). Who Should Buy Portfolio Insurance? Journal of Finance
35, 581–594.

Leland, H. E. (1994). Corporate Debt Value, Bond Covenants, and Optimal
Capital Structure. Journal of Finance 49, 1213–1252.

Leland, H., and K. Toft (1996). Optimal Capital Structure, Endogenous
Bankruptcy, and the Term Structure of Credit Spreads. Journal of Fi-
nance 51, 987–1019.

Lettau, M., and S. Ludvigson (2001a). Consumption, Aggregate Wealth, and
Expected Stock Returns. Journal of Finance 56, 815–849.

(2001b). Resurrecting the (C)CAPM: A Cross-Sectional Test When
Risk Premia Are Time-Varying. Journal of Political Economy 109, 1238–
1287.

Lewellen, J. (2004). Predicting Returns with Financial Ratios. Journal of
Financial Economics 74, 209–235.

Lewellen, J., and S. Nagel (2005). The Conditional CAPM Does Not Explain
Asset Pricing Anomalies. Forthcoming, Journal of Financial Economics.

Lintner, J. (1965). Valuation of Risk Assets and the Selection of Risky Invest-
ments in Stock Portfolios and Capital Budgets. Review of Economics and
Statistics 47, 13–37.

Litterman, R., and J. Scheinkman (1991). Common Factors Affecting Bond
Returns. Journal of Fixed Income 1, 54–61.

Litterman, R., and K. Winkelmann (1998). Estimating Covariance Matrices.
Working Paper, Goldman-Sachs, Risk Management Series.

Litterman, R., J. Scheinkman, and L. Weiss (1991). Volatility and the Yield
Curve. Journal of Fixed Income 1, 49–53.

Liu, J. (1997). Generalized Method of Moments Estimation of Affine Diffu-
sion Processes. Working Paper, Graduate School of Business, Stanford
Unversity.

Liu, J., J. Pan, and T. Wang (2005). An Equilibrium Model of Rare-Event Pre-
mia and Its Implication for Option Smirks. Review of Financial Studies
18, 131–164.

Liu, J., F. Longstaff, and R. Mandell (2006). The Market Price of Credit Risk:
An Empirical Analysis of Interest Rate Swap Spreads. Journal of Business
79.

Lo, A., and C. MacKinlay (1988). Stock Market Prices Do Not Follow Ran-
dom Walks: Evidence from Simple Specification Tests. Review of Finan-
cial Studies 1, 41–66.

(1989). The Size and Power of the Variance Ratio Test in Finite
Samples: A Monte Carlo Investigation. Journal of Econometrics 40, 203–
238.

(1990). An Econometric Analysis of Nonsynchronous Trading. Jour-
nal of Econometrics 45, 181–212.



Page 457 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

References 457

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[457], (23)

Lines: 1306 to 1368

———
0.0pt PgVar
———
Normal Page
PgEnds: TEX

[457], (23)

Long, J. (1974). Stock Prices, Inflation, and the Term Structure of Interest
Rates. Journal of Financial Economics 1, 131–170.

Longstaff, F. A. (1989). A Nonlinear General Equilibrium Model of the Term
Structure of Interest Rates. Journal of Financial Economics 2, 195–224.

Longstaff, F. A., and E. S. Schwartz (1992). Interest Rate Volatility and the
Term Structure: A Two-Factor General Equilibrium Model. Journal of
Finance 47, 1259–1282.

(1995). A Simple Approach to Valuing Risky Fixed- and Floating-
Rate Debt. Journal of Finance 50, 789–819.

Longstaff, F., P. Santa-Clara, and E. Schwartz (2001a). The Relative Valua-
tion of Caps and Swaptions: Theory and Empirical Evidence. Journal
of Finance 56, 2067–2109.

(2001b). Throwing Away a Billion Dollars: The Cost of Suboptimal
Exercise Strategies in the Swaptions Market. Journal of Financial Eco-
nomics 62, 39–66.

Longstaff, F., S. Mithal, and E. Neis (2005). Corporate Yield Spreads: Default
Risk or Liquidity? New Evidence from the Credit-Default Swap Market.
Journal of Finance 60, 2213–2253.

Lu, B. (2000). An Empirical Analysis of the Constantinides Model of the
Term Structure. Working Paper, University of Michigan.

Lu, B., and G. Wu (2000). Implied Bivariate State Price Density. Working
Paper, University of Michigan.

Lucas, R. (1978). Asset Prices in an Exchange Economy. Econometrica 46,
1429–1445.

Luenberger, D. (1969). Optimization by Vector Space Methods. New York: Wiley.
Lustig, H., and S. V. Nieuwerburgh (2005). Housing Collateral, Consump-

tion Insurance, and Risk Premia: An Empirical Perspective. Forthcom-
ing, Journal of Finance.

Lyden, S., and D. Sariniti (2000). An Empirical Examination of the Classi-
cal Theory of Corporate Security Valuation. Working Paper, Barclays
Global Investors.

Madan, D., and H. Unal (1998). Pricing the Risks of Default. Review of
Derivatives Research 2, 121–160.

Maddala, G., and I. Kim (1998). Unit Roots, Cointegration, and Structural
Change. Cambridge: Cambridge University Press.

Mankiw, G., J. Rotemberg, and L. Summers (1985). Intertemporal Substitu-
tion in Macroeconomics. Quarterly Journal of Economics 100, 225–251.

Marcet, A., and K. Singleton (1999). Equilibrium Asset Prices and Savings
of Heterogeneous Agents in the Presence of Portfolio Constraints.
Macroeconomic Dynamics 3, 243–277.

Martellini, L., and N. E. Karoui (2001). A Theoretical Inspection of the
Market Price for Default Risk. Working Paper, University of Southern
California.



Page 458 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

458 References

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[458], (24)

Lines: 1368 to 1444

———
12.0pt PgVar
———
Long Page
PgEnds: TEX

[458], (24)

McCallum, B. T. (1994). Monetary Policy and the Term Structure of Interest
Rates. NBER Working Paper No. 4938.

McFadden, D. (1987). A Method of Simulated Moments for Estimation of
Discrete Response Models without Numerical Integration. Economet-
rica 57, 995–1026.

Mehra, R., and E. Prescott (1985). The Equity Premium Puzzle. Journal of
Monetary Economics 15, 145–161.

Melino, A., and S. Turnbull (1990). Pricing Foreign Currency Options with
Stochastic Volatility. Journal of Econometrics 45, 239–265.

Mella-Barral, P., and W. Perraudin (1997). Strategic Debt Service. Journal of
Finance 52, 531–556.

Merrick, J. J. (2001). Crisis Dynamics of Implied Default Recovery Ratios:
Evidence from Russia and Argentina. Journal of Banking and Finance
25, 1921–1939.

Merton, R. (1970). A Dynamic General Equilibrium Model of the Asset
Market and Its Application to the Pricing of the Capital Structure of
the Firm. Working Paper, Sloan School of Management, Massachusetts
Institute of Technology.

(1973). Theory of Rational Option Pricing. Bell Journal of Economics
and Management Science 4, 141–183.

(1974). On the Pricing of Corporate Debt: The Risk Structure of
Interest Rates. Journal of Finance 29, 449–470.

(1980). On Estimating the Expected Return on the Market. Journal
of Financial Economics 8, 323–361.

Michner, R. (1984). Permanent Income in General Equilibrium. Journal of
Monetary Economics 14, 297–305.

Miltersen, K. R., K. Sandmann, and D. Sondermann (1997). Closed Form
Solutions for Term Structure Derivatives with Log-Normal Interest
Rates. Journal of Finance 52(1), 409–430.

Mokkadem, A. (1985). Le Modele Non Lineaire AR(1) General. Ergodicite
et Ergodicite Geometrique. Comptes Rendues Academie Scientifique Paris
301 Serie I, 889–892.

Morton, A. (1988). Arbitrage and Martingales. Technical Report 821, Cor-
nell University.

Moskowitz, T. (2003). An Analysis of Covariance Risk and Pricing Anoma-
lies. Review of Financial Studies 16, 417–457.

Mossin, J. (1968). Equilibrium in a Capital Asset Market. Econometrica 34,
768–783.

Mulligan, C. (2004). Robust Aggregate Implications of Stochastic Discount
Factor Volatility. NBER Working Paper 10210.

Musiela, M. (1994). Stochastic PDEs and Term Structure Models. Working
Paper, University of New South Wales, Sydney.

Musiela, M., and M. Rutkowski (1997). Continuous-time Term Structure



Page 459 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

References 459

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[459], (25)

Lines: 1444 to 1513

———
0.0pt PgVar
———
Long Page
PgEnds: TEX

[459], (25)

Models: A Forward Measure Approach. Finance and Stochastics 1, 261–
291.

Naik, V., and M. H. Lee (1997). Yield Curve Dynamics with Discrete Shifts
in Economic Regimes: Theory and Estimation. Working Paper, Faculty
of Commerce, University of British Columbia.

Neal, R., D. Rolph, and C. Morris (2000). Interest Rates and Credit Spreads.
Working Paper, Kelley School of Business, Indiana University.

Neftci, S. (1984). Are Economic Time Series Asymmetric Over the Business
Cycle? Journal of Political Economy 92, 307–328.

Nelson, C., and A. Siegel (1987). Parsimonious Modelling of Yield Curves.
Journal of Business 60, 473–489.

Nelson, D. (1990). ARCH Models as Diffusion Approximations. Journal of
Econometrics 45, 7–38.

(1991). Conditional Heteroskedasticity in Asset Returns: A New Ap-
proach. Econometrica 59, 347–370.

Newey, W. K. (1984). A Method of Moments Interpretation of Sequential
Estimators. Economics Letters 14, 201–206.

(1991). Uniform Convergence in Probability and Stochastic Equi-
continuity. Econometrica 59, 703–708.

Newey, W., and K. D. West (1987a). Hypothesis Testing with Efficient Method
of Moment Estimation. International Economic Review 28, 777–787.

(1987b). A Simple Positive Semi-Definite, Heteroskedasticity and
Autocorrelation Consistent Covariance Matrix. Econometrica 55, 703–
708.

Niederhoffer, V., and M. Osborne (1966). Market Making and Reversal of
the Stock Exchange. Journal of the American Statistical Association 61,
897–916.

Nielsen, L. T., J. SaaRequejo, and P. Santa-Clara (1993). Default Risk and
Interest Rate Risk: The Term Structure of Default Spreads. Working
Paper, INSEAD, Fontainebleau, France.

Nummelin, E., and P. Tuominen (1982). Geometric Ergodicity of Harris Re-
current Markov Chains with Applications to Renewel Theory. Stochastic
Processes and Their Applications 12, 187–202.

Ogden, J. (1987). Determinants of the Relative Interest Rate Sensitivities of
Corporate Bonds. Financial Management 10, 22–30.

Pagès, H. (2000). Estimating Brazilian Sovereign Risk from Brady Bond
Prices. Working Paper, Bank of France.

Pakes, A., and D. Pollard (1987). The Asymptotics of Simulation Estimators.
Econometrica 57, 1027–1058.

Pan, J. (2000). Jump-Diffusion Models of Asset Prices: Theory and Empirical
Evidence. Ph.D. Thesis, Stanford University.

(2002). The Jump-Risk Premia Implicit in Options: Evidence from
an Integrated Time-Series Study. Journal of Financial Economics 63, 3–
50.



Page 460 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

460 References

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[460], (26)

Lines: 1513 to 1577

———
0.0pt PgVar
———
Long Page
PgEnds: TEX

[460], (26)

Pan, J., and K. Singleton (2005). Default and Recovery Implicit in the Term
Structure of Sovereign CDS Spreads. Working Paper, Stanford Uni-
versity.

Pardoux, E. (1993). Stochastic Partial Differential Equations: A Review. Bul-
letin des Sciences Mathématiques 117, 29–47.

Pearson, N. D., and T. Sun (1994). Exploiting the Conditional Density in
Estimating the Term Structure: An Application to the Cox, Ingersoll,
and Ross Model. Journal of Finance 49, 1279–1304.

Pedersen, A. (1995). A New Approach to Maximum Likelihood Estimation
for Stochastic Differential Equations Based on Discrete Observations.
Scandinavian Journal of Statistics 22, 55–71.

Perron, P. (1988). Trends and Random Walks in Macroeconomic Time
Series: Further Evidence from a New Approach. Journal of Economic
Dynamics and Control 12, 297–332.

Peterson, S., R. Stapleton, and M. Subrahmanyam (1998). An Arbitrage-
Free Two-factor Model of the Term Structure of Interest Rates: A
Multivariate Binomial Approach. Working Paper, New York University.

Phelan, M. J. (1995). Probability and Statistics Applied to the Practice of
Financial Risk Management: The Case of JP Morgan’s RiskMetrics.
Working Paper, The Wharton Financial Institution Center.

Phillips, P. (1987). Time Series Regression with a Unit Root. Econometrica 55,
277–301.

Piazzesi, M. (2003). Bond Yields and the Federal Reserve. Journal of Political
Economy 113, 311–344.

Plosser, C., and W. Schwert (1978). Money, Income and Sunspots: Measur-
ing Economic Relationships and the Effects of Differencing. Journal of
Monetary Economics 4, 637–660.

Poterba, J., and L. Summers (1988). Mean Reversion in Stock Prices: Evi-
dence and Implications. Journal of Financial Economics 22, 27–59.

Quandt, R., and J. Ramsey (1978). Estimating Mixtures of Normal Distri-
butions and Switching Regressions. Journal of the American Statistical
Association 73, 730–738.

Rebonato, R., and I. Cooper (1997). The Limitations of Simple Two-Factor
Interest Rate Models. Journal of Financial Engineering 5, 1–16.

Richardson, M. (1993). Temporary Components of Stock Prices: A Skeptic’s
View. Journal of Business and Economics Statistics 11, 199–207.

Richardson, M., and T. Smith (1991). Tests of Financial Models in the Pres-
ence of Overlapping Observations. Review of Financial Studies 4, 227–
254.

(1994). A Unified Approach to Testing for Serial Correlation in
Stock Returns. Journal of Business 67, 371–399.

Richardson, M., and J. Stock (1989). Drawing Inferences from Statistics
Based on Multiyear Asset Returns. Journal of Financial Economics 25,
323–348.



Page 461 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

References 461

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[461], (27)

Lines: 1577 to 1635

———
0.0pt PgVar
———
Long Page
PgEnds: TEX

[461], (27)

Ritchken, P., and L. Sankarasubramanian (1995). Volatility Structure of
Forward Rates and the Dynamics of the Term Structure. Mathematical
Finance 5, 55–72.

Roberds, W., and C. Whiteman (1999). Endogenous Term Premia and
Anomalies in the Term Structure of Interest Rates: Explaining the
Predictability Smile. Journal of Monetary Economics 44, 555–580.

Roll, R. (1977). A Critique of the Asset Pricing Theory’s Tests: Part I. Journal
of Financial Economics 4, 129–176.

(1984). A Simple Implicit Measure of the Effective Bid-Ask Spread
in an Efficient Market. Journal of Finance 39, 1127–1140.

Rosenberg, B. (1972). The Behavior of Random Variables with Nonstation-
ary Variance and the Distribution of Security Prices. Working Paper,
University of California, Berkeley.

Rosenberg, B., K. Reid, and R. Lanstein (1985). Persuasive Evidence of
Market Inefficiency. Journal of Portfolio Management 11, 9–17.

Rosenberg, J. V., and R. F. Engle (2002). Empirical Pricing Kernels. Journal
of Financial Economics 64, 341–372.

Rosenblatt, M. (1971). Markov Processes: Structure and Asymptotic Behavior.
Berlin: Springer-Verlag.

Ross, S. A. (1978). A Simple Approach to the Valuation of Risky Streams.
Journal of Business 3, 453–476.

Rubinstein, M. (1976). The Valuation of Uncertain Income Streams and the
Pricing of Options. Bell Journal of Economics 7, 407–425.

Rudebusch, G., and T. Wu (2003). A No-Arbitrage Model of the Term Struc-
ture and the Macroeconomy. Working Paper, Federal Reserve Bank of
San Francisco.

Said, S., and D. Dickey (1984). Testing for Unit Roots in Autoregressive-
Moving Average Models of Unknown Order. Biometrika 71, 599–607.

Sandmann, G., and S. Koopman (1998). Estimation of Stochastic Volatility
Models via Monte Carlo Maximum Likelihood. Journal of Econometrics
87(2), 271–302.

Sandmann, K., and D. Sondermann (1997). A Note on the Stability of Log-
normal Interest Rate Models and the Pricing of Eurodollar Futures.
Mathematical Finance 7, 119–125.

Sangvinatsos, A., and J. Wachter (2005). Does the Failure of the Expecta-
tions Hypothesis Matter for Long-Term Investors? Journal of Finance
60, 179–230.

Santa-Clara, P., and D. Sornette (2001). The Dynamics of the Forward Inter-
est Rate Curve with Stochastic String Shocks. Review of Financial Studies
14, 149–185.

Santos, T., and P. Veronesi (2005). Labor Income and Predictable Stock
Returns. Forthcoming, Review of Financial Studies.

Sarig, O., and A. Warga (1989). Some Empirical Estimates of the Risk Struc-
ture of Interest Rates. The Journal of Finance 44, 1351–1360.



Page 462 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

462 References

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[462], (28)

Lines: 1635 to 1684

———
0.0pt PgVar
———
Normal Page
PgEnds: TEX

[462], (28)

Savin, N. (1976). Conflicts among Testing Procedures in a Linear Regres-
sion Model with Autoregressive Disturbances. Econometrica 44, 1303–
1313.

Schaefer, S., and I. Strebulaev (2004). Structural Models of Credit Risk Are
Useful: Evidence from Hedge Ratios on Corporate Bonds. Working
Paper, Graduate School of Business, Stanford University.

Scholes, M., and J. Williams (1977). Estimating Betas from Nonsynchronous
Data. Journal of Financial Economics 5, 309–327.

Schroder, M., and C. Skiadas (2002). An Isomorphism Between Asset Pric-
ing Models with and without Linear Habit Formation. Review of Finan-
cial Studies 15, 1189–1221.

Scott, L. (1996). The Valuation of Interest Rate Derivatives in a Multi-Factor
Cox-Ingersoll-Ross Model that Matches the Initial Term Structure.
Working Paper, University of Georgia.

(1997). Pricing Stock Options in a Jump-Diffusion Model with Sto-
chastic Volatility and Interest Rates: Application of Fourier Inversion
Methods. Mathematical Finance 7, 345–358.

Shanken, J. (1992). On the Estimation of Beta-Pricing Models. Review of
Financial Studies 5, 1–33.

Sharpe, W. F. (1964). Capital Asset Prices: A Theory of Market Equilibrium
under Conditions of Risk. Journal of Finance 19, 429–442.

Shiller, R. (1979). The Volatility of Long-Term Interest Rates and Expec-
tations Models of the Term Structure. Journal of Political Economy 87,
1190–1219.

(1982). Consumption, Asset Markets, and Macroeconomic Activity.
Carnegie-Rochester Conference Series on Public Policy 17, 203–238.

Singleton, K. (1980). Expectations Models of the Term Structure and Im-
plied Variance Bounds. Journal of Political Economy 88, 1159–1176.

(1985). Testing Specifications of Economic Agents’ Intertemporal
Optimum Problems against Non-Nested Alternatives. Journal of Econo-
metrics 30, 391–413.

(1990). Specification and Estimation of Intertemporal Asset Pricing
Models. In B. Friedman and F. Hahn (Eds.), Handbook of Monetary
Economics, Volume 1, pp. 5–32. Amsterdam: Elsevier Science.

(1993). Econometric Implications of Consumption-Based Asset
Pricing Models. In Advances in Econometrics, Sixth World Congress. New
York: Cambridge University Press.

(1995). Yield Curve Risk Management for Government Bond Port-
folios: An International Comparison. In W. Beaver and G. Parker
(Eds.), Risk Management Problems and Solutions, pp. 295–322. New York:
McGraw-Hill.

(2001). Estimation of Affine Asset Pricing Models Using the Empir-
ical Characteristic Function. Journal of Econometrics 102, 111–141.



Page 463 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

References 463

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[463], (29)

Lines: 1684 to 1742

———
12.0pt PgVar
———
Normal Page
PgEnds: TEX

[463], (29)

Singleton, K., and L. Umantsev (2002). Pricing Coupon-Bond Options and
Swaptions in Affine Term Structure Models. Mathematical Finance 12,
427–446.

Stambaugh, R. F. (1997). Analyzing Investments Whose Histories Differ in
Length. Journal of Financial Economics 45, 285–331.

Stanton, R. (1997). A Nonparametric Model of Term Structure Dynamics
and the Market Price of Interest Rate Risk. Journal of Finance 52, 1973–
2002.

Stock, J., and M. Watson (1989). New Indexes of Coincident and Leading
Economic Indicators. NBER Macro Annual 4, 351–395.

Stockman, A. (1978). Risk, Information, and Forward Exchange Rates. In
J. Frenkel and H. Johnson (Eds.), The Economics of Exchange Rates:
Selected Studies. Reading, Mass.: Addison Wesley.

Summers, L. (1986). Does the Stock Market Rationally Reflect Fundamental
Values? Journal of Finance 41, 591–601.

Sun, T. (1992). Real and Nominal Interest Rates: A Discrete-Time Model
and Its Continuous-Time Limit. Review of Financial Studies 5(4), 581–
611.

Sun, T., S. Sundaresan, and C. Wang (1993). Interest Rate Swaps—An Em-
pirical Investigation. Journal of Financial Economics 34, 77–99.

Sundaresan, S. (1989). Intertemporally Dependent Preferences and the Vol-
atility of Consumption and Wealth. Review of Financial Studies 2, 73–88.

(2000). Continuous-Time Methods in Finance: A Review and an
Assessment. Journal of Finance 55, 1569–1622.

Tang, D., and H. Yan (2005). Macroeononomic Conditions, Firm Character-
istics, and Credit Spreads. Working Paper, University of Texas, Austin.

Tauren, M. (1999). A Model of Corporate Bond Prices with Dynamic Capital
Structure. Working Paper, Indiana University.

Taylor, S. (1986). Modeling Financial Time Series. Chichester, UK: Wiley.
(1994). Modeling Stochastic Volatility: A Review and Comparative

Study. Mathematical Finance 4, 183–204.
Telmer, C. (1993). Asset Pricing Puzzles and Incomplete Markets. Journal of

Finance 48, 1803–1832.
Tweedie, R. (1982). Criteria for Rates of Convergence of Markov Chains,

with Applications to Queuing and Storage Theory. In J. Kingman and
G. Reuter (Eds.), Probability, Statistics, and Analysis. Cambridge: Cam-
bridge University Press.

Umantsev, L. (2001). Econometric Analysis of European LIBOR-based Op-
tions with Affine Term Structure Models. Ph.D. Dissertation, Stanford
University.

Vasicek, O. (1977). An Equilibrium Characterization of the Term Structure.
Journal of Financial Economics 5, 177–188.



Page 464 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

464 References

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[464], (30)

Lines: 1742 to 1791

———
* 93.28pt PgVar

———
Normal Page
PgEnds: TEX

[464], (30)

Vassalou, M. (2003). News Related to Future GDP Growth as a Risk Factor
in Equity Returns. Journal of Financial Economics 68, 47–73.

Wachter, J. (2005). A Consumption-Based Model of the Term Structure of
Interest Rates. Forthcoming, Journal of Financial Economics.

Weil, P. (1989). The Equity Premium Puzzle and the Risk-free Rate Puzzle.
Journal of Monetary Economics 24, 401–421.

West, K. (1988). Asymptotic Normality, When Regressors Have a Unit Root.
Econometrica 56, 1397–1417.

White, H. (1982). Maximum Likelihood Estimation of Misspecified Models.
Econometrica 50, 1–16.

(1984). Asymptotic Theory for Econometricians. New York: Academic.
Wu, S. (2002). How Do Changes In Monetary Policy Affect the Term Struc-

ture of Interest Rates? Working Paper, University of Kansas.
Wu, S., and Y. Zeng (2003). A General Equilibrium Model of the Term

Structure of Interest Rates under Regime-Switching Risk. Working
Paper, University of Kansas.

Wu, T. (2000). Macro Factors and the Affine Term Structure of Interest
Rates. Working Paper, Yale University.

Yamada, T., and S. Watanabe (1971). On the Uniqueness of Solutions of
Stochastic Differential Equations. Journal of Mathematics Kyoto Univer-
sity 11, 155–167.

Yan, H. (2001). Dynamic Models of the Term Structure. Financial Analysts
Journal 57, 60–75.

Yu, F. (2002). Modeling Expected Return on Defaultable Bonds. Journal of
Fixed Income 12, 69–81.

Zhang, F. (2003). What Did the Credit Market Expect of Argentina Default?
Evidence from Default Swap Data. Working Paper, Federal Reserve
Board.

Zhou, C. (2001a). The Term Structure of Credit Spreads with Jump Risk.
Journal of Banking and Finance 25, 2015–2040.

(2001b). Finite Sample Properties of EMM, GMM, QMLE, and MLE
for a Square-Root Interest Rate Diffusion Model. Journal of Computa-
tional Finance 5, 89–122.

(2001c). Jump-Diffusion Term Structure and Ito Conditional Mo-
ment Generator. Working Paper, Federal Reserve Board.



Page 465 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[First Page]

[465], (1)

Lines: 0 to 96

———
0.0pt PgVar
———
Normal Page
PgEnds: TEX

[465], (1)

Index

Page numbers followed by n indicate notes; those followed by f indicate figures; those
followed by t indicate tables.

AM (N ) model, 105–8, 317–18
Abel, A., 270
ABL model, 179–81, 184–86, 187, 189
additive pricing errors, 341–42
affine DTSMs, 316–29; basic model, 316–

17; for bond yield, 316–17, 338–43;
continuous-time, 317–27, 329, 339;
for corporate bonds, 369–70, 377–80;
discrete-time, 327–29; estimating, 338–
43; in fixed-income derivative pricing
models, 413–17, 428–29. See also affine
processes

affine processes, 98–129; characteristic
function-based estimators, 124–29;
continuous-time, 98, 101–8, 317–27, 329,
339; defined, 98; discrete-time, 98, 108–14;
estimation approaches, 99, 338–43; GMM
estimation of, 117, 337, 340, 342; ML
estimation of, 118–24, 339, 340–42;
overview of, 100–101; transforms for,
114–17; two-factor example, 104–8. See also
affine DTSMs

aggregate consumption, 248
aggregate demand shocks, 359–60, 360f
aggregate wealth portfolio, 250–51
AG process. See autoregressive gamma

process
Agrawal, D., 374
Ahn, C., 334
Ahn, D., 329–32, 344, 355, 421
Ait-Sahalia, Y., 100n, 122–24, 123n, 340, 342,

346, 347n, 404–6
Ait-Sahalia approximation, 123

Akaike, H., 146n
Altman, E., 375
Alvarez, F., 277
Amato, J., 374–75, 375t, 388
Amemiya, T., 28n, 138n, 142–43
Amin, K. I., 418
Andersen, T., 32, 148n, 151, 173, 176, 179,

180t, 181t, 332, 418
Anderson, E., 409
Anderson, R. W., 368–69, 372
Andrews, D. W., 57, 141
Ang, A., 231, 231t, 233, 277, 328, 334, 337,

342, 361, 363
announcement effects, 354–55
approximate log-likelihood function, 18,

19–21, 122–24
arbitrage-free pricing models, 2, 5–7; equity

option, 392–97; pricing kernels, 202–10.
See also dynamic term structure models

ARCH model, 148, 151, 170; estimates for
bond yields, 355

Artzner, P., 366
asymptotic covariance matrices, 51–57;

Hodrick standard errors, 234–37; for least-
squares projection, 58–60; for optimal
GMM estimators, 61–64

asymptotic normality: of extremum
estimators, 48–60; of generalized method
of moments (GMM) estimators, 49–51;
of simulated moments estimators (SME),
142–44

at-the-money swaps, 369
autoregressive gamma (AG) process, 109–14;

465



Page 466 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

466 Index

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[466], (2)

Lines: 96 to 191

———
0.0pt PgVar
———
Normal Page
PgEnds: TEX

[466], (2)

autoregressive gamma (AG) process
(continued)
conditional density, 112f; discrete-time,
166–67; simulated time path, 111f, 113f

Back, K., 311n
Backus, D., 104n, 201n, 237–38, 241–44,

242t, 243t, 315, 321n, 332, 347, 348
Backus-Zin specification, 332
Baille, R., 167
Bakshi, G., 89, 98–99, 176, 253, 377, 392n,

397, 401, 402t, 404, 410–11, 414
Balduzzi, P., 321n, 322, 347n
Bansal, R., 253, 273, 275, 337, 350, 382,

408–10
Bansal-Zhou framework, 337
Banz, R., 302, 406
Barberis, N., 277
Bartlett kernels, 57
Basu, S., 302, 331
Bates, D., 176, 392n, 394, 396–98, 401, 403–4
Bayes’s rule, 153, 156, 168
Beaglehole, D. R., 322, 329–30
Bekaert, G., 231, 231t, 233, 243–44, 281, 328,

334, 337, 361–63
benchmark returns: conditional variance

of, 296; under HR regularity, 288–90; in
intertemporal CAPM (ICAPM), 8, 8n,
288–90, 292; pricing kernels versus, 284–85

Benzoni, L., 173, 176, 179, 180t, 181t, 409
Bernanke, B., 303
Berndt, A., 384n, 385, 390
Berndt, E., 84n
Bernoulli jump model, 169, 173
Bester, C., 315
beta, 282–90; autocorrelation properties of,

255–56; conditional mean-variance effi-
ciency (MVE), 285–87, 288, 290–97; condi-
tioning down and, 287–90, 306–7; constant-
beta model, 296; Fama-French three-factor
model, 302–3, 304, 306; Jagannathan-Wang
regression model with constant betas,
303–4, 306; methods for testing, 297–301;
pricing kernels and, 296–97, 298–99; in
representing excess returns, 7–9, 158–59,
282–85, 287, 307; single-beta representa-
tion of expected excess returns, 7–9, 282–
85, 287, 307; zero-beta portfolios, 288–89,
293–94. See also capital asset pricing model

Bhar, R., 419
Bielecki, T., 335

Bikbov, R., 433–34
Billingsley, P., 36n, 49
Bjork, T., 419
Black, F., 5–6, 161, 289, 331, 368, 371, 391
Black-Scholes option pricing model, 391,

392, 403–4, 407, 411, 420–23
Bliss, R. R., 237, 239n, 241, 244, 245, 355
Blume, M., 218
Bobadilla, G., 342
bond option pricing models, 413–25. See also

caps; swaptions
bonds, 237–45; credit spreads, 89, 233, 372f,

372–75, 375t; derivatives based on (see
fixed-income derivative pricing models);
forward term premium, 238, 240–45;
Merton model of bond pricing, 371–73,
380–82; nominal, 241; sovereign, 377–80,
385. See also bond yields; corporate bonds;
U.S. Treasury bonds

bond yields: affine term structure models,
316–17, 338–43; announcement effects
and, 354–55; continuous-time affine
models, 317–27, 339; CVY (conditional
volatilities of changes in bond yield), 345,
346, 354, 355–56; discrete-time affine
models, 327–29; DTSMs with regime shifts,
334–37; expectations hypothesis for, 240–
45, 350, 353; forward curve, 315, 351–52;
inflation and, 361–63; jumps and, 332–34,
354; LPY (linear projection of bond yield),
344–50, 363; macroeconomic factors and,
359–63; modeling strategy for, 315–16;
nonaffine stochastic volatility models, 331–
32; premium-adjusted forward rates, 345–
46; principal components (PCs) of changes
in, 313f, 313–14, 350–51, 351t; quadratic-
Gaussian (QG) models of, 325–27, 329–31,
334, 343–44, 349–56, 370; term premium,
238, 239–45; time-varying expected returns
on bonds, 345–46, 348–53, 359; volatility
of, 346–48, 353–56; yield curves, 314–15;
zero-coupon bonds (see zero-coupon
yields). See also bonds; credit spreads

book value of common equity (BE), 302
Borel algebra, 36, 43–44
Boudoukh, K., 218, 230, 342, 347n
bounds on the volatilities of pricing kernels,

277–81
Brace, A., 311–12n, 315, 412, 418–20
Brady bonds, 377–78
Brandt, M., 119, 120, 315, 332, 342, 356



Page 467 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

Index 467

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[467], (3)

Lines: 191 to 312

———
0.0pt PgVar
———
Normal Page
PgEnds: TEX

[467], (3)

Breeden, D., 4, 8n, 240, 246, 406
Breiman, L., 37n
Brenner, R. J., 346
Breusch, T., 84n
Brito, R., 334
Briys, E., 371
Broadie, M., 401, 404
Brock, W., 248, 248n, 253
Brown, D., 251, 260, 275
Brown, R. H., 321n, 347, 427
Brown, S. J., 321n, 346–47
Brownian motion rotations: Brownian sheets

(Kennedy), 315, 418; in canonical affine
DTSMs, 321

Buraschi, A., 315, 342, 363

Cai, J., 170
Campbell, J., 233, 237–40, 239n, 243t, 247,

250–51, 259, 259n, 270–73, 272f, 273f, 344,
382

canonical affine DTSMs, 317–27; canonical
representation, 318–19; illustrative
continuous-time affine DTSMs, 321–22;
invariant affine transformations, 319–21;
stochastic volatility in, 322–25

Cao, C., 89, 176, 392n, 397, 401, 402t, 404
capital asset pricing model (CAPM), 7–9,

282–90; book value of common equity
(BE) and, 302; Daniel-Titman expected
returns, 304–5; Fama-French three-factor
model, 302–3, 304, 306; intertemporal (see
intertemporal CAPM); Jagannathan-Wang
regression model with constant betas,
303–4, 306; Lettau-Ludvigson scaled
consumption, 305, 306; Lewellen-Nagel
goodness of fit, 305–6; market value
of equity (ME) and, 302; single-beta
representation of expected excess returns,
282–85, 287, 307; static, 302–7. See also beta

caps, market model, 420–21; relative pricing
of swaptions and, 427–28

Carrasco, M., 127, 129
Carverhill, A., 419, 427
Cathcart, L., 371
CCF (conditional characteristic function),

101–4, 115, 117, 124–29, 339–40
central limit theorems, 48, 49, 143, 222n
Chacko, G., 124, 126n, 334
Chan, L., 302
Chapman, D., 311n, 356

characteristics-based models of excess
returns, 304–5

Chen, J., 234n
Chen, L., 321n, 339, 341, 382, 428n
Chen, Z., 89, 176, 253, 392n, 397, 401, 402t,

404
Cheridito, R., 326, 376, 433
Chernov, M., 89, 127, 129, 393–94, 398, 401,

404, 433–34
Cheyette, O., 418
Chiarella, C., 419
Chib, S., 166
Cho, S., 361–62
Chou, R., 164n, 173
Christensen, B. J., 419
Christoffersen, P., 186–87
Chumacero, R., 151
Chung, H.-J., 148n, 151, 418
Chung, K., 36n
Clarida, R., 361–62
Clifford-Hammersley theorem, 154, 156–57
CMGF (conditional moment-generating

function), 101, 104, 108–14, 117, 124–29,
291–92

Cochrane, J., 226, 244, 245, 270–73, 272f,
273f, 291, 292, 296, 346, 351, 352, 382

coefficient of absolute risk aversion (CRA),
405

co-integration among time series, 222
Collin-Dufresne, P., 323, 324, 326, 356–59,

369, 371n, 373, 373n, 374, 376–77, 380–82,
409, 415, 426–27, 429, 433

conditional characteristic function (CCF),
101–4, 115, 117, 124–29, 339–40

conditional continuity, 197n
conditional density function, 18, 99, 109,

110f, 112f; ML estimation with known
conditional density, 118–19; from one-
factor three-halves model, 331–32, 344;
simulated ML, using small time steps,
119–22

conditionally complete payoff space, 196
conditional moment-generating function

(CMGF), 101, 104, 108–14, 117, 124–29,
291–92

conditional moments restrictions, 27–28, 90
conditional single-beta model, 295–96
conditional skewness, 189
conditional volatilities of changes in bond

yield (CVY), 345, 346, 354, 355–56
conditioning down, 287–90, 306–7



Page 468 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

468 Index

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[468], (4)

Lines: 312 to 407

———
0.0pt PgVar
———
Normal Page
PgEnds: TEX

[468], (4)

consistency: of extremum estimators, 36,
39–48; general considerations for, 39–44;
of GMM estimators, 45–47; of SME
estimators, 135–42; uniform convergence
of sample criterion and, 39–44

constant-beta model, 296
Constantinides, G., 262, 266–69, 267n, 268n,

329–30, 350
constant relative risk-averse (CRRA)

preferences, 248, 251–54, 274–76, 406–9
consumption-based DAPMs, 246–81;

aggregate consumption and, 248; constant
relative risk-averse (CRRA) preferences,
248, 251–54, 274–76, 406–9; durable-good
models, 260–65; empirical challenges
of, 247–51; goodness-of-fit and, 251–54;
habit formation in, 265–74; marginal rate
of substitution (MRS) and (see marginal
rate of substitution of consumption);
nondurable-goods model, 262–65; non-
state-separable preferences, 274–75;
options and, 407–10; other models,
276–77; pricing kernels in, 274, 277–81;
single-good models, 254–60, 257t, 261–62,
267t; surplus consumption ratio, 272f,
273f. See also preference-based DAPMs

Cont, R., 418
continuous mapping theorem, 222n
continuous-time models, 98, 101–8, 174–85;

defined, 2; dynamic term structure
models of bond yields, 317–27, 329,
339; estimation of, 99–100, 179–85;
jump-diffusion process, 101–2, 114–16,
118–19, 175–76, 179; limits of GARCH
models, 176–78, 228; risk-neutral pricing
in, 205–10; stochastic volatility, 174–76,
322–25; transforms for, 114–16; two-factor
example, 104–8

convergence of distance matrices, 140–41
Cooper, I., 347, 427
Corielli, F., 315
corporate bonds: defaultable zero-coupon,

364, 373, 387; DTSM for, 364–90; empirical
studies of, 373–83; junk bonds, 382;
principal components (PCs) of changes in
yields, 313f, 313–14; reduced-form models,
364, 365–68, 369–70, 376–80; structural
models, 364, 368–69, 371–73, 380–83. See
also sovereign bonds

Corradi, V., 177–78

Cox, Ingersoll, Ross (CIR) models, 325–28,
332, 337, 341, 348–50

Cox, J., 20, 24, 31, 246, 321, 321n, 331, 334,
368, 371

Cox process, 102, 175
CRA (coefficient of absolute risk aversion),

405
Cramer-Rao lower bound, 55
credit default swaps (CDS), 384–87
credit spreads, 89, 233, 372–75, 375t, 383–90
CRRA (constant relative risk-averse)

preferences, 248, 251–54, 274–76, 406–9
CVY (conditional volatilities of changes in

bond yield), 345, 346, 354, 355–56

Dai, Q., 32, 98, 104, 105, 107n, 108, 108n,
111n, 112, 126n, 158n, 238n, 267, 311n,
317, 318, 319n, 322, 328, 334, 337, 340,
341, 344, 348f, 348n, 348–49, 349n, 351n,
354–59, 358t, 361, 362n, 363, 417n

Dai-Le-Singleton (DLS) model, 328
Daniel, K., 304–5
Daniel-Titman expected returns, 304–5
DAPMs. See dynamic asset pricing models
Da Prato, G., 418
Darolles, S., 98, 108
Das, S., 124, 133n, 173, 176, 187n, 321n, 322,

332–34, 388, 402
Dassios, A., 331
data-generating processes (DGPs), 7, 223–24
Davis, J., 305
decision intervals. See continuous-time

models; discrete-time models
default event risk, 389–90
default risk: bond pricing with, 369; expected

default losses by rating, 375t; market price
of, 368n, 387–90; one- versus two-sided,
417; priced recovery risk, 367–68; pricing
credit default swaps, 384–87

defaultable bond pricing models: reduced-
form, 369–70; structural, 371–73

DeGroot, M., 45n
Delbaen, F., 366
derivatives. See equity option pricing models;

fixed-income derivative pricing models
Derman, E., 331
DGPs (data-generating processes), 7, 223–24
Dickey, D., 222–24
Dickey-Fuller test, 223–24
Diebold, F., 186–87
difference-stationary (DiffS) process, 221–22



Page 469 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

Index 469

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[469], (5)

Lines: 407 to 486

———
0.0pt PgVar
———
Normal Page
PgEnds: TEX

[469], (5)

Dirac delta function, 203
discrete-time models, 108–14, 164–74;

defined, 2; dynamic term structure models
of bond yields, 327–29; estimation of, 99,
100, 171–74; GARCH, 164–67, 170–74,
173t, 190f, 190–92, 191f; Gaussian vector
autoregression, 98–99; jumps, 165, 167–69;
MixGARCH, 172–73, 173t, 190f, 192;
nonaffine, 332; regime switches, 168–69;
risk-neutral pricing in, 202–5; stochastic
volatility, 164–67, 169–71; transforms for,
116–17

distance matrices, 140–41
Dittmar, R., 329–31, 344, 355, 421
dividend yields, 233–34
DLS (Dai-Le-Singleton) model, 328
Donaldson, J., 200–201
Dong, S., 277
Donsker’s theorem, 222n
Doob, J., 136n, 140, 143
Doob’s theorem, 143
Douglas, R., 384n, 385, 390
Driessen, J., 314n, 388–90, 389f, 408, 430,

433
Drost, F., 187–89
DTSMs. See dynamic term structure models
Duan, J., 176, 342
Duarte, J., 327, 356
Duffee, G., 89, 325–26, 342, 349–50, 356–58,

360, 376, 386, 388, 433
Duffie, D., 3n, 89, 98–99, 100n, 102–4,

107n, 108, 108n, 114–16, 115n, 119, 120,
122, 131n, 135n, 179, 207, 317, 326, 334,
340–42, 349n, 366–67, 369, 370, 372, 374,
377–80, 383–85, 384n, 388, 390, 395, 414,
414n, 415, 417, 425, 433

Dullmann, K., 377–78
Dunn, K., 135n, 240, 251, 255, 261, 262, 264,

265, 277
durable-goods models, 260–65
Dybvig, P., 291, 321n, 346–47
dynamic asset pricing models (DAPMs):

consumption-based (see consumption-
based DAPMs); estimation strategies,
10–13; estimators in [see extremum
estimators; generalized method of
moments (GMM) estimators; linear
least-squares projection (LLP); Markov
chain Monte Carlo (MCMC) estimators;
maximum likelihood (ML) estimators;
simulated moments estimators (SME)];

functions of, 17; goodness-of-fit, 13;
implied restrictions, 2, 3–10; linear
pricing relations in, 9–10; no-arbitrage
(see dynamic term structure models;
no-arbitrage DAPMs); preference-based,
2, 4–5; refutability of, 1; stationary and
ergodic time series in, 36–38, 41–43, 48–51

dynamic term structure models (DTSMs):
affine (see affine DTSMs); for bond
yields, 311–63; continuous-time affine,
317–27, 329, 339; of corporate bond
spreads, 383–90; of defaultable bonds,
364–90; discrete-time affine, 327–29; for
equity option pricing (see equity option
pricing models); estimation of, 338–43; for
fixed-income derivatives (see fixed-income
derivative pricing models); goodness-of-fit,
344–45; interest rates, 20–21, 30–32; with
jumps, 332–34; key ingredients of, 312–16;
macroeconomic factors and, 359–63, 383;
nonaffine stochastic volatility models,
331–32; quadratic-Gaussian (QG) models
of risk, 325–27, 329–31, 334, 343–44,
349–56, 370; with regime shifts, 334–37;
skewness, 188–89; for swaps, 348–53, 355t,
355–56, 357, 416

ECCF estimators, 128
economically complete payoff space, 196
EGARCH model, 148n, 151; continuous-

time, 176, 179; discrete-time, 165–66; for
estimating bond yields, 356–57

EH. See expectations hypothesis
Eichenbaum, M., 73n, 74, 77, 79, 135n, 140n,

199–200, 260–65, 263n
EJP model, 179–82, 184
El-Jahel, L., 371
Elton, E., 374
Engle, R., 84n, 151, 164, 164n, 404–6
Engstrom, E., 328
Eom, Y., 344, 347n, 380–81
Epstein, L., 200–201, 274–76, 407–8
Epstein-Zin-style preferences, 382, 407–10
equity option pricing models, 391–411;

Black-Scholes, 391, 392, 403–4, 407, 411,
420–23; econometric analysis of, 401–4;
error components structure, 397–98;
estimation of, 397–401; European call
option pricing, 396–97; implied-state
method-of-moments (IS-GMM), 398–401;
implied volatilities, 391, 392f; no-arbitrage,



Page 470 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

470 Index

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[470], (6)

Lines: 486 to 575

———
0.0pt PgVar
———
Normal Page
PgEnds: TEX

[470], (6)

equity option pricing models (continued)
392–97; nonparametric/semiparametric
approaches, 405–7; for options on
individual common stocks, 410–11;
revealed preferences and, 407–10; SME
approach to, 398

Eraker, B., 153, 176, 179, 180t, 181t, 396,
401n, 401–4, 402t

ergodic processes: defined, 37–38; in
extremum estimators, 36–38, 41–43,
48–51; in simulated moments estimators
(SME), 135–37

Ericsson, J., 368–69, 373, 380, 386
estimation strategies, 10–13; components

of, 11; empirical study of, 12–13; with
full information about distributions,
17–21; with limited information about
distributions, 25–34; with no information
about distribution, 21–25

estimators, DAPM. See extremum estimators;
generalized method of moments
estimators; linear least-squares projection;
Markov chain Monte Carlo estimators;
maximum likelihood estimators; simulated
moments estimators

Euler approximation, 104, 119–21, 132,
152–53, 178, 189–90, 251–54, 264–65,
274–75, 337

Eurodollar futures options, 433–34
Evans, C., 359–60
Evans, M., 243, 350
exact log-likelihood function, 18, 19
exchange rate determination, projections in,

22–25
expectations hypothesis (EH), 240–45; for

bond yields, 350, 353; statistical evidence
against, 244; violations of, 243

extremum estimators, 35–70; asymptotic
normality of, 48–60; basic probability
model for, 35–38; consistency of, 36,
39–48; defined, 35; distributions of specific
estimators, 53–60; relative efficiency
of, 60–70; sequence of estimators, 36;
stationary and ergodic time series and, 36–
38, 41–43, 48–51; time series, 36–38, 41–43,
48–51; uniform convergence of sample
criterion, 39–44. See also generalized
method of moments estimators; linear
least-squares projection; maximum
likelihood estimators

factor models: conditional, 290–93;
conditioning down in, 287–90; methods
for testing, 297–301; unconditional,
294–96

Fama, E., 10, 211, 219, 225, 231–33, 237, 239,
239n, 241, 244, 245, 297, 302, 304–5, 307,
355

Fama-Bliss data: smoothed (SFB), 242t,
244–45, 245f, 348–49, 351t, 351–52, 353t,
355; unsmoothed (UFB), 244–45, 245f,
351, 351t, 353t, 433

Fama-French long-horizon return, 225–26,
231–33

Fama-French three-factor model, 302–3, 304,
306

Fama-MacBeth two-step estimation, 288–89,
298–301

Fan, R., 426, 432t, 432–33
Feller, W., 111
Feller condition, 175
Ferguson, M., 384n, 385, 390
Ferson, W., 214, 250, 262, 266, 267, 267n,

268n, 269, 281, 285, 292
Feuerverger, A., 128
Feynman-Kac theorem, 208–9
FGMM, as superscript, 63
Filipovic, D., 98, 102–3, 107n, 326, 376, 433
first-moment continuity, 43–44, 45n, 50
Fisher, L., 103, 117, 215, 340
fixed-income derivative pricing models,

412–34; affine models of, 413–17, 428–29;
Eurodollar futures options, 433–34;
forward-rate models in, 412, 417–25,
429–31; hedging and, 431–33, 432t; risk
factors and, 425–28

Fleming, M. J., 354
flight-to-quality shock, 360
Florens, J., 127, 129
Flores, R., 334
Foresi, S., 104n, 237–38, 241–44, 242t, 243t,

315, 321n, 322, 334, 347, 348
forward rates: on bond yields, 315, 351–52;

in fixed-income derivative pricing models,
412, 417–25, 429–31; premium-adjusted,
345–46

forward swap measures, 423–25
forward term premium, 238, 240–45
Fourier inversion, ML estimation by, 125–27,

339
French, K., 219, 225, 231–33, 302, 304–5, 307
Fuhrer, J., 362



Page 471 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

Index 471

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[471], (7)

Lines: 575 to 665

———
0.0pt PgVar
———
Normal Page
PgEnds: TEX

[471], (7)

Fuller, W., 222–24
functional central limit theorem, 222n
futures, Eurodollar futures options, 433–34

Gali, J., 361–62
Gallant, A., 38, 74n, 123n, 146–49, 152, 153,

153n, 179, 261, 279, 280f, 281, 329–31,
342, 344, 346, 354n, 355, 398, 421

Gallant, R., 253, 273, 275, 404, 408
Gao, B., 331–32, 344
GARCH model, 135, 148n, 151; continuous-

time limit of, 174, 176–78; discrete-time,
164–67, 170–74, 173t, 190f, 190–92, 191f;
for estimating bond yields, 354–55, 355t,
356–57; multivariate, 307; in option
pricing, 406; volatility scaling and, 185–87

Garcia, R., 405–7
Gatarek, D., 311–12n, 315, 412, 419–20
generalized least squares, 65
generalized method of moments (GMM)

estimators, 17, 25–34; for affine processes,
117, 337, 340, 342; under alternative
hypotheses, 75–76, 80–81; for assessing
goodness-of-fit, 251–52; asymptotic
normality of, 49–51; bandwidth
parameter, 56–57; in beta models,
299–301; characteristic function-based,
127–29; conditional moment restrictions,
27–28; consistency of, 45–47; construction
of estimators, 26–27; for continuous-time
models, 179; distribution of, 55–57;
Hodrick standard errors, 234–37;
illustrations, 30–32; inference based on
estimators under the null hypothesis,
76–77, 82–85, 94–97; inference based
on estimators under the null hypothesis
and alternative hypotheses, 74–75,
85–86; inference with unequal-length
samples, 88–94; IS-GMM in option pricing
models, 398–401; linear projections as,
29; optimal, 27; optimal distance matrix,
92–94; population first-order condition,
33t; population objective function, 33t;
for preference-based DAPMs, 263–64;
pricing kernel estimation, 32–34; relative
efficiency of, 61–64, 301; sample first-order
condition, 33t; sample objective function,
33t; SME as extension of (see simulated
moments estimators); unconditional
moment restrictions, 25–27. See also linear

least-squares projection; quasi-maximum
likelihood estimators

geometric ergodicity, 135–37. See also ergodic
processes

Gerlach, S., 243
Germany, IS-LM-style macroeconomic

model, 361
Gertler, M., 361–62
Geske, R., 368, 371, 380–81
Ghysels, E., 89, 127, 129, 393–94, 398, 404,

406
Gibbons, M., 251, 260, 275, 298–300
Gibbs samplers, 154–56
Gibson, R., 311n
Gilles, C., 103, 117, 340
GJR model, 166
Glosten, L., 166
Glynn, P., 100n
GMM. See generalized method of moments

estimators
GMM-CCF estimators, 127–29
Goldstein, R., 315, 323, 324, 326, 356–59,

371n, 373, 373n, 374, 380–82, 409, 415,
418, 426–27, 429, 433

goodness-of-fit, 13, 71–77, 240, 344–45; of
consumption-based DAPMs, 251–54; with
estimates under alternative hypothesis,
75–76, 80–81, 85; with estimates under
null hypothesis, 76–77; with estimates
under null hypothesis and alternative
hypotheses, 74–75, 77–80, 85–86; Euler-
equation-based tests of, 251–52; models
based on nonnested choices, 300–301;
tests of factor models, 302–6

Gordon, S., 276
Gourieroux, C., 98, 104, 108–9, 317, 328
Grauer, F., 22
Gray, S., 95n, 168, 170–72, 334
Grenadier, S., 328
Grinblatt, M., 369, 383n
Grossman, S., 246
Gruber, M., 374
Gul, F., 277
Gupta, A., 426, 432t, 432–33

habit formation, 265–74; external, 270–74;
internal, 266–69; option pricing and,
408–10; term structure models and, 363

Hackbarth, D., 383
Hall, R., 201
Hamao, Y., 302



Page 472 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

472 Index

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[472], (8)

Lines: 665 to 801

———
0.0pt PgVar
———
Normal Page
PgEnds: TEX

[472], (8)

Hamilton, J., 95–97, 168, 170, 334, 361
Hamilton’s switching regime model, 95–97
Han, B., 424, 425, 429, 431
Hannan, E. J., 92
Hansen, B., 96–97
Hansen, L., 3n, 5, 8n, 22, 26–27, 34–36, 35n,

44, 48–50, 53, 61, 63, 64, 68, 69, 72–74,
73n, 77, 79, 91n, 92, 100n, 133, 135n, 140n,
195–97, 196n, 199–200, 213, 225, 231, 240,
246, 247, 249–52, 255, 256, 258, 260–65,
263n, 268, 275, 277–82, 279n, 280f, 282n,
286n, 287–88, 288n, 289n, 300–301, 399,
409

Hansen-Jagannathan bounds, 227–81
Hardouvelis, G., 243
Harjes, R. H., 346
Harrison, M., 3n, 5–6
Harvey, C., 285, 292
Hayashi, F., 68
He, J., 374
Heath, D., 311–12, 315, 412, 417–18
Heaton, J., 64, 253, 262, 266, 269, 276, 281
hedging, model-based, 431–33, 432t
Heidari, M., 323, 425, 426, 429
Helwege, J., 374, 380–81
Hermite polynomials, 123, 149
Heston, S., 166, 176, 392, 393
Hickman, A., 186–87
high minus low (HML) portfolios, 302n,

302–7
HJM models, 417–19
Ho, T. S., 417, 418
Hodrick, R., 22, 225, 226, 230, 231, 233, 234,

243–44, 300–301, 306
Hodrick standard errors, 234–37
holding-period returns: in linear asset

pricing models, 211–14; unit roots in time
series, 219–24

Hong Kong swaps, 159, 159n
Honore, P., 341
Hordahl, P., 361–62
housing wealth, market price of risk and, 303
Houweling, P., 384n
HR regularity, 197, 285–90
Hsieh, D., 167–68
Hu, W., 374
Huang, J.-Z., 380–82
Huang, M., 277, 369, 382, 383
Hull, J., 321n, 384n, 407, 418, 429
human capital, market price of risk and,

303–4

hypothesis testing, 71–97; estimation
under alternative hypothesis, 80–81, 85;
estimation under null and alternative
hypotheses, 77–80, 84–85; estimation
under null hypothesis, 82–84, 85–86, 94–
97; goodness-of-fit, 13, 71–77; inference
for sequential estimators, 86–88; inference
with unequal-length samples, 88–94;
Lagrange multiplier (LM) test, 82–85;
likelihood ratio (LR statistic), 77–80,
85–86; Wald test, 80–81, 85, 300

ICAPM. See intertemporal CAPM
Ikeda, N., 107n
implied-state method-of-moments (IS-

GMM), 398–401
index of consumer sentiment (InConSent),

234
infinitesimal generator, 208
inflation: Phillips curve and, 362; in

regime-switching models, 361–63
Ingersoll, J., 20, 24, 31, 246, 291, 321, 321n,

331, 334
Ingram, B., 131n
Inoue, A., 186–87
interest rates: in DTSMs, 20–21, 30–32;

forward (see forward rates); short-term,
361–63, 369. See also bond yields; LIBOR
discount factor; LIBOR market model

interest rate swap spreads, 383–84
intertemporal CAPM (ICAPM): benchmark

returns in, 8, 8n, 288–90, 292; single-beta,
7–9, 282–85, 287, 307

Inui, K., 419
invariant affine transformations, 319–21
invariant events, 37, 319–21
IS-GMM (implied-state method-of-

moments), 398–401

Jackwerth, J. C., 404–6
Jacobs, K., 386
Jacquier, E., 153, 156–57, 166
Jagannathan, R., 166, 247, 268, 277–80, 279n,

280f, 285, 300–301, 303–6, 428, 428n
Jagannathan-Wang factor model, 303–4, 306
Jamshidian, F., 315, 419–23
Janosi, T., 377
Jarrow, R., 311–12, 315, 366, 367, 377, 388,

412, 414n, 417–18, 424–25, 430, 431
Jasiak, J., 98, 108–9
Jeffrey, A., 418, 419



Page 473 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

Index 473

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[473], (9)

Lines: 801 to 956

———
0.0pt PgVar
———
Normal Page
PgEnds: TEX

[473], (9)

Jegadeesh, N., 226, 339
Jennrich, R., 138n
Jensen’s inequality, 45
Jermann, U., 277
Jiang, G., 100n, 124
Jiltsov, A., 342, 363
Johannes, J., 153, 176, 179, 401, 403
Johannes, M., 153n, 154n, 155, 157, 179,

179n, 180t, 181t, 182n, 332–33, 401, 404
Johnsen, T., 200–201
Jones, C., 324, 326, 356–59, 429
Jones, E., 374, 380
Jorgenson, D., 28n, 74n
Jorion, P., 167–68
jump-diffusion process: bond yields and,

332–34, 354; in continuous-time models,
101–2, 114–16, 118–19, 175–76, 179;
in discrete-time models, 165, 167–69;
jump-to-default risk, 388–90; “pure” jump-
diffusion, 175–76, 190; in reduced-form
models of corporate bonds, 365–66,
376–77

jumps: defined, 158; mean relative jump size,
394–95; in option pricing models, 394–96,
403, 408–9; state-dependent jump, 396. See
also jump-diffusion process

junk bonds, 382

Kahneman, D., 277
Kalman filters, 342, 397–98, 433
Kan, R., 104, 108, 108n, 317, 342
Kapadia, N., 388, 410–11
Kaplan, A., 428, 428n
Karasinski, P., 331
Karoui, N. E., 366
Keim, D., 233
Kendall, M., 244
Kennedy, D. P., 315, 418
Kerkhof, J., 423n
kernels for estimating asymptotic covariance

matrices: Bartlett, 57; defined, 56;
truncated, 57

Keswani, A., 377–78
Kiefer, N., 172
Kijima, M., 419
Kim, D., 330, 344, 356
Kim, I., 222n
Kim, J., 371
Kim, S., 166
Kimmel, R., 326, 376, 433
Kishore, V., 375

Klaassen, P., 430, 433
Kloeden, P., 152, 152n
Knight, F., 408
Knight, J., 100n, 124
Kogan, L., 276
Koopman, S., 117
Kraus, A., 276
Kreps, D., 3n, 5–6, 200–201, 247
Kroner, K., 164n, 173, 346
Kugler, P., 243, 348n
kurtosis: in shape of distributions, 158, 159,

161, 189–92, 190f, 410–11; term structure
of conditional, 189–92, 190f

Laffont, J., 28n
Lagrange multiplier (LM) test, 82–85
Lakonishok, J., 302
Lamont, O., 303
Landen, C., 334n, 336
Lando, D., 365–67, 372, 388
Lang, L., 374
Langetieg, T., 321n, 322
Lanstein, R., 302
Latin American Brady bonds, 377–78
Law, P., 363
Le, A., 98, 104, 108, 108n, 112, 317, 328, 340,

361, 362n
Lee, B., 131n
Lee, M. H., 336, 337, 350
Lee, S., 417, 418
Leippold, M., 329–31, 350, 354, 412n
Leland, H. E., 368, 371, 380–81, 405
Leland-Toft model of corporate bond

pricing, 381
Lettau, M., 291, 293, 305
leverage effect, 159–61, 396
Lewellen, J., 233, 296, 305–6
Lhabitant, F., 311n
Li, H., 414n, 424–25, 430, 431
LIBOR discount factor: in fixed-income

derivative pricing models, 413–17, 419–25;
relative pricing of caps and swaptions,
427–28

LIBOR market model (LMM), 419–25,
430–31

likelihood function: for affine DTSMs,
340–43; types, 17–21. See also maximum
likelihood estimators

likelihood ratio (LR statistic), 77–80, 85–86
linear asset pricing models, 211–45; asset

return predictability, 211–14; bond



Page 474 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

474 Index

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[474], (10)

Lines: 956 to 1065

———
0.0pt PgVar
———
Normal Page
PgEnds: TEX

[474], (10)

linear asset pricing models (continued)
returns, 237–45; holding-period returns,
211–14; market microstructure effects,
214–19; stock returns, 231–37; tests for
serial correlation in returns, 224–31; unit
roots in time series, 219–24

linear least-squares projection (LLP),
17, 21–25; distribution of, 58–60; as
generalized method of moments (GMM),
29; illustration, 22; orthogonal projection
theorem, 23–25; population first-order
condition, 33t; population objective
function, 33t, 41f; relative efficiency of,
64–69; sample first-order condition, 33t;
sample objective function, 33t, 41f

linear projection of bond yield (LPY),
344–50, 363

Lintner, J., 282
Litterman, R., 164n, 314n, 346
Litzenberger, L., 22
Litzenberger, R., 406
Liu, J., 103, 281, 340, 354, 363, 369, 370, 383,

405, 408
LLP. See linear least-squares projection
LM (Lagrange multiplier) test, 82–85
Lo, A., 215, 218, 226, 229, 232, 404–6
log-likelihood function, 18, 19
Long, J., 152, 153, 153n, 282
Longstaff, F., 321n, 329–30, 354, 369, 371,

371n, 380–81, 383, 384n, 385, 423–25, 427,
429–32

Longstaff-Schwartz model of bond pricing,
371, 380–81

LPY (linear projection of bond yield),
344–50, 363

LR statistic (likelihood ratio), 77–80, 85–86
Lu, B., 330, 332, 344, 350, 355
Lucas, D., 276
Lucas, R., 4, 198, 246
Ludvigson, S., 291, 293, 305
Luenberger, D., 23n
Lugar, R., 405, 407
Lund, J., 32, 173, 176, 179, 180t, 181t, 332
Lustig, H., 304, 306
Luttmer, E., 281
Lyden, S., 380

MacBeth, J., 297
MacKinlay, C., 215, 218, 226, 229, 232
macroeconomic factors, 2, 248, 359–63, 383
Madan, D., 98–99, 366, 367, 377, 410–11, 414

Maddala, G., 222n
Maenhout, P., 408
Mandell, R., 354, 369, 383
Mankiw, G., 263n
Mann, C., 374
Marcet, A., 276
marginal rate of substitution (MRS) of

consumption, 247–51; intertemporal, 4,
289, 290; in option pricing models, 405–7;
pricing kernel, 198–202

marginal utility of numeraire good, 212
market microstructure effects, 214–19
market prices of risk: in continuous-time

affine models, 205–6, 325–27; in discrete-
time models, 328–29; in option pricing
models, 393–96; price of default risk,
365–67; in quadratic-Gaussian models,
330; in regime-switching models, 335–37

Markov chain Monte Carlo (MCMC)
estimators, 130–31, 153–57, 230t, 230–31;
in continuous-time models, 179–80, 184;
in discrete-time models, 167, 168; finite
Markov chain, 136n, 136–37

Markov HJM models, 419, 430
Marshall, D., 243–44, 359–60
Martellini, L., 366
Martin, J., 374
martingale difference sequence (MDS),

49–51, 67
Mason, S., 374, 380
maximum likelihood (ML) estimators,

17–21; for affine processes, 118–24, 339,
340–42; approximate likelihood functions,
18, 19–21, 122–24; in beta models, 298–99;
characteristic function-based, 125–27;
consistency of, 44–45; distribution of,
53–55; Fourier inversion and, 125–27, 339;
with known conditional density, 118–19;
quasi-ML estimation (see quasi-maximum
likelihood estimators); relative efficiency
of, 69–70; simulated, using small time
steps, 119–22; with simulated moments
estimators (SME), 149–51; of term
structure models, 339, 340–42, 351–52,
354, 355t; types of likelihood functions,
17–21

maximum pricing error, 300–301
McCallum, B. T., 348n
McDunnough, P., 128
McFadden, D., 131n



Page 475 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

Index 475

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[475], (11)

Lines: 1065 to 1222

———
0.0pt PgVar
———
Normal Page
PgEnds: TEX

[475], (11)

MCMC estimators. See Markov chain Monte
Carlo estimators

MDS (martingale difference sequence),
49–51, 67

mean relative jump size, 394–95
mean-variance efficiency (MVE), 285–87,

288, 290–97
Mehra, R., 249, 255
Meleberg, B., 430, 433
Melino, A., 133n, 179
Mella-Barral, P., 368–69, 372
Merrick, J. J., 377
Merton, R., 5–6, 214, 282, 368, 380–81
Merton model of bond pricing, 371–73,

380–82
Miao, J., 383
Michner, R., 136–37, 253
Miller, M., 406
Miltersen, K. R., 311–12n, 412, 419
MinFin (Russian Ministry of Finance) bonds,

378–80, 379f
Mithal, S., 384n, 385
MixGARCH model, 172–73, 173t, 190f, 192
mixture-of-normals model, 167–68
ML. See maximum likelihood estimators
ML-CCF estimators, 125–27, 128
Mokkadem, A., 136
Mokkadem’s conditions, 137–40
Monfort, A., 104, 317, 328
Monte Carlo integration, 119–22. See also

Markov chain Monte Carlo estimators
Morellec, E., 383
Moreno, A., 361–62
Morris, C., 374
Morton, A., 311–12, 315, 412, 417–19
Moskowitz, T., 292, 307
Mossin, J., 7
Mozumdar, A., 237–38, 241–44, 242t, 243t,

321n, 347, 348
MRS. See marginal rate of substitution of

consumption
MSCI price indices, 159, 251
Mulligan, C., 276
Musiela, M., 311–12n, 315, 412, 418–21
MVE (mean-variance efficiency), 285–87,

288, 290–97

Nagel, S., 296, 305–6
Naik, V., 336, 337, 350
Nandi, S., 166

National Income and Product Accounts
(NIPA), 255, 260–62

Neal, R., 374
Neftci, S., 361
Neis, E., 384n, 385
Nelson, C., 244
Nelson, D., 148n, 151, 164n, 165, 176–78
Newey, W., 57, 77, 87, 138n, 140, 140n, 141,

231
Niederhoffer, V., 218
Nielsen, L. T., 371
Nieuwerburgh, S. V., 304, 306
Nijman, T., 187–89
no-arbitrage DAPMs, 2, 5–7; equity option,

392–97; pricing kernels, 202–10. See also
dynamic term structure models

nonaffine discrete-time term structure
models, 332

nonaffine stochastic volatility models, 331–32
nondegenerative pricing, 197n
nondurable-goods models, 262–65
non-state-separable preferences, 274–75
nonsynchronous trading, 215–18, 216f
Novikov condition, 326–27
Nummelin, E., 136n

ODEs (ordinary differential equations),
102–3, 115–16, 317

Ogaki, M., 64
Ogden, J., 380
options: bonds, 413–17; equity (see equity

option pricing models); Eurodollar
futures, 433–34. See also caps; swaptions

ordinary differential equations (ODEs),
102–3, 115–16, 317

orthogonal projection theorem, 23n, 23–25
Osborne, M., 218
overdifferencing problem, 222
Oviedo-Helfenberger, R., 386

Pagan, A., 84n
Pagès, H., 377–78
Pakes, A., 131n
Pan, J., 89, 98–99, 102, 114–16, 115n, 179,

334, 370, 384n, 384–88, 393–96, 398–404,
400f, 402t, 405, 408, 414, 414n, 425, 433

Pardoux, E., 418
partial differential equation (PDE), 99, 208,

330, 388
payoff space: as conditionally complete, 196;

as economically complete, 196; “inner



Page 476 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

476 Index

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[476], (12)

Lines: 1222 to 1322

———
0.0pt PgVar
———
Normal Page
PgEnds: TEX

[476], (12)

payoff space (continued)
product” representation, 197; scaled
payoffs, 280–81

PC (principal components of changes in
bond yields), 313f, 313–14, 350–51, 351t

PDE (partial differential equation), 99, 208,
330, 388

Pearson, N., 311n, 321n, 339, 341
Pedersen, A., 119–22, 342
Pedersen, L., 89, 119, 120, 122, 340, 342,

349n, 378–80, 385
Pelsser, A., 423n
Pennacchi, G., 339
Perraudin, W., 368–69, 372
Perron, P., 224
Peterson, S., 331
Phelan, M. J., 164n
Phillips, P., 222n, 222–23, 223t
Phillips curve, 362
Piazzesi, M., 244, 245, 277, 328, 334, 342,

346, 351, 352, 354, 361
Platen, E., 152, 152n
Plosser, C., 222
PML-CCF estimators, 126–27
Polimenis, V., 104, 317, 328
Pollard, D., 131n
Polson, N., 153n, 153–57, 154n, 166, 176,

179, 179n, 180t, 181t, 401, 403
population estimation objective (criterion),

11
Porteus, E., 200–201, 247
Poterba, J., 226, 231
preference-based DAPMs, 2, 4–5, 212, 246–

81; constant relative risk-averse (CRRA)
preferences in, 248, 251–54, 274–76,
406–9; durable-good models, 260–65;
habit formation in, 265–74; nondurable-
good models, 262–65; non-state-separable
preferences, 274–75; options and, 407–10;
other models, 276–77; pricing kernels in,
274, 277–81; single-good models, 254–60,
257t, 261–62, 267t

Prescott, E., 249, 255
price of default risk, 365–67, 387–90
pricing kernels, 3, 3n, 195–210; benchmark

returns versus, 284–85; beta and, 296–
97, 298–99; in consumption-based
DAPMs, 274, 277–81; described, 195–98;
estimating GMM, 32–34; inflation and,
362, 362n; marginal rate of substitution
of consumption (MRS), 198–202; no

arbitrage and, 202–10; predictability of,
214; properties of, 196; regime-switching
and, 335–37; risk-neutral pricing in
continuous time, 205–10; risk-neutral
pricing in discrete time, 202–5; single-beta
representation of expected excess returns,
282–85, 287, 307

principal components (PC) of changes in
bond yields, 313f, 313–14, 350–51, 351t

projections, 21–25; defined, 21n; nature
of, 22; orthogonal projection theorem,
23n, 23–25. See also linear least-squares
projection

pure jump model, 179, 181–82

QG (quadratic-Gaussian) term structure
models, 325–27, 329–31, 334, 343–44,
349–56, 370

QML. See quasi-maximum likelihood
estimators

quadratic-Gaussian (QG) term structure
models, 325–27, 329–31, 334, 343–44,
349–56, 370

Quandt, R., 172
quasi-maximum likelihood (QML)

estimators, 29–30, 151–52; consistency
of, 47–48; distribution of, 57–58;
implementation of, 31–32; in pricing
Eurodollar futures options, 433–34

Radon-Nikodym derivative, 203, 328, 329n,
340

Ramaswamy, K., 371
Ramsey, J., 172
random fields (Goldstein), 315, 418
random-walk hypothesis, 232, 232t, 237t
Rebonato, R., 347, 427
reduced-form models of corporate bonds,

365–68; defined, 364; empirical studies,
376–80; parametric, 369–70

regime shifts, switching-regime models,
95–97, 158, 168–69, 334–37, 350, 361–63

Reid, K., 302
Remolona, E., 354, 374–75, 375t, 388
Renault, E., 405–7
Reneby, J., 368–69, 373, 380
returns: asset return predictability, 211–14;

beta in representing excess, 7–9, 158–59,
282–85, 287, 307; bond, 237–45, 348–53,
359; market microstructure effects on,
214–19; permanent/transitory alternative



Page 477 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

Index 477

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[477], (13)

Lines: 1322 to 1460

———
0.0pt PgVar
———
Normal Page
PgEnds: TEX

[477], (13)

model of, 226–27; stock, 231–37, 235–36t;
tests for serial correlation in, 224–31

revealed preferences, 404–10
Riccati equations, 102–3
Richard, S., 3n, 8n, 195–97, 196n, 199–200,

260, 275, 282n, 286n, 286–88, 288n
Richardson, M., 218, 227, 229–33, 230t, 342,

347n
risk: default (see default risk); hedging,

425–28; market prices of, 205–6, 325–27.
See also risk-neutral pricing; risk premium;
volatility

risk-neutral pricing: in continuous time,
205–10; in discrete time, 202–5

risk premium: credit risk in structural models
of corporate bonds, 382; for recovery
risk on defaultable bonds, 367–68; in
regime-switching models, 350

Ritchken, P., 419
Ritchken, R., 426, 432t, 432–33
Roberds, W., 348
Roll, R., 218, 286, 287
Rolph, D., 374
Rosenberg, B., 164, 302
Rosenberg, J. V., 404–6
Rosenblatt, M., 136
Rosenfeld, E., 374, 380
Ross, S., 5–6, 20, 24, 31, 197n, 246, 276, 300,

321, 321n, 331, 334
Rossi, P., 153, 156–57, 166
Rotemberg, J., 263n
Routledge, B., 201n
Rubinstein, M., 4, 198, 246, 248, 259, 406
Rudebusch, G., 361–62
Runkle, D., 166
Russian Ministry of Finance (MinFin) bonds,

378–80, 379f
Rutkowski, M., 335, 419–21

SaaRequejo, J., 371
Sagi, J., 276
Said, S., 224
SAINTS (squared-autoregressive-

independent-variable nominal term
structure) model, 330–31, 350

Saita, L., 388
Sandmann, G., 117, 419
Sandmann, K., 311–12n, 412, 419
S&P500 index: continuous-time jump-

diffusion models for, 179; crash of 1987
and, 406; ML estimates of GARCH and

MixGARCH models, 173t; rolling sample
moments returns, 162f, 163f; skewness and
kurtosis of returns, 161, 187–92; stochastic
volatility models using, 181t, 184, 185f

S&P500 option prices, 89, 391, 401, 411
Sangvinatsos, A., 353
Sankarasubramanian, L., 419
Santa-Clara, P., 119, 120, 315, 342, 371, 418,

423–25, 427, 429–32
Santos, T., 304, 306
Sargent, T., 409
Sarig, O., 374
Sariniti, D., 380
Savin, N., 84n
Schachermayer, W., 98, 102–3, 107n
Schaefer, S., 321n, 347, 381, 381t, 427
Scheinkman, J., 100n, 314n, 346
Scheuermann, T., 186–87
Scholes, M., 5–6, 215–18, 368, 391
Scholes-Williams model of nonsynchronous

trading, 215–18, 216f
Schranzk, D., 384n, 385, 390
Schroder, M., 199–200
Schuermann, T., 186–87
Schwartz, E., 321n, 371, 371n, 380–81,

423–25, 427, 429–32
Schwert, W., 222
Scott, L., 321n, 339, 341, 428n
SDEs (stochastic differential equations),

421–22
sequential estimators, 86–88
SFB (smoothed Fama-Bliss data), 242t,

244–45, 245f, 348–49, 351t, 351–52, 353t,
355

Shanken, J., 298, 300
shape of distributions, 159–63; kurtosis, 158,

159, 161, 189–92, 190f, 410–11; skewness,
158, 159–61, 188f, 188–89, 410–11

Sharpe, W. F., 7, 282
Sharpe ratio, 272–73
Shephard, N., 166
Shiller, R., 159n, 233, 237–40, 239n, 246,

250–51, 259, 277, 344
Siegel, A., 244, 281
Simonato, J., 342
Sims, C., 68
simulated moments estimators (SME),

130–31, 132–53, 340; applications to
diffusion models, 152–53; for assessing
goodness-of-fit, 253; asymptotic normality
of, 142–44; consistency of, 135–42; for



Page 478 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

478 Index

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[478], (14)

Lines: 1460 to 1567

———
0.0pt PgVar
———
Normal Page
PgEnds: TEX

[478], (14)

simulated moments estimators (continued)
continuous-time models, 179; estimation
problem with, 132–35; extensions of, 144–
45; as generalized method of moments
(GMM) estimators, 133–35, 144, 150–51,
154; maximum likelihood (ML) estimators
with, 149–51; moment selection with,
146–52

simulation-based estimators, 130–57. See
Markov chain Monte Carlo estimators;
simulated moments estimators

Singleton, K., 5, 32, 34, 68, 69, 73n, 74, 77, 79,
89, 98–99, 102, 104, 105, 107n, 108, 108n,
112, 114–16, 115n, 119, 120, 122, 124–28,
126n, 131n, 135n, 140n, 158n, 159n, 179,
213, 225, 232, 232t, 233, 237t, 238n, 240,
243t, 246, 247, 249–52, 255–65, 257t, 263n,
267, 267t, 268, 275–77, 280, 282n, 288n,
289n, 311n, 314n, 317, 318, 319n, 322,
328, 334, 337, 340–42, 344, 348f, 348–49,
349n, 354–59, 358t, 361, 362n, 366–67,
369, 370, 374, 377–80, 383–88, 384n, 395,
414n, 414–17, 415n, 416f, 417n, 425, 433

skewness: conditional, 189; in shape of
distributions, 158, 159–61, 188f, 188–89,
410–11; term structure of conditional,
188f, 188–89

Skiadas, C., 199–200
SLJ model, 175–76, 187, 188–89, 190f
SLLN (strong law of large numbers), 37–38
SL model, 180, 189, 190f
small minus big (SMB) portfolios, 302n,

302–7
small-sample biases, 243–44, 352–53
SMB (small minus big) portfolios, 302n,

302–7
SME. See simulated moments estimators
Smets, F., 243
Smith, T., 227, 233
smoothed Fama-Bliss data (SFB), 242t,

244–45, 245f, 348–49, 351t, 351–52, 353t,
355

Solnik, B., 369, 376–77
Sondermann, D., 311–12n, 412, 419
Sorensen, B., 148n, 151, 418
Sornette, D., 315, 418
sovereign bonds: credit default swaps, 385;

pricing, 377–80
spot LIBOR measure, 420, 421–22
spreads: credit, 89, 233, 372f, 372–75, 375t,

383–90; interest rate swap, 383–84

squared-autoregressive-independent-variable
nominal term structure (SAINTS) model,
330–31, 350

Stambaugh, R., 94, 218, 233
Standard & Poor’s. See S&P500 index;

S&P500 option prices
Stanton, R., 100n, 342, 347n, 349–50
Stapleton, R., 331
St-Amour, P., 276
stationary processes: defined, 37–38; in

extremum estimators, 36–38, 41–43, 48–51
Stehle, R., 22
stochastic differential equations (SDEs),

421–22
stochastic volatility: in bond yields, 354–56;

in continuous-time models, 174–76,
322–25; defined, 158; in discrete-time
affine models, 164–67, 169–71; in equity-
option pricing models, 392–96, 401–4;
in nonaffine stochastic volatility models,
331–32; volatility scaling and, 185–87

Stock, J., 229, 230t, 231, 233, 303
Stockman, A., 22
stocks: dividend yields, 233–34; random-

walk hypothesis, 232, 232t, 237t; return
predictability, 231–37, 235–36t. See also
equity option pricing models; S&P500
index

straddle prices, 426, 433
Strebulaev, I., 381, 381t
string models (Santa-Clara and Sornette),

315, 418
strong consistency, 39
strong law of large numbers (SLLN), 37–38
structural models of corporate bonds,

368–69; defined, 364; empirical studies,
380–83; limitations of, 382; parametric,
371–73

Subrahmanyam, M., 331
Summers, L., 219, 220, 226, 231, 263n
Sun, S., 428, 428n
Sun, T., 104n, 321n, 327, 339, 341, 369
Sundaram, R., 133n, 187n, 321n, 402
Sundaresan, S., 266, 311n, 368–69, 371, 372
surplus consumption ratio, 272f, 273f
survival contingent claims, 366
Susmel, R., 170
SV model, 180, 182, 189, 190f, 228
SVCJ model, 179–80, 182–84, 183f, 396, 402,

402t, 403–4
Svensson, L., 419



Page 479 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

Index 479

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[479], (15)

Lines: 1567 to 1671

———
0.0pt PgVar
———
Normal Page
PgEnds: TEX

[479], (15)

SVIJ model, 182, 187, 188–89, 395
SVJ model, 175–76, 182–84, 183f, 189, 190f,

396, 402, 402t, 403
SVSCJ model, 402t, 403–4
SwapPX, 430–31
swaps: at-the-money, 369; credit default,

384–87; dynamic term structure models
(DTSMs) for, 348–53, 355t, 355–56, 357,
416; forward swap measures, 423–25;
interest rate swap spreads, 383–84; pricing
with two-sided default risk, 369; yield
volatility of, 355, 355t

swaptions: dynamic term structure models
(DTSMs) for, 416–17, 422; LIBOR
forward rates and, 423–25; in model-based
hedging, 431–32; relative pricing of caps
and swaptions, 427–28; swaption market
model and, 422–23

switching-regime models, 95–97, 158,
168–69, 334–37, 350, 361–63

Talay, D., 311n
Tang, D., 383
Tauchen, G., 123n, 146–49, 152, 153, 179,

253, 261, 273, 275, 279, 280f, 281, 342,
344, 346, 354n, 398, 404, 408

Tauren, M., 373
Taylor, S., 166, 174n
Telmer, C., 276, 315
Tenney, M. S., 322, 329–30
terminal forward measure, 420
term premium, 238, 239–45
term structure models. See dynamic term

structure models.
Thompson, H., 334
three-halves term structure model, 331–32,

344
transforms: for affine processes, 114–17; in

option pricing, 396–97
time series: co-integration among, 222n;

extremum estimators, 36–38, 41–43,
48–51; unit roots in, 219–24

time-varying expected returns: on bonds,
237–45, 345–46, 348–53, 359; on stocks,
224–37

Titman, S., 304–5
Toft, K., 368, 371, 380–81
Toy, W., 331
trend-stationary (TrendS) process, 221–22
Triangle and Cauchy-Schwartz Inequalities,

46

Tristani, O., 361–62
t -tests, 232–33
Tuominen, P., 136n
Turnbull, S., 133n, 179, 367
Turner, C., 374
Tversky, A., 277
Tweedie, R., 136n, 137

UFB (unsmoothed Fama-Bliss data), 242t,
244–45, 245f, 351, 351t, 353t, 433

Umantsev, L., 415, 415n, 416f, 429, 434
Unal, H., 366, 367
unconditional moment restrictions, 25–27,

160t
unconditional single-beta model, 294,

296–97
unequal-length samples, 88–94
uniform weak law of large numbers, 138–39
uniqueness of minimizer, 141
United States: IS-LM-style macroeconomic

model, 361; monetary experiment (1979–
81), 346; National Income and Product
Accounts (NIPA), 255, 260–62; volatility
in consumption growth, 251. See also U.S.
Treasury bills (Tbills); U.S. Treasury bonds

unit roots, 219–24; as problem, 221–22;
testing for, 222–24

unsmoothed Fama-Bliss data (UFB), 244–45,
245f, 351, 351t, 353t, 433

unspanned stochastic volatility (USV),
425–27, 433; Collin-Dufresne-Goldstein
model of, 323–25, 381

U.S. Treasury bills (Tbills): nominal returns
on, 266; random-walk hypothesis, 237t;
real holding period returns for, 264–65;
returns compared to NYSE index, 255–60

U.S. Treasury bonds: announcement effects
and, 354–55; corporate bond spreads
versus, 376–77; dynamic term structure
models (DTSMs) for, 348–53; expected
returns on, 348–53, 359; interest rate
swap spreads, 383–84; mean reversion
parameters, 357–59, 358t; principal
components (PCs) of changes in yields,
313f, 313–14; term structure of yields, 346,
347f; yield volatility of, 354–55, 355t. See
also bond yields; zero-coupon yields

USV (unspanned stochastic volatility),
425–27, 433; Collin-Dufresne-Goldstein
model of, 323–25, 381



Page 480 / 3rd Proof / Empirical Dynamic Asset Pricing / Singleton

480 Index

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

[Last Page]

[480], (16)

Lines: 1671 to 1789

———
0.0pt PgVar
———
Normal Page

* PgEnds: PageBreak

[480], (16)

Varenne, F. de, 371
Vasicek, O., 321, 321n, 371
Vassalou, M., 303
Veronesi, P., 304, 306
Vestin, D., 361–62
Viceira, L., 124
VIX index, 184, 185f
volatility: in consumption growth, 251; CVY

(conditional volatilities of changes in bond
yield), 345, 346, 354, 355–56; implied,
option, 391, 392f; jump, 170; scaling,
185–87; in SVJ model, 187; yield, 346, 347f,
354–57, 355t

von Neumann-Morgenstern utility function,
4

Vorst, T., 384n

Wachter, J., 270, 273, 348n, 353, 363
Wald test, 80–81, 85, 300
Wang, C., 369
Wang, J., 276
Wang, T., 405, 408
Wang, Z., 285, 301, 303–6
Warga, A., 374
Watanabe, S., 107n
Watson, M., 303
Weil, P., 250, 274
Weiss, L., 346
West, K., 57, 77, 140, 140n, 141, 223, 223t,

231
Westerfield, M., 276
White, A., 321n, 384n, 407, 418, 429
White, H., 38, 57, 146n
Whitelaw, R., 218, 342, 347n
Whiteman, C., 348
Williams, J., 215–18

Windfuhr, M., 377–78
Winkelmann, K., 164n
Wooldridge, J., 30, 47
Wu, G., 332
Wu, L., 237–38, 241–44, 242t, 321n, 323,

329–31, 347, 348, 350, 354, 412n, 425, 426,
429

Wu, S., 337, 342, 363
Wu, T., 243t, 342, 359, 361–62

Yamada, T., 107n
Yan, H., 311n, 383
Yang, W., 337, 351n, 361
Yaron, A., 275, 315, 332, 382, 409–10
yield: bond (see bond yields); swap, 355, 355t
yield curves, 314–15
yield term premium, 238, 239–45
Yildirim, Y., 377
Yu, F., 366, 388
Yu, J., 124

Zeng, Y., 337
zero-beta portfolios, 288–89, 293–94
zero-coupon yields, 241, 244–45, 314, 331,

338n, 353–56; affine models for estimating,
340–41, 356; aggregate demand shocks
and, 359–60, 360f; defaultable, 364, 373,
387; QG models for estimating, 343–44;
volatility of, 346, 347f, 356–57

Zhang, F., 377, 386
Zhang, X., 300–301, 306
Zhao, F., 414n, 424–25, 430, 431
Zhou, C., 151, 332–33, 372
Zhou, H., 337, 350
Zin, S., 104n, 200–201, 201n, 274–76, 332,

407–8


