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Chapter 1

Introduction and overview

1.1 What is modern asset pricing?

Asset pricing models are models for the pricing of financial assets. It is interesting in itself to be

able to model and understand the pricing mechanisms in the seemingly complex financial markets,

but it is also important for a number of financial problems faced by individuals and corporations

such as

• asset allocation: how individual and institutional investors combine various financial assets

into portfolios;

• the measurement and management of financial risks, e.g. in banks and other financial insti-

tutions;

• capital budgeting decision in firms;

• capital structure decisions in firms;

• the identification and possible resolution of potential conflicts of interest between the stake-

holders of a firm, e.g. shareholders vs. creditors, shareholders vs. managers.

To the extent that central banks and governments want to control or at least influence finan-

cial markets, e.g. setting interest rates or limiting stock market volatility, they also need a deep

understanding of the asset pricing mechanisms and the link between financial markets and macro-

economics. Finally, there is a trend in accounting regulation towards more market-oriented valua-

tion of assets and liabilities instead of the traditional valuation at historical costs.

Undoubtedly, the Capital Asset Pricing Model (CAPM) developed by Sharpe (1964), Lintner

(1965), and Mossin (1966) is the best known asset pricing model. The key message of the model is

that the expected excess return on a risky financial asset is given by the product of the market-beta

of the asset and the expected excess return on the market portfolio. Here the “excess return” of

an asset or a portfolio is the return less the risk-free return and the “market-beta” of an asset is

the covariance between the return on this asset and the return on the market portfolio, divided by

the variance of the return on the market portfolio. Only the risk correlated with the market will

give a risk premium in terms of a higher expected return (assuming the market-beta is positive).

3
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The remaining risk can be diversified away and is therefore not priced in equilibrium. In principle,

the market portfolio includes all assets, not only traded financial assets but also non-traded assets

like the human capital (value of labor income) of all individuals. However, the market portfolio

is typically approximated by a broad stock index, although this approximation is not necessarily

very precise.

The CAPM has been very successful as a pedagogical tool for presenting and quantifying the

tradeoff between risk and (expected) return, and it has also been widely used in practical appli-

cations. It captures some important characteristics of the pricing in financial markets in a rather

simple way. However, the CAPM is insufficient in many aspects and it is built on a number of

unrealistic assumptions. Here is a partial list of problems with the CAPM:

1. The original CAPM is formulated and derived in a one-period world where assets and in-

vestors are only modeled over one common period. In applications, it is implicitly assumed

that the CAPM repeats itself period by period which intuitively demands some sort of in-

dependence between the pricing mechanisms in different periods, which again requires the

unrealistic assumption that the demand and supply of agents living for several periods are

the same in all periods.

2. The CAPM is not designed for capturing variations in asset prices over time and cannot do

so.

3. Typical derivations of the CAPM assume that all asset returns over the fixed period are

normally distributed. For assets with limited liability you cannot loose more than you have

invested so the rate of return cannot be lower than −100%, which is inconsistent with the

normal distribution that associates a positive probability to any return between −∞ and

+∞. Empirical studies show that for many assets the normal distribution is not even a good

approximation of the return distribution.

4. The true market portfolio contains many unobservable assets so how should you find the

expected return and variance on the market portfolio and its covariances with all individual

assets?

5. The CAPM is really quite unsuccessful in explaining empirical asset returns. Differences in

market-betas cannot explain observed differences in average returns of stocks.

6. The CAPM is not a full asset pricing model in the sense that it does not say anything

about what the return on the risk-free asset or the expected return on the market portfolio

should be. And it does not offer any insight into the links between financial markets and

macroeconomic variables like consumption, production, and inflation.

The purpose of this book is to develop a deeper understanding of asset pricing than the CAPM

can offer.

When an investor purchases a given asset, she obtains the right to receive the future payments

of the asset. For many assets the size of these future payments is uncertain at the time of purchase

since it may depend on the overall state of the economy and/or the state of the issuer of the asset

at the payment dates. Risk-averse investors will value a payment of a given size more highly if

they receive it in a “bad” state than in a “good” state. This is captured by the term “state price”
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introduced by Arrow (1953). A state price for a given state at a given future point in time indicates

how much investors are willing to sacrifice today in return for an extra payment of one unit in that

future state. Presumably investors will value a given payment in a given state the same no matter

which asset the payment comes from. Therefore state prices are valid for all assets. The value of

any specific asset is determined by the general state prices in the market and the state-contingent

future payments of the asset. Modern asset pricing theory is based on models of the possible states

and the associated state prices.

The well-being of individuals will depend on their consumption of goods throughout their lives.

By trading financial assets they can move consumption opportunities from one point in time to

another and from one state of the world to another. The preferences for consumption of individuals

determine their demand for various assets and thereby the equilibrium prices of these assets. Hence,

the state price for any given state must be closely related to the individuals’ (marginal) utility of

consumption in that state. Many modern asset pricing theories and models are based on this link

between asset prices and consumption.

1.2 Elements of asset pricing models

1.2.1 Assets

For potential investors the important characteristics of a financial asset or any other investment

opportunity is its current price and its future payments which the investor will be entitled to if she

buys the asset. Stocks deliver dividends to owners. The dividends will surely depend on the well-

being of the company. Bonds deliver coupon payments and repayments of the outstanding debt,

usually according to some predetermined schedule. For bonds issued by most governments, you

might consider these payments to be certain, i.e. risk-free. On the other hand, if the government

bond promises certain dollar payments, you will not know how many consumption goods you

will be able to buy for these dollar payments, that is the payments are risky in real terms. The

payments of bonds issued by corporations are also uncertain. The future payments of derivatives

such as forwards, futures, options, and swaps depend on the evolution of some underlying random

variable and therefore are also uncertain.

Let us simply refer to the payments of any asset as dividends. More precisely, a “dividend”

means the payment of a given asset at a given point in time. The uncertain dividend of an asset

at a given point in time is naturally modeled by a random variable. If an asset provides the owner

with payments at several points in time, we need a collection of random variables (one for each

payment date) to represent all the dividends. Such a collection of random variables is called a

stochastic process. A stochastic process is therefore the natural way to represent the uncertain

flow of dividends of an asset over time. We will refer to the stochastic process representing the

dividends of an asset as the dividend process of the asset.

1.2.2 Investors

In reality, only a small part of the trading in financial markets is executed directly by individuals

while the majority of trades are executed by corporations and financial institutions such as pension

funds, insurance companies, banks, broker firms, etc. However, these institutional investors trade
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on behalf of individuals, either customers or shareholders. Productive firms issue stocks and

corporate bonds to finance investments in production technology they hope will generate high

earnings and, consequently, high returns to their owners in future years. In the end, the decisions

taken at the company level are also driven by the desires of individuals to shift consumption

opportunities across time and states. In our basic models we will assume that all investors are

individuals and ignore the many good reasons for the existence of various intermediaries. For

example, we will assume that assets are traded without transaction costs. We will also ignore

taxes and the role of the government and central banks in the financial markets. Some authors

use the term “agent” or “investor” instead of “individual,” maybe in order to indicate that some

investment decisions are taken by other decision-making units than individual human beings.

How should we represent an individual in an asset pricing model? We will assume that indi-

viduals basically care about their consumption of goods and services throughout their life. The

consumption of a given individual at a future point in time is typically uncertain and we will there-

fore represent it by a random variable. The consumption of an individual at all future dates is

represented by a stochastic process, the consumption process of the individual. Although real-life

economies offer a large variety of consumption goods and services, in our basic models we will

assume that there is only one good available for consumption and that each individual only cares

about her own consumption and not the consumption of other individuals. The single consump-

tion good is assumed to be perishable, i.e. it cannot be stored or resold but has to be consumed

immediately. In more advanced models discussed in later chapters we will in fact relax these as-

sumptions and allow for multiple consumption goods, e.g. we will introduce a durable good (like

a house), and we will also discuss models in which the well-being of an individual also depends on

what other individuals consume, which is often referred to as the “keeping up with the Jones’es”

property. Both extensions turn out to be useful in bringing our theoretical models closer to real-life

financial data but it is preferable to understand the simpler models first. Of course, the well-being

of an individual will also be affected by the number of hours she works, the physical and mental

challenges offered by her position, etc., but such issues will also be ignored in basic models.

We will assume that each individual is endowed with some current wealth and some future

income stream from labor, gifts, inheritance, etc. For most individuals the future income will be

uncertain. The income of an individual at a given future point in time is thus represented by

a random variable and the income at all future dates is represented by a stochastic process, the

income process. We will assume that the income process is exogenously given and hence ignore

labor supply decisions.

If the individual cannot make investments at all (not even save current wealth), it will be impos-

sible for her to currently consume more than her current wealth and impossible to consume more

at a future point in time than her income at that date. Financial markets allow the individual to

shift consumption opportunities from one point in time to another, e.g. from working life to retire-

ment, and from one state of the world to another, e.g. from a state in which income is extremely

high to a state where income is extremely low (much as insurance contracts do). The prices of

financial assets give the prices of shifting consumption through time and states of the world. The

individuals’ desire to shift consumption through time and states will determine the demand and

supply and hence the equilibrium prices of the financial assets. To study asset pricing we therefore

have to model how individuals choose between different, uncertain consumption processes. The
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preferences for consumption of an individual is typically modeled by a utility function. Since this is

a text on asset pricing, we are not primarily interested in deriving the optimal consumption stream

and the associated optimal strategy for trading financial assets. However, since asset prices are set

by the decisions of individuals, we will have to discuss some aspects of optimal consumption and

trading.

1.2.3 Equilibrium

For any given asset, i.e. any given dividend process, our aim is to characterize the “reasonable”

price or the set of “reasonable” prices. A price is considered reasonable if the price is an equilibrium

price. An equilibrium is characterized by two conditions: (1) supply equals demand for any asset,

i.e. markets clear, (2) any investor is satisfied with her current position in the assets given her

personal situation and the asset prices. Associated with any equilibrium is a set of prices for all

assets and, for each investor, a trading strategy and the implied consumption strategy.

1.2.4 The time span of the model

As discussed above, the important ingredients of all basic asset pricing models are the dividends

of the assets available for trade and the utility functions, current wealth, and future incomes of

the individuals that can trade the assets. We will discuss asset pricing in three types of models:

1. one-period model: all action takes place at two points in time, the beginning of the

period (time 0) and the end of the period (time 1). Assets pay dividends only at the end

of the period and are traded only at the beginning of the period. The aim of the model

is to characterize the prices of the assets at the beginning of the period. Individuals have

some initial beginning-of-period wealth and (maybe) some end-of-period income. They can

consume at both points in time.

2. discrete-time model: all action takes place at a finite number of points in time. Let us

denote the set of these time points by T = {0, 1, 2, . . . , T}. Individuals can trade at any of

these time points, except at T , and consume at any time t ∈ T. Assets can pay dividends at

any time in T, except time 0. Assuming that the price of a given asset at a given point in time

is ex-dividend, i.e. the value of future dividends excluding any dividend at that point in time,

prices are generally non-trivial at all but the last point in time. We aim at characterizing

these prices.

3. continuous-time model: individuals can consume at any point in time in an interval

T = [0, T ]. Assets pay dividends in the interval (0, T ] and can be traded in [0, T ). Ex-

dividend asset prices are non-trivial in [0, T ). Again, our aim is to characterize these prices.

In a one-period setting there is uncertainty about the state of the world at the end of the period.

The dividends of financial assets and the incomes of the individuals at the end of the period will

generally be unknown at the beginning of the period and thus modeled as random variables. Any

quantity that depends on either the dividends or income will also be random variables. For example,

this will be the case for the end-of-period value of portfolios and the end-of-period consumption of

individuals.
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Both the discrete-time model and the continuous-time model are multi-period models and can

potentially capture the dynamics of asset prices. In both cases, T denotes some terminal date in

the sense that we will not model what happens after time T . We assume that T < ∞ but under

some technical conditions the analysis extends to T = ∞.

Financial markets are by nature dynamic and should therefore be studied in a multi-period

setting. One-period models should serve only as a pedagogical first step in the derivation of the

more appropriate multi-period models. Indeed, many of the important conclusions derived in one-

period models carry over to multi-period models. Other conclusions do not. And some issues

cannot be meaningfully studied in a one-period framework.

It is not easy to decide on whether to use a discrete-time or a continuous-time framework for

studying multi-period asset pricing. Both model types have their virtues and drawbacks. Both

model types are applied in theoretical research and real-life applications. We will therefore consider

both modeling frameworks. The basic asset pricing results in the early chapters will be derived

in both settings. Some more specific asset pricing models discussed in later chapters will only be

presented in one of these frameworks. Some authors prefer to use a discrete-time model, others

prefer a continuous-time model. It is comforting that, for most purposes, both models will result

in identical or very similar conclusions.

At first, you might think that the discrete-time framework is more realistic. However, in real-

life economies individuals can in fact consume and adjust portfolios at virtually any point in time.

Individuals are certainly not restricted to consume and trade at a finite set of pre-specified points in

time. Of course no individual will trade financial assets continuously due to the existence of explicit

and implicit costs of such transactions. But even if we take such costs into account, the frequency

and exact timing of actions can be chosen by each individual. If we are really concerned about

transaction costs, it would be better to include those in a continuous-time modeling framework.

Many people will find discrete-time models easier to understand than continuous-time models

and if you want to compare theoretical results with actual data it will usually be an advantage if

the model is formulated with a period length closely linked to the data frequency. On the other

hand, once you have learned how to deal with continuous-time stochastic processes, many results

are clearer and more elegantly derived in continuous-time models than in discrete-time models.

The analytical virtues of continuous-time models are basically due to the well-developed theory of

stochastic calculus for continuous-time stochastic processes, but also due to the fact that integrals

are easier to deal with than discrete sums, differential equations are easier to deal with than

difference equations, etc.

1.3 The organization of this book

The remainder of this book is organized as follows. Chapter 2 discusses how to represent uncertainty

and information flow in asset pricing models. It also introduces stochastic processes and some key

results on how to deal with stochastic processes, which we will use in later chapters.

Chapter 3 shows how we can model financial assets and their dividends as well as how we can

represent portfolios and trading strategies. It also defines the important concepts of arbitrage,

redundant assets, and market completeness.

Chapter 4 defines the key concept of a state-price deflator both in one-period models, in discrete-
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time multi-period models, and in continuous models. A state-price deflator is one way to represent

the general pricing mechanism of a financial market. We can price any asset given the state-price

deflator and the dividend process of that asset. Conditions for the existence and uniqueness of

a state-price deflator are derived as well as a number of useful properties of state-price deflators.

We will also briefly discuss alternative ways of representing the general market pricing mechanism,

e.g. through a set of risk-neutral probabilities.

The state-price deflator and therefore asset prices are ultimately determined by the supply and

demand of investors. Chapter 5 studies how we can represent the preferences for investors. We

discuss when preferences can be represented by expected utility, how we can measure the risk

aversion of an individual, and introduce some frequently used utility functions. In Chapter 6 we

investigate how individual investors will make decisions on consumption and investments. We set

up the utility maximization problem for the individual and characterize the solution for different

relevant specifications of preferences. The solution gives an important link between state-price

deflators (and, thus, the prices of financial assets) and the optimal decisions at the individual level.

Chapter 7 deals with the market equilibrium. We will discuss when market equilibria are Pareto-

efficient and when we can think of the economy as having only one, representative individual instead

of many individuals.

Chapter 8 further explores the link between individual consumption choice and asset prices.

The very general Consumption-based Capital Asset Pricing Model (CCAPM) is derived. A simple

version of the CCAPM is confronted with data and a number of extensions are discussed.

Chapter 9 studies the so-called factor models of asset pricing where one or multiple factors

govern the state-price deflators and thus asset prices and returns. Some empirically successful

factor models are described. It is also shown how pricing factors can be identified theoretically as

a special case of the general CCAPM.

While Chapters 8 and 9 mostly focus on explaining the expected excess return of risky assets,

most prominently stocks, Chapter 10 explores the implications of general asset pricing theory for

the short-term interest rate and the whole term structure of interest rates. It also critically reviews

some traditional views on the term structure of interest rates.

Chapter 11 shows how the information in a state-price deflator equivalently can be represented

by the price of one specific asset and an appropriately risk-adjusted probability measure. This turns

out to be very useful when dealing with derivative securities, which is the topic of Chapter 12.

Each chapter ends with a number of exercises, which either illustrate the concepts and conclusions

of the chapter or provide additional related results.

1.4 Prerequisites

We will study asset pricing with the well-established scientific approach: make precise definitions

of concepts, clear statements of assumptions, and formal derivations of results. This requires

extensive use of mathematics, but not very complicated mathematics. Concepts, assumptions, and

results will all be accompanied by financial interpretations. Examples will be used for illustrations.

The main mathematical disciplines we will apply are linear algebra, optimization, and probability

theory. Linear algebra and optimization are covered by many good textbooks on mathematics

for economics as, e.g., the companion books by Sydsaeter and Hammond (2005) and Sydsaeter,
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Hammond, Seierstad, and Strom (2005), and—of course—by many more general textbooks on

mathematics. Probability theory is usually treated in separate textbooks... A useful reference

“manual” is Sydsaeter, Strom, and Berck (2000).

Probability theory Appendix A gives a review of main concepts and definitions in probability

theory. Appendix B summarizes some important results on the lognormal distribution which we

shall frequently apply.

Linear algebra, vectors, and matrices We will frequently use vectors and matrices to rep-

resent a lot of information in a compact manner. For example, we will typically use a vector to

represent the prices of a number of assets and use a matrix to represent the dividends of different

assets in different states of the world. Therefore some basic knowledge of how to handle vectors

and matrices (so-called linear algebra) are needed.

We will use boldface symbols like x to denote vectors and vectors are generally assumed to be

column vectors. Matrices will be indicate by double underlining like A. We will use the symbol
⊤ to denote the transpose of a vector or a matrix. The following is an incomplete and relatively

unstructured list of basic properties of vectors and matrices.

Given two vectors x = (x1, . . . , xn)
⊤

and y = (y1, . . . , yn)
⊤

of the same dimension, the dot

product of x and y is defined as x · y = x1y1 + · · · + xnyn =
∑n
i=1 xiyi.

The identity matrix of dimension n is the n× n matrix I = [Iij ] with 1 along the diagonal and

zeros elsewhere, i.e. Iii = 1, i = 1, . . . , n, and Iij = 0 for i, j = 1, . . . , n with i 6= j.

The transpose of an m×n matrix A = [Aij ] is n×m matrix A⊤ = [Aji] with columns and rows

interchanged.

Given an m× n matrix A = [Aij ] and an n× p matrix B = [Bkl], the product AB is the m× p

matrix with (i, j)’th entry given by (AB)i,j =
∑n
k=1AikBkj . In particular with m = p = 1, we see

that for two vectors x = (x1, . . . , xn)
⊤ and y = (y1, . . . , yn)

⊤, we have x⊤y = x · y, so the matrix

product generalizes the dot product for vectors.
(
AB
)

⊤

= B⊤A⊤.

An n × n matrix A is said to be non-singular if there exists a matrix A−1 so that AA−1 = I,

where I is the n× n identity matrix, and then A−1 is called the inverse of A.

A 2 × 2 matrix

(

a b

c d

)

is non-singular if ad− bc 6= 0 and the inverse is then given by

(

a b

c d

)−1

=
1

ad− bc

(

d −b
−c a

)

.

If A is non-singular, then A⊤ is non-singular and (A⊤)−1 = (A−1)⊤.

If A and B are non-singular matrices of appropriate dimensions,

(
AB
)−1

= B−1A−1. (1.1)

If a and x are vectors of the same dimension, then ∂a⊤x
∂x

= ∂x⊤a
∂x

= a.

If x is a vector of dimension n and A is an n × n matrix, then
∂x⊤Ax

∂x
=
(
A+A⊤

)
x. In

particular, if A is symmetric, i.e. A⊤ = A, we have
∂x⊤Ax

∂x
= 2Ax.
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Optimization Optimization problems arise naturally in all parts of economics, also in finance.

To study asset pricing theory, we will have to study how individual investors make decisions about

consumption and investment. Assuming that the well-being of an individual can be represented

by some sort of utility function, we will have to maximize utility subject to various constraints,

e.g. a budget constraint. Therefore we have to apply results on constrained optimization. The

main approach for solving constrained optimization problems is the Lagrange approach; see, e.g.,

Sydsaeter and Hammond (2005).





Chapter 2

Uncertainty, information, and

stochastic processes

2.1 Introduction

2.2 Probability space

Any model with uncertainty refers to a probability space (Ω,F,P), where

• Ω is the state space of possible outcomes. An element ω ∈ Ω represents a possible realization

of all uncertain objects of the model;

• F is a σ-algebra in Ω, i.e. a collection of subsets of Ω with the properties

(i) Ω ∈ F,

(ii) for any set F in F, the complement F c ≡ Ω \ F is also in F,

(iii) if F1, F2, · · · ∈ F, then the union ∪∞
n=1Fn is in F.

F is the collection of all events (subsets of Ω) that can be assigned a probability;

• P is a probability measure, i.e. a function P : F → [0, 1] with P(Ω) = 1 and the property that

P(∪∞
m=1Am) =

∑∞
m=1 P(Am) for any sequence A1, A2, . . . of disjoint events.

An uncertain object can be formally modeled as a random variable on the probability space.

A random variable X on the probability space (Ω,F,P) is a real-valued function on Ω which is

F-measurable in the sense that for any interval I ⊆ R, the set {ω ∈ Ω | X(ω) ∈ I} belongs to F,

i.e. we can assign a probability to the event that the random variable takes on a value in I.

What is the relevant state space for an asset pricing model? A state ω ∈ Ω represents a possible

realization of all relevant uncertain objects over the entire time span of the model. In one-period

models dividends, incomes, etc. are realized at time 1. A state defines realized values of all the

dividends and incomes at time 1. In multi-period models a state defines dividends, incomes, etc.

at all points in time considered in the model, i.e. all t ∈ T, where either T = {0, 1, 2, . . . , T}
or T = [0, T ]. The state space must include all the possible combinations of realizations of the

13
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uncertain objects that may affect the pricing of the assets. These uncertain objects include all the

possible combinations of realizations of (a) all the future dividends of all assets, (b) all the future

incomes of all individuals, and (c) any other initially unknown variables that may affect prices,

e.g. variables that contain information about the future development in dividends or income. The

state space Ω therefore has to be “large.” If you want to allow for continuous random variables,

for example dividends that are normally distributed, you will need an infinite state space. If you

restrict all dividends, incomes, etc. to be discrete random variables, i.e. variables with a finite

number of possible realizations, you can do with a finite state space. For some purposes we need

to distinguish between an infinite state space and a finite state space.

We will sometimes assume a finite state space in which case we will take it to be Ω = {1, 2, . . . , S}
so that there are S possible states of which exactly one will be realized. An event is then simply

a subset of Ω and F is the collection of all subsets of Ω. The probability measure P is defined

by the state probabilities pω ≡ P(ω), ω = 1, 2, . . . , S, which we take to be strictly positive with

p1 + . . . pS = 1, of course. With a finite state space we can represent random variables with S-

dimensional vectors and apply results and techniques from linear algebra. In any case we take the

state probabilities as given and assume they are known to all individuals.

2.3 Information

In a one-period model all uncertainty is resolved at time t = 1. At time 0 we only know that

the true state is an element in Ω. At time 1 we know exactly which state has been realized. In

a multi-period model the uncertainty is gradually resolved. Investors will gradually know more

and more about the true state. For example, the dividends of assets at a given point in time

are typically unknown before that time, but known afterwards. The consumption and investment

decisions taken by individuals at a given point in time will depend on the available information at

that time and therefore asset prices will also depend on the information known. We will therefore

have to consider how to formally represent the flow of information through time.

To illustrate how we can represent the information at different points in time, consider an example

of a two-period, three-date economy with six possible outcomes simply labeled 1 through 6. In

Figure 2.1 each outcome is represented by a dashed horizontal line. The probability of each outcome

is written next to each line. At time 0 we assume that investors are unable to rule out any of the

six outcomes—if a state could be ruled out from the start, it should not have been included in

the model. This is indicated by the ellipse around the six dots/lines representing the possible

outcomes. At time 1, investors have learned either (i) that the true outcome is 1 or 2, (ii) that the

true outcome is 3,4, or 5, or (iii) that the true outcome is 6. At time 2, all uncertainty has been

resolved so that investors will know exactly which outcome is realized.

We can represent the information available at any given point in time t by a partition Ft of Ω,

which means that Ft is a collection of subsets Ft1, Ft2, . . . of Ω so that

(i) the union of these subsets equal the entire set Ω: ∪kFtk = Ω.

(ii) the subsets are disjoint: Ftk ∩ Ftl = ∅ for all k 6= l.

In our example, the partition F0 representing time 0 information (or rather lack of information)
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is the trivial partition consisting only of F0 = Ω, i.e.

F0 = {Ω}.

The partition F1 representing time 1 information consists of F11, F12, and F13, i.e.

F1 =
{
{1, 2}, {3, 4, 5}, {6}

}
.

The partition F2 that represents time 2 information (full information) is

F2 =
{
{1}, {2}, {3}, {4}, {5}, {6}

}
.

In a general multi-period model with a finite state space Ω, the information flow can be summarized

by a sequence (Ft)t∈T of partitions. Since investors learn more and more, the partitions should

be increasingly fine, which more formally means that when t < t′, every set F ∈ Ft′ is a subset of

some set in Ft.

An alternative way of representing the information flow is in terms of an information filtration,

i.e. a sequence (Ft)t∈T of sigma-algebras on Ω. Given a partition Ft of Ω, we can construct a sigma-

algebra Ft as the set of all unions of (countably many) sets in Ft, including the “empty union”,

i.e. the empty set ∅. Where Ft contains only the disjoint “decidable” events at time t, Ft contains

all “decidable” events at time t. For our simple two-period example above we get

F0 = {∅,Ω} ,
F1 = {∅, {1, 2}, {3, 4, 5}, {6}, {1, 2, 3, 4, 5}, {1, 2, 6}, {3, 4, 5, 6},Ω} ,

while F2 becomes the collection of all possible subsets of Ω. In a general multi-period model we

write (Ft)t∈T for the information filtration. We will always assume that the time 0 information is

trivial, corresponding to F0 = {∅,Ω} and that all uncertainty is resolved at or before the final date

so that FT is the set of all possible subsets of Ω. The fact that we learn more and more about the

true state as time goes by implies that we must have Ft ⊂ Ft′ whenever t < t′, i.e. every set in Ft

is also in Ft′ .

Above we constructed an information filtration from a sequence of partitions. We can also go

from a filtration to a sequence of partitions. In each Ft, simply remove all sets that are unions of

other sets in Ft. Therefore there is a one-to-one relationship between information filtration and a

sequence of partitions.

In models with an infinite state space, the information filtration representation is preferable. In

any case we will therefore generally write the formal model of uncertainty and information as a

filtered probability space (Ω,F,P, (Ft)t∈T), where (Ω,F,P) is a probability space and (Ft)t∈T

is an information filtration.

Whenever the state space is finite we can alternatively represent the uncertainty and information

flow by a multinomial tree. For example we can depict the uncertainty and information flow in

Figure 2.1 by the multinomial tree in Figure 2.2. Each node at a given point in time corresponds

to an element in the partition representing the information. For example the node labeled F11

at time 1 represents the element {1, 2} of the partition F1. We can think of F11, F12, and F13

as the three possible “scenarios” at time 1. At time 0, there is only one possible scenario. At

time 2, where all uncertainty is resolved, there are as many scenarios as states. The arrival of
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new information in a given period can be thought of as the transition from one scenario at the

beginning of the period to a scenario at the end of the period. In our example, there are three

possible transitions in the first period. If the economy is in scenario F11 at time 1 (i.e. the true

state is 1 or 2), there are two possible transitions over the next period, either to F21 (state 1) or

to F22 (state 2). If the economy is in scenario F12 at time 1 (the true state is known to be 3, 4,

or 5), there are three possible transitions over the next period, to F23 (state 3), to F24 (state 4),

or to F25 (state 5). If the economy is in scenario F13 at time 1, the true state is already known to

be state 6, and there is only one possible transition over the next period, corresponding to no new

information arriving. Each state corresponds to a path through the tree.

The transitions are illustrated by the arrows in Figure 2.2. The numbers along the lines are

conditional probabilities of the transitions happening. Over the first period there is really no

information to condition on. The transition from F0 to F11 will happen with a probability of 0.3,

which is simply the sum of the probabilities of the two outcomes in F11, namely the probability

of 0.24 for state 1 and the probability of 0.06 for state 2. Similarly for the other transitions over

the first period. The probabilities assigned to the transitions over the second period are true

conditional probabilities. Conditional on the economy being in scenario F11 at time 1, it will move

to F21 with a probability of 0.24/(0.24 + 0.06) = 0.8 since that is the probability of state 1 given

that the state is either 1 or 2 as represented by scenario F11. Similarly for the other transitions

over the second period. Of course, given the conditional probabilities in the multinomial tree, we

can also recover the state probabilities. For example, the state ω = 5 corresponds to a transition

from F0 to F12 over the first period, followed by a transition from F12 to F25 over the second

period. The probability of this sequence of transitions is given by the product of the probabilities

of each of the transitions, i.e. 0.4 · 0.5 = 0.2, which equals the probability of state ω = 5.

In our asset pricing models we will often deal with expectations of random variables, e.g. the

expectation of the dividend of an asset at a future point in time. In the computation of such

an expectation we should take the information currently available into account. Hence we need

to consider conditional expectations. Recall that the information at a given point in time t is

represented by a σ-algebra Ft (or, equivalently, a partition Ft). One can generally write the

expectation of a random variable X given the σ-algebra Ft as E[X|Ft]. For our purposes the

σ-algebra Ft will always represent the information at time t and we will write Et[X] instead

of E[X|Ft]. Since we assume that the information at time 0 is trivial, conditioning on time 0

information is the same as not conditioning on any information, hence E0[X] = E[X]. Since we

assume that all uncertainty is resolved at time T , we have ET [X] = X. We will sometimes use the

following result:

Theorem 2.1 (The Law of Iterated Expectations) If F and G are two σ-algebras with F ⊆
G and X is a random variable, then E [E[X|G] | F] = E[X|F]. In particular, if (Ft)t∈T is an

information filtration and t′ > t, we have

Et [Et′ [X]] = Et[X].

Loosely speaking, the theorem says that what you expect today of some variable that will be

realized in two days is equal to what you expect today that you will expect tomorrow about the

same variable.
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Figure 2.1: An example of a two-period economy.
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Figure 2.2: The multinomial tree version of the two-period economy in Figure 2.1.
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We can define conditional variances, covariances, and correlations from the conditional expecta-

tion exactly as one defines (unconditional) variances, covariances, and correlations from (uncondi-

tional) expectations:

Vart[X] = Et

[

(X − Et[X])
2
]

= Et[X
2] − (Et[X])

2
,

Covt[X,Y ] = Et [(X − Et[X])(Y − Et[Y ])] = Et[XY ] − Et[X] Et[Y ],

Corrt[X,Y ] =
Covt[X,Y ]

√

Vart[X] Vart[Y ]
.

Again the conditioning on time t information is indicated by a t subscript.

In the two-period model of Figures 2.1 and 2.2 suppose we have an asset paying state-dependent

dividends at time 1 and 2 as depicted in Figures 2.3 and 2.4. Then the expected time 2 dividend

computed at time 0 is

E[D2] = E0[D2] = 0.24 · 0 + 0.06 · 20 + 0.04 · 10 + 0.16 · 5 + 0.2 · 20 + 0.3 · 20 = 12.4.

What is the expected time 2 dividend computed at time 1? It will depend on the information

available at time 1. If the information corresponds to the event F11 = {1, 2}, the expected dividend

is

E1[D2] = 0.8 · 0 + 0.2 · 20 = 4.

If the information corresponds to the event F12 = {3, 4, 5}, the expected dividend is

E1[D2] = 0.1 · 10 + 0.4 · 5 + 0.5 · 20 = 13.

If the information corresponds to the event F13 = {6}, the expected dividend is

E1[D2] = 1.0 · 20 = 20.

The time 1 expectation of the time 2 dividend is therefore a random variable which is measurable

with respect to the information at time 1. Note that the time 0 expectation of that random variable

is

E [E1[D2]] = 0.3 · 4 + 0.4 · 13 + 0.3 · 20 = 12.4 = E[D2]

consistent with the Law of Iterated Expectations.

2.4 Stochastic processes: definition, notation, and termi-

nology

In one-period models all uncertain objects can be represented by a random variable. For example

the dividend (at time 1) of a given asset is a random variable. In multi-period models we have

to keep track of dividends, asset prices, consumption, portfolios, (labor) income, etc., throughout

the time set T. For example the dividend of a given asset, say asset i, at a particular future date

t ∈ T can be represented by a random variable Dit. Recall that, formally, a random variable is

a function from the state space Ω into R, the set of real numbers. To represent the dividends of

an asset throughout all dates, we need a collection of random variables, one for each date. Such a

collection is called a stochastic process. (We will often just write “process” instead of “stochastic
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Figure 2.3: The dividends of an asset in the two-period economy.
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process.”) The dividend of asset i is thus represented by a stochastic process Di = (Dit)t∈T, where

each Dit is a random variable. We can form multi-dimensional stochastic processes by stacking

one-dimensional stochastic processes. For example, we can represent the dividends of I assets by

an I-dimensional stochastic process D = (Dt)t∈T, where Dt = (D1t, . . . ,DIt)
⊤.

In general, for any t ∈ T, the dividend at time t will be known at time t, but not before. The

random variable Dit is then said to be Ft-measurable, where Ft is the sigma-algebra representing

the information at time t. If this information is equivalently represented by a partition Ft =

{Ft1, Ft2, . . . }, measurability means thatDit is constant on each of the elements Ftj of the partition.

Note that this is indeed the case in our example in Figure 2.3. If Dit is Ft-measurable for any t ∈ T,

the stochastic process Di = (Dit)t∈T is said to be adapted to the information filtration (Ft)t∈T.

Since the dividends of assets and the income of individuals are assumed to be part of the exogenous

uncertainty, it is natural to assume that dividend processes and income processes are adapted to

the information filtration. In fact, most concrete models write down stochastic processes for all the

exogenous variables and define the information filtration as the smallest filtration to which these

exogenous processes are adapted.

An individual can choose how much to consume and which portfolio to invest in at any point in

time, of course subject to a budget constraint and other feasibility constraints. The consumption

and portfolio chosen at a given future date are likely to depend on the income the individual has

received up to that point and her information about her future income and the future dividends

of assets. The consumption rate at a given future date is therefore a random variable and the

consumption rates at all dates constitute a stochastic process, the consumption process. Similarly,

the portfolios chosen at different dates form a stochastic process, the portfolio process or so-

called trading strategy. Representing consumption and investments by stochastic processes does

not mean that we treat them as being exogenously given, but simply that the individual will

condition her consumption and portfolio decisions on the information received. Since we assume

that the underlying model of uncertainty includes all the uncertainty relevant for the decisions of

the individuals, it is natural to require that consumption and portfolio processes are adapted to

the information filtration.

Now consider prices. In a multi-period model we need to keep track of prices at all points in

time. The price of a given asset at a given point in time depends on the supply and demand for

that asset of all individuals, which again depends on the information individuals have at that time.

Hence, we can also represent prices by adapted stochastic processes. To sum up, all the stochastic

process relevant for our purposes will be adapted to the information filtration representing the

resolution of all the relevant uncertainty.

Next, we introduce some further terminology often used in connection with stochastic processes.

A stochastic process X = (Xt)t∈T is said to be a martingale (relative to the probability measure

P and the information filtration (Ft)t∈T), if for all t, t′ ∈ T with t < t′

Et[Xt′ ] = Xt,

i.e. no change in the value is expected.

A sample path of a stochastic process X is the collection of realized values (Xt(ω))t∈T for a

given outcome ω ∈ Ω. The value space of a stochastic process is the smallest set S with the

property that P({Xt ∈ S}) = 1 for all t ∈ T. If the value space has countably many elements,
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the stochastic process is called a discrete-value process. Otherwise, it is called a continuous-value

process. Of course, if the state space Ω is finite, all processes will be discrete-value processes. If

you want to model continuous-value processes, you need an infinite state space.

For the modeling of most time-varying economic objects it seems reasonable to use continuous-

value processes. Admittedly, stock prices are quoted on exchanges as multiples of some smallest

possible unit (0.01 currency units in many countries) and interest rates are rounded off to some

number of decimals, but the set of possible values of such objects is approximated very well

by an interval in R (maybe R+ or R itself). Also, the mathematics involved in the analysis of

continuous-value processes is simpler and more elegant than the mathematics for discrete-value

processes. However there are economic objects that can only take on a very limited set of values.

For these objects discrete-value processes should be used. An example is the credit ratings assigned

by Moody’s and similar agencies to debt issues of corporations.

As time goes by, we can observe the evolution in the object which the stochastic process describes.

At any given time t′, the previous values (Xt)t∈[0,t′), where Xt ∈ S, will be known (at least in the

models we consider). These values constitute the history of the process up to time t′. The future

values are still stochastic.

As time passes we will typically revise our expectations of the future values of the process or,

more precisely, revise the probability distribution we attribute to the value of the process at any

future point in time, cf. the discussion in the previous section. Suppose we stand at time t and

consider the value of a process X at a future time t′ > t. The distribution of the value of Xt′ is

characterized by probabilities P(Xt′ ∈ A) for subsets A of the value space S. If for all t, t′ ∈ T with

t < t′ and all A ⊆ S, we have that

P (Xt′ ∈ A | (Xs)s≤t) = P (Xt′ ∈ A | Xt) ,

thenX is called a Markov process. Broadly speaking, this condition says that, given the presence,

the future is independent of the past. The history contains no information about the future value

that cannot be extracted from the current value.

2.5 Some discrete-time stochastic processes

In most discrete-time financial models the basic uncertainty is described by a sequence ε1, ε2, . . . , εT

of random variables, one for each point in time. Think of εt as an exogenous shock to the financial

market at time t. We assume that the shocks at different points in time are mutually independent,

that each shock has a mean of zero and a variance of one. The shock at any given point in time

t can be multi-variate, in which case we will write it as a vector, εt. In that case the elements of

the vector are assumed to be mutually independent. We assume that the shocks at all points in

time have the same dimension. The distribution of the exogenous shocks has to be specified in

the model. Typically, the shocks are assumed to be normally distributed (infinite state space) but

models with a binomial or multinominal structure (finite state space) also exist.

The filtered probability space (Ω,F,P, (Ft)t∈T) is defined implicitly from the assumptions on

the exogenous shocks. For example, assume that the exogenous shocks ε1, . . . , εT are N(0, 1)

distributed. The state space is then the set of all possible realizations of all the T shocks, which is

equivalent to RT . The σ-algebra F is the set of events that can be assigned a probability, which is
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the set of (Borel-)subsets of RT . The probability measure P is defined via the normality assumption

as

P(εt < h) = N(h) ≡
∫ h

−∞

1√
2π
e−a

2/2 da, t = 1, . . . , T,

where N(·) is the cumulative distribution function for an N(0, 1) variable. Probabilities of other

events will follow from the above. The information at time t is represented by the smallest σ-algebra

with respect to which the random variables ε1, . . . , εt are measurable.

Stochastic processes for dividends etc. can be defined relative to the assumed exogenous shocks.

It is easy to obtain non-zero means, non-unit variances, and dependencies across time. A discrete-

time stochastic process X = (Xt)t∈T is typically specified by the initial value X0 (a constant in

R) and the increments over each period, i.e. ∆Xt+1 ≡ Xt+1 −Xt for each t = 0, 1, . . . , T − 1. The

increments ∆Xt+1 are defined in terms of the exogenous shocks ε1, . . . , εt+1 which implies that the

process X is adapted.

Let us look at some discrete-time stochastic processes frequently used in asset pricing models. In

all the examples we assume that the exogenous shocks ε1, . . . , εT are independent, one-dimensional

N(0, 1) distributed random variables.

Random walk: ∆Xt+1 = σεt+1 or, equivalently, Xt+1 = X0 + σ(ε1 + ε2 + · · · + εt+1). Here

σ is a positive constant. A random walk is a Markov process since only the current value Xt and

not the previous values Xt−1,Xt−2, . . . affect Xt+1. Since the expected change over any single

period is zero, the expected change over any time interval will be zero, so a random walk is a

martingale. Conditionally on Xt, Xt+1 is normally distributed with mean Xt and variance σ2.

Xt+1 is unconditionally (i.e. seen from time 0) normally distributed with mean X0 and variance

(t+ 1)σ2.

Random walk with drift: ∆Xt+1 = µ+ σεt+1, where µ is a constant (the drift rate) and σ is

a positive constant. Also a random walk with drift is a Markov process. The expected change over

any single period is µ so unless µ = 0 and we are back to the random walk (without drift), the

process X = (Xt)t∈T is not a martingale. Conditionally on Xt, Xt+1 is normally distributed with

mean µ+Xt and variance σ2. Xt+1 is unconditionally normally distributed with mean X0+(t+1)µ

and variance (t+ 1)σ2.

Autoregressive processes: A process X = (Xt)t∈T with

∆Xt+1 = (1 − ρ)(µ−Xt) + σεt+1,

where ρ ∈ (−1, 1), is said to be an autoregressive process of order 1 or simply an AR(1) process.

It is a Markov process since only the current value Xt affects the distribution of the future value.

The expected change over the period is positive if Xt < µ and negative if Xt > µ. In any case, the

value Xt+1 is expected to be closer to µ than Xt is. The process is pulled towards µ and therefore

the process is said to be mean-reverting. This is useful for modeling the dynamics of variables

that tend to vary with the business cycle around some long-term average. Note, however, extreme

shocks may cause the process to be pushed further away from µ.

The covariance between the subsequent values Xt and Xt+1 = Xt + (1 − ρ)(µ−Xt) + σεt+1 =

ρXt + (1 − ρ)µ+ σεt+1 is

Cov[Xt,Xt+1] = ρCov[Xt,Xt] = ρVar[Xt]
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so that ρ = Cov[Xt,Xt+1]/Var[Xt] is the so-called auto-correlation parameter. Solving backwards,

we find

Xt+1 = ρXt + (1 − ρ)µ+ σεt+1

= ρ (ρXt−1 + (1 − ρ)µ+ σεt) + (1 − ρ)µ+ σεt+1

= ρ2Xt−1 + (1 + ρ)(1 − ρ)µ+ σεt+1 + ρσεt

= . . .

= ρk+1Xt−k + (1 + ρ+ · · · + ρk)(1 − ρ)µ+ σεt+1 + ρσεt + · · · + ρkσεt−k+1

= ρk+1Xt−k + (1 − ρk+1)µ+ σ
k∑

j=0

ρjεt+1−j .

More generally, a process X = (Xt)t∈T with

Xt+1 = µ+ ρ1(Xt − µ) + ρ2(Xt−1 − µ) + · · · + ρl(Xt−l+1 − µ) + σεt+1

is said to be an autoregressive process of order l or simply an AR(l) process. If the order is higher

than 1, the process is not a Markov process.

(G)ARCH processes: ARCH is short for Autoregressive Conditional Heteroskedasticity. An

ARCH(l) process X = (Xt)t∈T is defined by

Xt+1 = µ+ σt+1εt+1,

where

σ2
t+1 = δ +

l∑

i=1

αiε
2
t+1−i.

The conditional variance depends on squares of the previous l shock terms.

GARCH is short for Generalized Autoregressive Conditional Heteroskedasticity. A GARCH(l,m)

process X = (Xt)t∈T is defined by

Xt+1 = µ+ σt+1εt+1,

where

σ2
t+1 = δ +

l∑

i=1

αiε
2
t+1−i +

m∑

j=1

βjσ
2
t+1−j .

ARCH and GARCH processes are often used for detailed modeling of stock market volatility.

More generally we can define an adapted process X = (Xt)t∈T by the initial value X0 and the

equation

∆Xt+1 = µ(Xt, . . . ,X0) + σ(Xt, . . . ,X0)εt+1, t = 0, 1, . . . , T − 1, (2.1)

where µ and σ are real-valued functions. If εt+1 ∼ N(0, 1), the conditional distribution of Xt+1

given Xt is a normal distribution with mean Xt + µ(Xt, . . . ,X0) and variance σ(Xt, . . . ,X0)
2.

We can write the stochastic processes introduced above in a different way that will ease the

transition to continuous-time processes. Let z = (zt)t∈T denote a unit random walk starting at

zero, i.e. a process with the properties

(i) z0 = 0,
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(ii) ∆zt+1 ≡ zt+1 − zt ∼ N(0, 1) for all t = 0, 1, . . . , T − 1,

(iii) ∆z1,∆z2, . . .∆zT are independent.

Then we can define a random walk with drift as a process X with

∆Xt+1 = µ+ σ∆zt+1,

an AR(1) process is defined by

∆Xt+1 = (1 − ρ)(µ−Xt) + σ∆zt+1,

and a general adapted process is defined by

∆Xt+1 = µ(Xt, . . . ,X0) + σ(Xt, . . . ,X0)∆zt+1.

We will see very similar equations in continuous time.

2.6 Continuous-time stochastic processes

2.6.1 Brownian motions

In the continuous-time asset pricing models we will consider in this book, the basic uncertainty in

the economy is represented by the evolution of a standard Brownian motion. A (one-dimensional)

stochastic process z = (zt)t∈[0,T ] is called a standard Brownian motion, if it satisfies the

following conditions:

(i) z0 = 0,

(ii) for all t, t′ ≥ 0 with t < t′: zt′ − zt ∼ N(0, t′ − t) [normally distributed increments],

(iii) for all 0 ≤ t0 < t1 < · · · < tn, the random variables zt1 − zt0 , . . . , ztn − ztn−1
are mutually

independent [independent increments],

(iv) z has continuous sample paths.

The first three conditions are equivalent to the discrete-time case studied above. We can informally

think of dzt ≈ zt+dt − zt ∼ N(0, dt) as an exogenous shock to the economy at time t. The state

space Ω is in this case the (infinite) set of all paths of the standard Brownian motion z. The

information filtration (Ft)t∈[0,T ] is generated by the standard Brownian motion z in the sense

that, for each t, Ft is the smallest σ-algebra on which the random variable zt is measurable. The

probability measure P is fixed by the normality assumption.

Any continuous-time stochastic process X = (Xt)t∈[0,T ] in the financial models in this book

will be defined in terms of the standard Brownian motion by an initial constant value X0 and an

equation of the form

dXt = µt dt+ σt dzt.

Here µt and σt are known at time t (measurable with respect to Ft) but may depend on Xs and

zs for s ≤ t. We can informally think of dXt as the increment Xt+dt −Xt over the “instant” (of
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length dt) following time t. Since dzt has mean zero and variance dt, we can informally compute

the conditional mean and variance of dXt as

Et[dXt] = µt dt, Vart[dXt] = σ2
t dt.

Therefore we can interpret µt and σ2
t as the conditional mean and conditional variance of the

change in the value of the process per time unit. The properties of the process X will depend on

the specification of µt and σt. We will be more formal and give examples below.

The standard Brownian motion is basically the continuous-time version of a random walk with

initial value 0. The standard Brownian motion is a Markov process because the increment from

today to any future point in time is independent of the history of the process. The standard

Brownian motion is also a martingale since the expected change in the value of the process is

zero. The name Brownian motion is in honor of the Scottish botanist Robert Brown, who in 1828

observed the apparently random movements of pollen submerged in water. The often used name

Wiener process is due to Norbert Wiener, who in the 1920s was the first to show the existence of

a stochastic process with these properties and who developed a mathematically rigorous analysis

of the process. As early as in the year 1900, the standard Brownian motion was used in a model

for stock price movements by the French researcher Louis Bachelier, who derived the first option

pricing formula.

The defining characteristics of a standard Brownian motion look very nice, but they have some

drastic consequences. It can be shown that the sample paths of a standard Brownian motion are

nowhere differentiable, which broadly speaking means that the sample paths bend at all points

in time and are therefore strictly speaking impossible to illustrate. However, one can get an idea

of the sample paths by simulating the values of the process at different times. If ε1, . . . , εn are

independent draws from a standard N(0, 1) distribution, we can simulate the value of the standard

Brownian motion at time 0 ≡ t0 < t1 < t2 < · · · < tn as follows:

zti = zti−1
+ εi

√

ti − ti−1, i = 1, . . . , n.

With more time points and hence shorter intervals we get a more realistic impression of the sample

paths of the process. Figure 2.5 shows a simulated sample path for a standard Brownian motion

over the interval [0, 1] based on a partition of the interval into 200 subintervals of equal length.1

Note that since a normally distributed random variable can take on infinitely many values, a

standard Brownian motion has infinitely many sample paths that each has a zero probability of

occurring. The figure shows just one possible sample path. Note that the picture resembles typical

stock price charts.

Another property of a standard Brownian motion is that the expected length of the sample

path over any future time interval (no matter how short) is infinite. In addition, the expected

number of times a standard Brownian motion takes on any given value in any given time interval

1Most spreadsheets and programming tools have a built-in procedure that generates uniformly distributed num-

bers over the interval [0, 1]. Such uniformly distributed random numbers can be transformed into standard normally

distributed numbers in several ways. One example: Given uniformly distributed numbers U1 and U2, the numbers

ε1 and ε2 defined by

ε1 =
p

−2 ln U1 sin(2πU2), ε2 =
p

−2 ln U1 cos(2πU2)

will be independent standard normally distributed random numbers. This is the so-called Box-Muller transformation.

See e.g. Press, Teukolsky, Vetterling, and Flannery (1992, Sec. 7.2).
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Figure 2.5: A simulated sample path of a standard Brownian motion based on 200 subintervals.

is also infinite. Intuitively, these properties are due to the fact that the size of the increment of a

standard Brownian motion over an interval of length ∆t is proportional to
√

∆t, in the sense that

the standard deviation of the increment equals
√

∆t. When ∆t is close to zero,
√

∆t is significantly

larger than ∆t, so the changes are large relative to the length of the time interval over which the

changes are measured.

The expected change in an object described by a standard Brownian motion equals zero and

the variance of the change over a given time interval equals the length of the interval. This can

easily be generalized. As before let z = (zt)t≥0 be a one-dimensional standard Brownian motion

and define a new stochastic process X = (Xt)t≥0 by

Xt = X0 + µt+ σzt, t ≥ 0, (2.2)

where X0, µ, and σ are constants. The constant X0 is the initial value for the process X. It

follows from the properties of the standard Brownian motion that, seen from time 0, the value Xt

is normally distributed with mean µt and variance σ2t, i.e. Xt ∼ N(X0 + µt, σ2t).

The change in the value of the process between two arbitrary points in time t and t′, where

t < t′, is given by

Xt′ −Xt = µ(t′ − t) + σ(zt′ − zt).

The change over an infinitesimally short interval [t, t+ ∆t] with ∆t→ 0 is often written as

dXt = µdt+ σ dzt, (2.3)

where dzt can loosely be interpreted as a N(0, dt)-distributed random variable. To give this a

precise mathematical meaning, it must be interpreted as a limit of the expression

Xt+∆t −Xt = µ∆t+ σ(zt+∆t − zt)

for ∆t → 0. The process X is called a generalized Brownian motion or a generalized Wiener

process. This is basically the continuous-time version of a random walk with drift. The parameter
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Figure 2.6: Simulation of a generalized Brownian motion with µ = 0.2 and σ = 0.5 or σ = 1.0. The

straight line shows the trend corresponding to σ = 0. The simulations are based on 200 subintervals.

µ reflects the expected change in the process per unit of time and is called the drift rate or simply

the drift of the process. The parameter σ reflects the uncertainty about the future values of the

process. More precisely, σ2 reflects the variance of the change in the process per unit of time and

is often called the variance rate of the process. σ is a measure for the standard deviation of the

change per unit of time and is referred to as the volatility of the process.

A generalized Brownian motion inherits many of the characteristic properties of a standard

Brownian motion. For example, also a generalized Brownian motion is a Markov process, and the

sample paths of a generalized Brownian motion are also continuous and nowhere differentiable.

However, a generalized Brownian motion is not a martingale unless µ = 0. The sample paths can

be simulated by choosing time points 0 ≡ t0 < t1 < · · · < tn and iteratively computing

Xti = Xti−1
+ µ(ti − ti−1) + εiσ

√

ti − ti−1, i = 1, . . . , n,

where ε1, . . . , εn are independent draws from a standard normal distribution. Figure 2.6 show

simulated sample paths for two different values of σ but the same µ. The paths are drawn using

the same sequence of random numbers εi so that they are directly comparable. The straight line

represent the deterministic trend of the process, which corresponds to imposing the condition σ = 0

and hence ignoring the uncertainty. The parameter µ determines the trend, and the parameter σ

determines the size of the fluctuations around the trend.

If the parameters µ and σ are allowed to be time-varying in a deterministic way, the process

X is said to be a time-inhomogeneous generalized Brownian motion. In differential terms such a
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process can be written as defined by

dXt = µ(t) dt+ σ(t) dzt. (2.4)

Over a very short interval [t, t+∆t] the expected change is approximately µ(t)∆t, and the variance

of the change is approximately σ(t)2∆t. More precisely, the increment over any interval [t, t′] is

given by

Xt′ −Xt =

∫ t′

t

µ(u) du+

∫ t′

t

σ(u) dzu. (2.5)

The last integral is a so-called stochastic integral, which we will define (although not rigorously)

and describe in a later section. There we will also state a theorem, which implies that, seen from

time t, the integral
∫ t′

t
σ(u) dzu is a normally distributed random variable with mean zero and

variance
∫ t′

t
σ(u)2 du.

2.6.2 Diffusion processes

For both standard Brownian motions and generalized Brownian motions, the future value is nor-

mally distributed and can therefore take on any real value, i.e. the value space is equal to R.

Many economic variables can only have values in a certain subset of R. For example, prices of

financial assets with limited liability are non-negative. The evolution in such variables cannot be

well represented by the stochastic processes studied so far. In many situations we will instead use

so-called diffusion processes.

A (one-dimensional) diffusion process is a stochastic processX = (Xt)t≥0 for which the change

over an infinitesimally short time interval [t, t+ dt] can be written as

dXt = µ(Xt, t) dt+ σ(Xt, t) dzt, (2.6)

where z is a standard Brownian motion, but where the drift µ and the volatility σ are now functions

of time and the current value of the process.2 This expression generalizes (2.3), where µ and σ

were assumed to be constants, and (2.4), where µ and σ were functions of time only. An equation

like (2.6), where the stochastic process enters both sides of the equality, is called a stochastic

differential equation. Hence, a diffusion process is a solution to a stochastic differential equation.

If both functions µ and σ are independent of time, the diffusion is said to be time-homo-

geneous, otherwise it is said to be time-inhomogeneous. For a time-homogeneous diffusion

process, the distribution of the future value will only depend on the current value of the process

and how far into the future we are looking – not on the particular point in time we are standing

at. For example, the distribution of Xt+δ given Xt = x will only depend on X and δ, but not on t.

This is not the case for a time-inhomogeneous diffusion, where the distribution will also depend

on t.

In the expression (2.6) one may think of dzt as being N(0, dt)-distributed, so that the mean and

variance of the change over an infinitesimally short interval [t, t+ dt] are given by

Et[dXt] = µ(Xt, t) dt, Vart[dXt] = σ(Xt, t)
2 dt.

2For the process X to be mathematically meaningful, the functions µ(x, t) and σ(x, t) must satisfy certain

conditions. See e.g. Øksendal (1998, Ch. 7) and Duffie (2001, App. E).
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To be more precise, the change in a diffusion process over any interval [t, t′] is

Xt′ −Xt =

∫ t′

t

µ(Xu, u) du+

∫ t′

t

σ(Xu, u) dzu. (2.7)

Here the integrand of the first integral
∫ t′

t
µ(Xu, u) du depends on the values Xu for u ∈ [t, t′],

which are generally unknown at time t. It is therefore natural to define the integral
∫ t′

t
µ(Xu, u) du

as the random variable which in state ω ∈ Ω has the value
∫ t′

t
µ(Xu(ω), u) du, which is now just

the integration of a real-valued function of time. The other integral
∫ t′

t
σ(Xu, u) dzu is a so-called

stochastic integral, which we will discuss in Section 2.6.5.

We will often use the informal and intuitive differential notation (2.6). The drift rate µ(Xt, t)

and the variance rate σ(Xt, t)
2 are really the limits

µ(Xt, t) = lim
∆t→0

Et [Xt+∆t −Xt]

∆t
,

σ(Xt, t)
2 = lim

∆t→0

Vart [Xt+∆t −Xt]

∆t
.

A diffusion process is a Markov process as can be seen from (2.6), since both the drift and the

volatility only depend on the current value of the process and not on previous values. A diffusion

process is not a martingale, unless the drift µ(Xt, t) is zero for all Xt and t. A diffusion process

will have continuous, but nowhere differentiable sample paths. The value space for a diffusion

process and the distribution of future values will depend on the functions µ and σ. In Section 2.6.7

we will an example of a diffusion process often used in financial modeling, the so-called geometric

Brownian motion. Other diffusion processes will be used in later chapters.

2.6.3 Itô processes

It is possible to define even more general continuous-path processes than those in the class of

diffusion processes. A (one-dimensional) stochastic process Xt is said to be an Itô process, if the

local increments are on the form

dXt = µt dt+ σt dzt, (2.8)

where the drift µ and the volatility σ themselves are stochastic processes. A diffusion process is

the special case where the values of the drift µt and the volatility σt are given as functions of

t and Xt. For a general Itô process, the drift and volatility may also depend on past values of

the X process and also on past and current values of other adapted processes. It follows that Itô

processes are generally not Markov processes. They are generally not martingales either, unless

µt is identically equal to zero (and σt satisfies some technical conditions). The processes µ and

σ must satisfy certain regularity conditions for the X process to be well-defined. We will refer

the reader to Øksendal (1998, Ch. 4) for these conditions. The expression (2.8) gives an intuitive

understanding of the evolution of an Itô process, but it is more precise to state the evolution in

the integral form

Xt′ −Xt =

∫ t′

t

µu du+

∫ t′

t

σu dzu. (2.9)

Again the first integral can be defined “state-by-state” and the second integral is a stochastic

integral.
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2.6.4 Jump processes

Above we have focused on processes having sample paths that are continuous functions of time,

so that one can depict the evolution of the process by a continuous curve. Stochastic processes

which have sample paths with discontinuities (jumps) also exist. The jumps of such processes

are often modeled by Poisson processes or related processes. It is well-known that large, sudden

movements in financial variables occur from time to time, for example in connection with stock

market crashes. There may be many explanations of such large movements, for example a large

unexpected change in the productivity in a particular industry or the economy in general, perhaps

due to a technological break-through. Another source of sudden, large movements is changes in

the political or economic environment such as unforseen interventions by the government or central

bank. Stock market crashes are sometimes explained by the bursting of a bubble (which does not

necessarily conflict with the usual assumption of rational investors). Whether such sudden, large

movements can be explained by a sequence of small continuous movements in the same direction

or jumps have to be included in the models is an empirical question, which is still open. While

jump processes may be relevant for many purposes, they are also more difficult to deal with than

processes with continuous sample paths so that it will probably be best to study models without

jumps first. This book will only address continuous-path processes. An overview of financial

models with jump processes is given by Cont and Tankov (2004).

2.6.5 Stochastic integrals

In (2.7) and (2.9) and similar expressions a term of the form
∫ t′

t
σu dzu appears. An integral of

this type is called a stochastic integral or an Itô integral. For given t < t′, the stochastic integral
∫ t′

t
σu dzu is a random variable. Assuming that σu is known at time u, the value of the integral

becomes known at time t′. The process σ is called the integrand. The stochastic integral can be

defined for very general integrands. The simplest integrands are those that are piecewise constant.

Assume that there are points in time t ≡ t0 < t1 < · · · < tn ≡ t′, so that σu is constant on each

subinterval [ti, ti+1). The stochastic integral is then defined by

∫ t′

t

σu dzu =

n−1∑

i=0

σti
(
zti+1

− zti
)
. (2.10)

If the integrand process σ is not piecewise constant, there will exist a sequence of piecewise con-

stant processes σ(1), σ(2), . . . , which converges to σ. For each of the processes σ(m), the integral
∫ t′

t
σ

(m)
u dzu is defined as above. The integral

∫ t′

t
σu dzu is then defined as a limit of the integrals

of the approximating processes:

∫ t′

t

σu dzu = lim
m→∞

∫ t′

t

σ(m)
u dzu. (2.11)

We will not discuss exactly how this limit is to be understood and which integrand processes we can

allow. Again the interested reader is referred to Øksendal (1998). The distribution of the integral
∫ t′

t
σu dzu will, of course, depend on the integrand process and can generally not be completely

characterized, but the following theorem gives the mean and the variance of the integral:
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Theorem 2.2 The stochastic integral
∫ t′

t
σu dzu has the following properties:

Et

[
∫ t′

t

σu dzu

]

= 0,

Vart

[
∫ t′

t

σu dzu

]

=

∫ t′

t

Et[σ
2
u] du.

Proof: Suppose that σ is piecewise constant and divide the interval [t, t′] into subintervals defined

by the time points t ≡ t0 < t1 < · · · < tn ≡ t′ so that σ is constant on each subinterval [ti, ti+1)

with a value σti which is known at time ti. Then

Et

[
∫ t′

t

σu dzu

]

=

n−1∑

i=0

Et
[
σti
(
zti+1

− zti
)]

=

n−1∑

i=0

Et
[
σti Eti

[(
zti+1

− zti
)]]

= 0,

using the Law of Iterated Expectations. For the variance we have

Vart

[
∫ t′

t

σu dzu

]

= Et





(
∫ t′

t

σu dzu

)2


−
(

Et

[
∫ t′

t

σu dzu

])2

= Et





(
∫ t′

t

σu dzu

)2




and

Et





(
∫ t′

t

σu dzu

)2


 = Et





n−1∑

i=0

n−1∑

j=0

σtiσtj (zti+1
− zti)(ztj+1

− ztj )





=

n−1∑

i=0

Et
[
σ2
ti(zti+1

− zti)
2
]

=

n−1∑

i=0

Et
[
σ2
ti

]
(ti+1 − ti) =

∫ t′

t

Et[σ
2
u] du.

If σ is not piecewise constant, we can approximate it by a piecewise constant process and take

appropriate limits. 2

If the integrand is a deterministic function of time, σ(u), the integral will be normally distributed,

so that the following result holds:

Theorem 2.3 If z is a Brownian motion, and σ(u) is a deterministic function of time, the random

variable
∫ t′

t
σ(u) dzu is normally distributed with mean zero and variance

∫ t′

t
σ(u)2 du.

Proof: We present a sketch of the proof. Dividing the interval [t, t′] into subintervals defined by

the time points t ≡ t0 < t1 < · · · < tn ≡ t′, we can approximate the integral with the sum

∫ t′

t

σ(u) dzu ≈
n−1∑

i=0

σ(ti)
(
zti+1

− zti
)
.

The increment of the Brownian motion over any subinterval is normally distributed with mean

zero and a variance equal to the length of the subinterval. Furthermore, the different terms in

the sum are mutually independent. It is well-known that a sum of normally distributed random

variables is itself normally distributed, and that the mean of the sum is equal to the sum of the

means, which in the present case yields zero. Due to the independence of the terms in the sum,

the variance of the sum is also equal to the sum of the variances, i.e.

Vart

[
n−1∑

i=0

σ(ti)
(
zti+1

− zti
)

]

=

n−1∑

i=0

σ(ti)
2 Vart

[
zti+1

− zti
]

=

n−1∑

i=0

σ(ti)
2(ti+1 − ti),
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which is an approximation of the integral
∫ t′

t
σ(u)2 du. The result now follows from an appropriate

limit where the subintervals shrink to zero length. 2

Note that the process y = (yt)t≥0 defined by yt =
∫ t

0
σu dzu is a martingale, since

Et[yt′ ] = Et

[
∫ t′

0

σu dzu

]

= Et

[
∫ t

0

σu dzu +

∫ t′

t

σu dzu

]

= Et

[∫ t

0

σu dzu

]

+ Et

[
∫ t′

t

σu dzu

]

=

∫ t

0

σu dzu = yt,

so that the expected future value is equal to the current value. More generally yt = y0 +
∫ t

0
σu dzu

for some constant y0, is a martingale. The converse is also true in the sense that any martingale

can be expressed as a stochastic integral. This is the so-called martingale representation theorem:

Theorem 2.4 Suppose the process M = (Mt) is a martingale with respect to a probability measure

under which z = (zt) is a standard Brownian motion. Then a unique adapted process θ = (θt)

exists such that

Mt = M0 +

∫ t

0

θu dzu

for all t.

For a mathematically more precise statement of the result and a proof, see Øksendal (1998,

Thm. 4.3.4).

Now the stochastic integral with respect to the standard Brownian motion has been defined, we

can also define stochastic integrals with respect to other stochastic processes. For example, if Xt

is a diffusion given by dXt = µ(Xt, t) dt + σ(Xt, t) dzt and α = (αt)t∈[0,T ] is a sufficiently “nice”

stochastic process, we can define

∫ t

0

αu dXu =

∫ t

0

αuµ(Xu, u) du+

∫ t

0

αuσ(Xu, u) dzu.

2.6.6 Itô’s Lemma

In continuous-time models a stochastic process for the dynamics of some basic quantity is often

taken as given, while other quantities of interest can be shown to be functions of that basic variable.

To determine the dynamics of these other variables, we shall apply Itô’s Lemma, which is basically

the chain rule for stochastic processes. We will state the result for a function of a general Itô

process, although we will frequently apply the result for the special case of a function of a diffusion

process.

Theorem 2.5 Let X = (Xt)t≥0 be a real-valued Itô process with dynamics

dXt = µt dt+ σt dzt,

where µ and σ are real-valued processes, and z is a one-dimensional standard Brownian motion.

Let g(X, t) be a real-valued function which is two times continuously differentiable in X and con-

tinuously differentiable in t. Then the process y = (yt)t≥0 defined by

yt = g(Xt, t)
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is an Itô process with dynamics

dyt =

(
∂g

∂t
(Xt, t) +

∂g

∂X
(Xt, t)µt +

1

2

∂2g

∂X2
(Xt, t)σ

2
t

)

dt+
∂g

∂X
(Xt, t)σt dzt. (2.12)

The proof of Itô’s Lemma is based on a Taylor expansion of g(Xt, t) combined with appropriate

limits, but a formal proof is beyond the scope of this presentation. Once again, we refer to Øksendal

(1998) and similar textbooks. The result can also be written in the following way, which may be

easier to remember:

dyt =
∂g

∂t
(Xt, t) dt+

∂g

∂X
(Xt, t) dXt +

1

2

∂2g

∂X2
(Xt, t)(dXt)

2. (2.13)

Here, in the computation of (dXt)
2, one must apply the rules (dt)2 = dt · dzt = 0 and (dzt)

2 = dt,

so that

(dXt)
2 = (µt dt+ σt dzt)

2 = µ2
t (dt)

2 + 2µtσt dt · dzt + σ2
t (dzt)

2 = σ2
t dt.

The intuition behind these rules is as follows: When dt is close to zero, (dt)2 is far less than

dt and can therefore be ignored. Since dzt ∼ N(0, dt), we get E[dt · dzt] = dt · E[dzt] = 0 and

Var[dt · dzt] = (dt)2 Var[dzt] = (dt)3, which is also very small compared to dt and is therefore

ignorable. Finally, we have E[(dzt)
2] = Var[dzt] − (E[dzt])

2 = dt, and it can be shown that3

Var[(dzt)
2] = 2(dt)2. For dt close to zero, the variance is therefore much less than the mean, so

(dzt)
2 can be approximated by its mean dt.

In standard mathematics, the differential of a function y = g(t,X) where t and X are real

variables is defined as dy = ∂g
∂t dt+ ∂g

∂X dX. When X is an Itô process, (2.13) shows that we have

to add a second-order term.

2.6.7 The geometric Brownian motion

The geometric Brownian motion is an important example of a diffusion process. A stochastic

process X = (Xt)t≥0 is said to be a geometric Brownian motion if it is a solution to the

stochastic differential equation

dXt = µXt dt+ σXt dzt, (2.14)

where µ and σ are constants. The initial value for the process is assumed to be positive, X0 > 0.

A geometric Brownian motion is the particular diffusion process that is obtained from (2.6) by

inserting µ(Xt, t) = µXt and σ(Xt, t) = σXt.

The expression (2.14) can be rewritten as

dXt

Xt
= µdt+ σ dzt,

which is the relative (percentage) change in the value of the process over the next infinitesimally

short time interval [t, t+ dt]. If Xt is the price of a traded asset, then dXt/Xt is the rate of return

on the asset over the next instant. The constant µ is the expected rate of return per period, while

σ is the standard deviation of the rate of return per period. In this context it is often µ which is

called the drift (rather than µXt) and σ which is called the volatility (rather than σXt). Strictly

speaking, one must distinguish between the relative drift and volatility (µ and σ, respectively) and

3This is based on the computation Var[(zt+∆t−zt)2] = E[(zt+∆t−zt)4]−
�
E[(zt+∆t − zt)2]

�2
= 3(∆t)2−(∆t)2 =

2(∆t)2 and a passage to the limit.
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the absolute drift and volatility (µXt and σXt, respectively). An asset with a constant expected

rate of return and a constant relative volatility has a price that follows a geometric Brownian

motion. For example, such an assumption is used for the stock price in the famous Black-Scholes-

Merton model for stock option pricing, cf. Chapter 12. In the framework of consumption-based

capital asset pricing models it is often assumed that the aggregate consumption in the economy

follows a geometric Brownian motion, cf. Chapter 8.

Next, we will find an explicit expression for Xt, i.e. we will find a solution to the stochastic

differential equation (2.14). We can then also determine the distribution of the future value of

the process. We apply Itô’s Lemma with the function g(x, t) = lnx and define the process yt =

g(Xt, t) = lnXt. Since

∂g

∂t
(Xt, t) = 0,

∂g

∂x
(Xt, t) =

1

Xt
,

∂2g

∂x2
(Xt, t) = − 1

X2
t

,

we get from Theorem 2.5 that

dyt =

(

0 +
1

Xt
µXt −

1

2

1

X2
t

σ2X2
t

)

dt+
1

Xt
σXt dzt =

(

µ− 1

2
σ2

)

dt+ σ dzt.

Hence, the process yt = lnXt is a generalized Brownian motion. In particular, we have

yt′ − yt =

(

µ− 1

2
σ2

)

(t′ − t) + σ(zt′ − zt),

which implies that

lnXt′ = lnXt +

(

µ− 1

2
σ2

)

(t′ − t) + σ(zt′ − zt).

Taking exponentials on both sides, we get

Xt′ = Xt exp

{(

µ− 1

2
σ2

)

(t′ − t) + σ(zt′ − zt)

}

. (2.15)

This is true for all t′ > t ≥ 0. In particular,

Xt = X0 exp

{(

µ− 1

2
σ2

)

t+ σzt

}

.

Since exponentials are always positive, we see that Xt can only have positive values, so that the

value space of a geometric Brownian motion is S = (0,∞).

Suppose now that we stand at time t and have observed the current value Xt of a geometric

Brownian motion. Which probability distribution is then appropriate for the uncertain future

value, say at time t′? Since zt′ − zt ∼ N(0, t′ − t), we see from (2.15) that the future value Xt′

(conditional on Xt) will be lognormally distributed. The probability density function for Xt′ (given

Xt) is given by

f(x) =
1

x
√

2πσ2(t′ − t)
exp

{

− 1

2σ2(t′ − t)

(

ln

(
x

Xt

)

−
(

µ− 1

2
σ2

)

(t′ − t)

)2
}

, x > 0,

and the mean and variance are

Et[Xt′ ] = Xte
µ(t′−t),

Vart[Xt′ ] = X2
t e

2µ(t′−t)
[

eσ
2(t′−t) − 1

]

,
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Figure 2.7: Simulation of a geometric Brownian motion with initial value X0 = 100, relative drift rate

µ = 0.1, and a relative volatility of σ = 0.2 and σ = 0.5, respectively. The smooth curve shows the

trend corresponding to σ = 0. The simulations are based on 200 subintervals of equal length, and the

same sequence of random numbers has been used for the two σ-values.

cf. Appendix B.

Paths can be simulated by recursively computing either

Xti = Xti−1
+ µXti−1

(ti − ti−1) + σXti−1
εi
√

ti − ti−1

or, more accurately,

Xti = Xti−1
exp

{(

µ− 1

2
σ2

)

(ti − ti−1) + σεi
√

ti − ti−1

}

.

Figure 2.7 shows a single simulated sample path for σ = 0.2 and a sample path for σ = 0.5. For

both sample paths we have used µ = 0.1 and X0 = 100, and the same sequence of random numbers.

We will consider other specific diffusions in later chapter, when we need them. For example, we

shall use the Ornstein-Uhlenbeck process defined by

dXt = κ (θ −Xt) dt+ σ dzt,

which is the continuous-time equivalent of the discrete-time AR(1) process, and the square-root

process defined by

dXt = κ (θ −Xt) dt+ σ
√

Xt dzt.

Such processes are used, among other things, to model the dynamics of interest rates.
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2.7 Multi-dimensional processes

So far we have only considered one-dimensional processes, i.e. processes with a value space which

is R or a subset of R. In most asset pricing models we need to keep track of several processes, e.g.

dividend and price processes for different assets, and we will often be interested in covariances and

correlations between different processes.

If the exogenous shocks in the model are one-dimensional, then increments over the smallest

time interval considered in the model will be perfectly correlated. In a discrete-time model where

the exogenous shocks ε1, . . . , εT are one-dimensional, changes in any two processes between two

subsequent points in time, say t and t + 1, will be perfectly correlated. For example, if X and Y

are two general processes defined by

∆Xt+1 = fX(Xt) + gX(Xt)εt+1

and

∆Yt+1 = fY (Yt) + gY (Yt)εt+1

for some nice functions fX , gX , fY , gY , then by using the properties of covariances and variances

we get

Covt[∆Xt+1,∆Yt+1] = gX(Xt)gY (Yt)Vart[εt+1] = gX(Xt)gY (Yt),

Vart[∆Xt+1] = gX(Xt)
2, Vart[∆Yt+1] = gY (Yt)

2,

Corrt[∆Xt+1,∆Yt+1] = 1.

Increments in two processes over more than one sub-period are generally not perfectly correlated

even with a one-dimensional shock.

In a continuous-time model where the exogenous shock process z = (zt)t∈[0,T ] is one-dimensional,

the instantaneous increments of any two processes will be perfectly correlated. For example, if we

consider the two Itô processes X and Y defined by

dXt = µXt dt+ σXt dzt, dYt = µY t dt+ σY t dzt,

then Covt[dXt, dYt] = σXtσY t dt so that the instantaneous correlation becomes

Corrt[dXt, dYt] =
Covt[dXt, dYt]

√

Vart[dXt] Vart[dYt]
=

σXtσY t dt
√

σ2
Xt dt σ

2
Y t dt

= 1.

Increments over any non-infinitesimal time interval are generally not perfectly correlated, i.e. for

any h > 0 a correlation like Corrt[Xt+h−Xt, Yt+h−Yt] is typically different from one but close to

one for small h.

To obtain non-perfectly correlated changes over the shortest time period considered by the

model we need an exogenous shock of a dimension higher than one, i.e. a shock vector. One can

without loss of generality assume that the different components of this shock vector are mutually

independent and generate non-perfect correlations between the relevant processes by varying the

sensitivities of those processes towards the different exogenous shocks. In a discrete-time setting the

exogenous shock is often assumed to be a multi-variate normally distributed random variable εt =

(ε1t, . . . , εKt)
⊤ where εit and εjt for i 6= j are independent one-dimensional normally distributed

random variables (mean zero, unit variance). Analogously the exogenous shocks in continuous-time



2.7 Multi-dimensional processes 37

settings are assumed to be generated by a multi-dimensional standard Brownian motion. Below

we give a precise definition and briefly go through some other multi-dimensional continuous-time

processes and a multi-dimensional version of Itô’s Lemma.

A K-dimensional standard Brownian motion z = (z1, . . . , zK)⊤ is a stochastic process

where the individual components zi are mutually independent one-dimensional standard Brownian

motions. If we let 0 = (0, . . . , 0)⊤ denote the zero vector in RK and let I denote the identity

matrix of dimension K ×K (the matrix with ones in the diagonal and zeros in all other entries),

then we can write the defining properties of a K-dimensional Brownian motion z as follows:

(i) z0 = 0,

(ii) for all t, t′ ≥ 0 with t < t′: zt′ − zt ∼N(0, (t′ − t)I) [normally distributed increments],

(iii) for all 0 ≤ t0 < t1 < · · · < tn, the random variables zt1 − zt0 , . . . , ztn − ztn−1
are mutually

independent [independent increments],

(iv) z has continuous sample paths in RK .

Here, N(a, b) denotes a K-dimensional normal distribution with mean vector a and variance-

covariance matrix b. As for standard Brownian motions, we can also define multi-dimensional

generalized Brownian motions, which simply are vectors of independent one-dimensional general-

ized Brownian motions.

A K-dimensional diffusion process X = (X1, . . . ,XK)⊤ is a process with increments of the

form

dXt = µ(Xt, t) dt+ σ (Xt, t) dzt, (2.16)

where µ is a function from RK × R+ into RK , and σ is a function from RK × R+ into the space

of K ×K-matrices. As before, z is a K-dimensional standard Brownian motion. The evolution of

the multi-dimensional diffusion can also be written componentwise as

dXit = µi(Xt, t) dt+ σi(Xt, t)
⊤ dzt

= µi(Xt, t) dt+
K∑

k=1

σik(Xt, t) dzkt, i = 1, . . . ,K,
(2.17)

where σi(Xt, t)
⊤ is the i’th row of the matrix σ (Xt, t), and σik(Xt, t) is the (i, k)’th entry (i.e.

the entry in row i, column k). Since dz1t, . . . , dzKt are mutually independent and all N(0, dt)

distributed, the expected change in the i’th component process over an infinitesimal period is

Et[dXit] = µi(Xt, t) dt, i = 1, . . . ,K,

so that µi can be interpreted as the drift of the i’th component. Furthermore, the covariance
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between changes in the i’th and the j’th component processes over an infinitesimal period becomes

Covt[dXit, dXjt] = Covt

[
K∑

k=1

σik(Xt, t) dzkt,

K∑

l=1

σjl(Xt, t) dzlt

]

=

K∑

k=1

K∑

l=1

σik(Xt, t)σjl(Xt, t)Covt[dzkt, dzlt]

=
K∑

k=1

σik(Xt, t)σjk(Xt, t) dt

= σi(Xt, t)
⊤σj(Xt, t) dt, i, j = 1, . . . ,K,

where we have applied the usual rules for covariances and the independence of the components

of z. In particular, the variance of the change in the i’th component process of an infinitesimal

period is given by

Vart[dXit] = Covt[dXit, dXit] =

K∑

k=1

σik(Xt, t)
2 dt = ‖σi(Xt, t)‖2 dt, i = 1, . . . ,K.

The volatility of the i’th component is given by ‖σi(Xt, t)‖. The variance-covariance matrix of

changes ofXt over the next instant is Σ(Xt, t) dt = σ (Xt, t)σ (Xt, t)
⊤ dt. The correlation between

instantaneous increments in two component processes is

Corrt[dXit, dXjt] =
σi(Xt, t)

⊤σj(Xt, t) dt
√

‖σi(Xt, t)‖2 dt ‖σj(Xt, t)‖2 dt
=

σi(Xt, t)
⊤σj(Xt, t)

‖σi(Xt, t)‖ ‖σj(Xt, t)‖
,

which can be any number in [−1, 1] depending on the elements of σi and σj .

Similarly, we can define a K-dimensional Itô process x = (X1, . . . ,XK)⊤ to be a process

with increments of the form

dXt = µt dt+ σ t dzt, (2.18)

where µ = (µt) is a K-dimensional stochastic process and σ = (σ t) is a stochastic process with

values in the space of K ×K-matrices.

Next, we state a multi-dimensional version of Itô’s Lemma, where a one-dimensional process is

defined as a function of time and a multi-dimensional process.

Theorem 2.6 Let X = (Xt)t≥0 be an Itô process in RK with dynamics dXt = µt dt+ σ t dzt or,

equivalently,

dXit = µit dt+ σ⊤

it dzt = µit dt+

K∑

k=1

σikt dzkt, i = 1, . . . ,K,

where z1, . . . , zK are independent standard Brownian motions, and µi and σik are well-behaved

stochastic processes.

Let g(X, t) be a real-valued function for which all the derivatives ∂g
∂t ,

∂g
∂Xi

, and ∂2g
∂Xi∂Xj

exist and

are continuous. Then the process y = (yt)t≥0 defined by yt = g(Xt, t) is also an Itô process with

dynamics

dyt =




∂g

∂t
(Xt, t) +

K∑

i=1

∂g

∂Xi

(Xt, t)µit +
1

2

K∑

i=1

K∑

j=1

∂2g

∂Xi∂Xj
(Xt, t)γijt



 dt

+

K∑

i=1

∂g

∂Xi

(Xt, t)σi1t dz1t + · · · +
K∑

i=1

∂g

∂Xi

(Xt, t)σiKt dzKt,

(2.19)



2.7 Multi-dimensional processes 39

where γij = σi1σj1 + · · · + σiKσjK is the covariance between the processes Xi and Xj.

The result can also be written as

dyt =
∂g

∂t
(Xt, t) dt+

K∑

i=1

∂g

∂Xi

(Xt, t) dXit +
1

2

K∑

i=1

K∑

j=1

∂2g

∂Xi∂Xj
(Xt, t)(dXit)(dXjt), (2.20)

where in the computation of (dXit)(dXjt) one must use the rules (dt)2 = dt · dzit = 0 for all i,

dzit · dzjt = 0 for i 6= j, and (dzit)
2 = dt for all i. Alternatively, the result can be expressed using

vector and matrix notation:

dyt =

(
∂g

∂t
(Xt, t) +

(
∂g

∂X
(Xt, t)

)
⊤

µt +
1

2
tr

(

σ⊤

t

[
∂2g

∂X2 (Xt, t)

]

σ t

))

dt+

(
∂g

∂X
(Xt, t)

)
⊤

σ t dzt,

(2.21)

where

∂g

∂X
(Xt, t) =







∂g
∂X1

(Xt, t)

. . .
∂g
∂XK

(Xt, t)






,

∂2g

∂X2 (Xt, t) =










∂2g
∂X2

1
(Xt, t)

∂2g
∂X1∂X2

(Xt, t) . . . ∂2g
∂X1∂XK

(Xt, t)
∂2g

∂X2∂X1
(Xt, t)

∂2g
∂X2

2
(Xt, t) . . . ∂2g

∂X2∂XK
(Xt, t)

...
...

. . .
...

∂2g
∂XK∂X1

(Xt, t)
∂2g

∂XK∂X2
(Xt, t) . . . ∂2g

∂X2
K

(Xt, t)










,

and tr denotes the trace of a quadratic matrix, i.e. the sum of the diagonal elements. For example,

tr(A) =
∑K
i=1Aii.

The probabilistic properties of a K-dimensional diffusion process is completely specified by the

drift function µ and the variance-covariance function Σ. The values of the variance-covariance

function are symmetric and positive-definite matrices. Above we had Σ = σ σ⊤ for a general

(K×K)-matrix σ . But from linear algebra it is well-known that a symmetric and positive-definite

matrix can be written as σ̂ σ̂⊤ for a lower-triangular matrix σ̂ , i.e. a matrix with σ̂ik = 0 for k > i.

This is the so-called Cholesky decomposition. Hence, we may write the dynamics as

dX1t = µ1(Xt, t) dt+ σ̂11(Xt, t) dz1t

dX2t = µ2(Xt, t) dt+ σ̂21(Xt, t) dz1t + σ̂22(Xt, t) dz2t

...

dXKt = µK(Xt, t) dt+ σ̂K1(Xt, t) dz1t + σ̂K2(Xt, t) dz2t + · · · + σ̂KK(Xt, t) dzKt

(2.22)

We can think of building up the model by starting with X1. The shocks to X1 are represented by

the standard Brownian motion z1 and its coefficient σ̂11 is the volatility of X1. Then we extend the

model to include X2. Unless the infinitesimal changes to X1 and X2 are always perfectly correlated

we need to introduce another standard Brownian motion, z2. The coefficient σ̂21 is fixed to match

the covariance between changes to X1 and X2 and then σ̂22 can be chosen so that
√

σ̂2
21 + σ̂2

22

equals the volatility of X2. The model may be extended to include additional processes in the

same manner.

Some authors prefer to write the dynamics in an alternative way with a single standard Brownian



40 Chapter 2. Uncertainty, information, and stochastic processes

motion ẑi for each component Xi such as

dX1t = µ1(Xt, t) dt+ V1(Xt, t) dẑ1t

dX2t = µ2(Xt, t) dt+ V2(Xt, t) dẑ2t

...

dXKt = µK(Xt, t) dt+ VK(Xt, t) dẑKt

(2.23)

Clearly, the coefficient Vi(Xt, t) is then the volatility of Xi. To capture an instantaneous non-zero

correlation between the different components the standard Brownian motions ẑ1, . . . , ẑK have to

be mutually correlated. Let ρij be the correlation between ẑi and ẑj . If (2.23) and (2.22) are

meant to represent the same dynamics, we must have

Vi =
√

σ̂2
i1 + · · · + σ̂2

ii, i = 1, . . . ,K,

ρii = 1; ρij =

∑i
k=1 σ̂ikσ̂jk
ViVj

, ρji = ρij , i < j.

2.8 Exercises

EXERCISE 2.1 In the two-period economy illustrated in Figures 2.1 and 2.2 consider an asset

paying a dividend at time 2 given by

D2 =







0, for ω = 3,

5, for ω ∈ {1, 2, 4},
10, for ω ∈ {5, 6}.

(a) What is the expectation at time 0 of D2? What is the expectation at time 1 of D2? Verify

that the Law of Iterated Expectations holds for these expectations.

(b) What is the variance at time 0 of D2? What is the variance at time 1 of D2? Confirm that

Var[D2] = E [Var1[D2]] + Var [E1[D2]].

EXERCISE 2.2 Let X = (Xt) and Y = (Yt) be the price processes of two assets with no

intermediate dividends and assume that

dXt = Xt [0.05 dt+ 0.1 dz1t + 0.2 dz2t] ,

dYt = Yt [0.07 dt+ 0.3 dz1t − 0.1 dz2t] .

(a) What is the expected rate of return of each of the two assets?

(b) What is the return variance and volatility of each of the two assets?

(c) What is the covariance and the correlation between the returns on the two assets?
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EXERCISE 2.3 Suppose X = (Xt) is a geometric Brownian motion, dXt = µXt dt + σXt dzt.

What is the dynamics of the process y = (yt) defined by yt = (Xt)
n? What can you say about the

distribution of future values of the y process?

EXERCISE 2.4 Suppose that the continuous-time stochastic process X = (Xt) is defined as

Xt =
1

2

∫ t

0

λ2
s ds+

∫ t

0

λs dzs,

where z = (zt) is a one-dimensional standard Brownian motion and λ = (λt) is some “nice”

stochastic process.

(a) Argue that dXt = 1
2λ

2
t dt+ λt dzt.

(b) Suppose that the continuous-time stochastic process ξ = (ξt) is defined as ξt = exp{−Xt}.
Show that dξt = −λtξt dzt.

EXERCISE 2.5 (Adapted from Björk (2004).) Define the process y = (yt) by yt = z4
t , where

z = (zt) is a standard Brownian motion. Find the dynamics of y. Show that

yt = 6

∫ t

0

z2
s ds+ 4

∫ t

0

z3
s dzs.

Show that E[yt] ≡ E[z4
t ] = 3t2.

EXERCISE 2.6 (Adapted from Björk (2004).) Define the process y = (yt) by yt = eazt , where

a is a constant and z = (zt) is a standard Brownian motion. Find the dynamics of y. Show that

yt = 1 +
1

2
a2

∫ t

0

ys ds+ a

∫ t

0

ys dzs.

Define m(t) = E[yt]. Show that m satisfies the ordinary differential equation

m′(t) =
1

2
a2m(t), m(0) = 1.

Show that m(t) = ea
2t/2 and conclude that

E [eazt ] = ea
2t/2.

EXERCISE 2.7 Consider the two general stochastic processes X1 = (X1t) and X2 = (X2t)

defined by the dynamics

dX1t = µ1t dt+ σ1t dz1t,

dX2t = µ2t dt+ ρtσ2t dz1t +
√

1 − ρ2
tσ2t dz2t,

where z1 and z2 are independent one-dimensional standard Brownian motions. Interpret µit, σit,

and ρt. Define the processes y = (yt) and w = (wt) by yt = X1tX2t and wt = X1t/X2t. What
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is the dynamics of y and w? Concretize your answer for the special case where X1 and X2 are

geometric Brownian motions with constant correlation, i.e. µit = µiXit, σit = σiXit, and ρt = ρ

with µi, σi, and ρ being constants.



Chapter 3

Assets, portfolios, and arbitrage

3.1 Introduction

This chapter shows how to model assets and portfolios of assets in one- and multi-period models

with uncertainty. The important concepts of arbitrage, redundant assets, and market completeness

are introduced.

3.2 Assets

An asset is characterized by its dividends and its price. We will always assume that the dividends

of the basic assets are non-negative and that there is a positive probability of a positive dividend

at the terminal date of the model. Then we can safely assume (since equilibrium prices will be

arbitrage-free; see precise definition below) that the prices of the basic assets are always positive.

We assume without loss of generality that assets pay no dividends at time 0. The price of an asset

at a given point in time is exclusive any dividend payment at that time, i.e. prices are ex-dividend.

At the last point in time considered in the model, all assets must have a zero price. We assume

throughout that I basic assets are traded.

3.2.1 The one-period framework

In a one-period model any asset i is characterized by its time 0 price Pi and its time 1 dividend Di,

which is a random variable. If the realized state is ω ∈ Ω, asset i will give a dividend of Di(ω). We

can gather all the prices in the I-dimensional vector P = (P1, . . . , PI)
⊤ and all the dividends in

the I-dimensional random variable D = (D1, . . . ,DI)
⊤. We assume that all variances of dividends

and all pairwise covariances of dividends are finite.

Instead of prices and dividends, we will often focus on returns. Returns can be defined in

different ways. The net return on an investment over a period is simply the end-of-period

outcome generated by the initial investment subtracted by the initial investment. In a one-period

framework the net return on asset i is Di−Pi. The net rate of return is the net return relative to

the investment made, i.e. the net rate of return on asset i is ri = (Di−Pi)/Pi. The gross rate of

return on asset i is defined as Ri = Di/Pi = 1+ri, the ratio of the uncertain dividend to the price.

The log-return or continuously compounded rate of return is defined as lnRi = ln(Di/Pi).

43
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Note that since the end-of-period dividend is a random variable, any of these returns will also be a

random variable. In a one-period model an asset is said to be risk-free if it pays the same dividend

in all states so that return (with any of the above definitions) will be non-random, i.e. known at

the beginning of the period. We will write the risk-free gross return as Rf .

We can stack the returns on the different assets into vectors. For example, the gross rate of

return vector is R = (R1, . . . , RI)
⊤

. Defining the I × I matrix

diag(P ) =










P1 0 . . . 0

0 P2 . . . 0
...

...
. . .

...

0 0 . . . PI










, (3.1)

we can write the link between the dividend vector and the gross rate of return vector as

R = [diag(P )]
−1
D ⇔ D = diag(P )R. (3.2)

Given our assumptions about dividends, all the gross returns will have finite variances and all the

pairwise covariances of gross returns will also be finite.

Note that given the expected dividend of asset i, E[Di], finding the expected return E[Ri] is

equivalent to finding the price Pi. We can therefore study equilibrium expected returns instead

of equilibrium prices and many asset pricing models are typically formulated in terms of expected

returns (as for example the classical CAPM).

3.2.2 The discrete-time framework

In a discrete-time model with T = {0, 1, 2, . . . , T}, we allow for dividends at all dates except

time 0 so that the dividends of an asset are represented by an adapted, non-negative stochastic

process Di = (Dit)t∈T with initial value Di0 = 0. The random variable Dit represents the dividend

payment of asset i at time t. We are interested in prices at all dates t ∈ T and let Pi = (Pit)t∈T

denote the price process of asset i. By our assumptions, PiT = 0 in all states. We assume that no

matter what the information at time T − 1 is, for any asset there will be a positive (conditional)

probability that the terminal dividend is positive. We collect the prices and dividend processes of

the I assets in I-dimensional processes P = (P t)t∈T and D = (Dt)t∈T with P t = (P1t, . . . , PIt)
⊤

and similarly for Dt.

The gross rate of return on asset i between two adjacent points in time, say t and time t + 1,

is defined as Ri,t+1 = (Pi,t+1 + Di,t+1)/Pit, the net rate of return is ri,t+1 = Ri,t+1 − 1, and

the log-return is lnRi,t+1. Note that now the relation between the expected gross rate of return

Et[Ri,t+1] and the beginning-of-period price Pit involves both the expected dividend Et[Di,t+1] and

the expected future price Et[Pi,t+1]. Therefore we cannot easily switch between statements about

expected returns and statements about prices. We will consider both formulations of asset pricing

models and the link between them in later chapters.

We can also define returns over longer holding periods. Now, we could define the gross rate of

return on asset i between time t and time t+ n as Ri,t,t+n = (Pi,t+n +Di,t+1 + · · · +Di,t+n)/Pit

but, unless the intermediate dividends Di,t+1, . . . ,Di,t+n−1 are all zero, we will add values at

different dates without any discounting. This is typically not very useful. More appropriately,
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we can compute the return if intermediate dividends are reinvested in the asset. Assume we buy

one unit of asset i at time t. For the dividend of Di,t+1 received at time t + 1, one can buy

Di,t+1/Pi,t+1 extra units of the asset so that the total holdings is At+1 ≡ 1 +Di,t+1/Pi,t+1 units.

The total dividend received at time t + 2 is then (1 + Di,t+1/Pi,t+1)Di,t+2, which will buy you

(1 +Di,t+1/Pi,t+1)Di,t+2/Pi,t+2 additional units of the asset, bringing the total up to

At+2 ≡ 1 +
Di,t+1

Pi,t+1
+

(

1 +
Di,t+1

Pi,t+1

)
Di,t+2

Pi,t+2
=

(

1 +
Di,t+1

Pi,t+1

)(

1 +
Di,t+2

Pi,t+2

)

units. Continuing like this we end up with

At+n ≡
n∏

m=1

(

1 +
Di,t+m

Pi,t+m

)

=

(

1 +
Di,t+1

Pi,t+1

)

. . .

(

1 +
Di,t+n

Pi,t+n

)

units at time t+ n. The gross rate of return on asset i between time t and time t+ n is therefore

Ri,t,t+n =
At+nPi,t+n

Pit
=
Pi,t+n
Pit

n∏

m=1

(

1 +
Di,t+m

Pi,t+m

)

.

Again, we can define the corresponding net rate of return or log-return.

In the discrete-time framework an asset is said to be risk-free if the dividend at any time t =

1, . . . , T is already known at time t − 1, no matter what information is available at time t − 1.

The risk-free gross return between time t and t+1 is denoted by Rft so that the subscript indicate

the point in time at which the return will be known to investors, not the point in time at which

the return is realized. Before time t, the risk-free return Rft for the period beginning at t is not

necessarily known. Risk-free rates fluctuate over time so they are only risk-free in the short run. If

you roll-over in one-period risk-free investments from time t to t+n, the total gross rate of return

will be

Rft,t+n =
n−1∏

m=0

Rft+m.

Note that this return is risky seen at, or before, time t. An asset that provides a risk-free return

from time t to time t+n is a default-free, zero-coupon bond maturing at time t+n. If it has a face

value of 1 and its time t price is denoted by Bt+nt , you will get a gross rate of return of 1/Bt+nt .

3.2.3 The continuous-time framework

In a continuous-time model over the time span T = [0, T ], the price of an asset i is represented by

an adapted stochastic process Pi = (Pit)t∈[0,T ]. In practice, no assets pay dividends continuously.

However, for computational purposes it is sometimes useful to approximate a stream of frequent

dividend payments by a continuous-time dividend process. On the other hand, a reasonable model

should also allow for assets paying lump-sum dividends. We could capture both through a process

Di = (Dit)t∈[0,T ] where Dit is the (undiscounted) sum of all dividends of asset i up to and including

time t. The total dividend received in a small interval [t, t+dt] would then be dDit and the dividend

yield would be dDit/Pit. A lump-sum dividend at time t would correspond to a jump in Dit. For

notational simplicity we assume that only at time T the basic assets of the economy will pay

a lump-sum dividend. The terminal dividend of asset i is modeled by a random variable DiT ,

assumed non-negative with a positive probability of a positive value. Up to time T , dividends

are paid out continuously. In general, the dividend yield can then be captured by a specification
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like dDit/Pit = δit dt + νit dzit for some one- or multi-dimensional standard Brownian motion zi,

but for simplicity we assume that there is no uncertainty about the dividend yield over the next

instant, i.e. νit = 0. To sum up, the dividends of asset i are represented by a dividend yield process

δi = (δit)t∈[0,T ] and a terminal lump-sum dividend Di.

Next consider returns. If we buy one unit of asset i at time t and keep reinvesting the continuous

dividends by purchasing extra (fractions of) units of the assets, how many units will we end up

with at time t′ > t? First divide the interval [t, t′] into many bits of length ∆t so that dividends

are cashed in and additional units bought at times t + ∆t, t + 2∆t, ... We can then proceed as in

the discrete-time case discussed above. Let At+n∆t denote the number of units of the asset we

will have immediately after time t + n∆t. We start with At = 1 unit. At t + ∆t we receive a

dividend of δitPi,t+∆t∆t which we spend on buying δit∆t extra assets, bringing our holdings up

to At+∆t = 1 + δit∆t. At time t + 2∆t we receive a total dividend of At+∆tδi,t+∆tPi,t+2∆t∆t,

which will buy us At+∆tδi,t+∆t∆t extra units. Our total is now At+2∆t = At+∆t+At+∆tδi,t+∆t∆t.

Continuing like this we will find for any s = t + n∆t for some integer n < N , our total holdings

immediately after time s+ ∆t is given by As+∆t = As +Asδis∆t so that

As+∆t −As
∆t

= δisAs.

If we go to the continuous-time limit and let ∆t→ 0, the left-hand side will approach the derivative

A′
s and we see that As must satisfy the differential equation A′

s = δisAs as well as the initial

condition At = 1. The solution is

As = exp

{∫ s

t

δiu du

}

.

So investing one unit in asset i at time t and continuously reinvesting the dividends, we will end

up with At′ = exp{
∫ t′

t
δiu du} units of the asset at time t′. The gross rate of return on asset i over

the interval [t, t′] is therefore Ri,t,t′ = exp{
∫ t′

t
δiu du}Pi,t′/Pit.

The net rate of return per time period is ri,t,t′ = (Ri,t,t′ − 1)/(t′ − t). Informally letting t′ → t,

we get the instantaneous net rate of return per time period

rit =
1

dt

dPit
Pit

+ δit.

The first term on the right-hand side is the instantaneous percentage capital gain (still unknown

at time t), the second term is the dividend yield (assumed to be known at time t).

We will typically write the dynamics of the price of an asset i as

dPit = Pit [µit dt+ σ⊤

it dzt] , (3.3)

where z = (zt) is a standard Brownian motion of dimension d representing shocks to the prices,

µit is then the expected capital gain so that the total expected net rate of return per time period

is µit + δit, while σit is the vector of sensitivities of the price with respect to the exogenous

shocks. The volatility is the standard deviation of instantaneous relative price changes, which is

‖σit‖ =
(
∑d
j=1 σ

2
ijt

)1/2

. Using Itô’s Lemma exactly as in Section 2.6.7, one finds that

Pi,t′ = Pit exp

{
∫ t′

t

(

µiu −
1

2
‖σiu‖2

)

du+

∫ t′

t

σ⊤

iu dzu

}

. (3.4)
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Therefore, the gross rate of return on asset i between t and t′ is

Ri,t,t′ = exp

{
∫ t′

t

δiu du

}

Pi,t′

Pit
= exp

{
∫ t′

t

(

δiu + µiu −
1

2
‖σiu‖2

)

du+

∫ t′

t

σ⊤

iu dzu

}

.

For a short period, i.e. with t′ = t+ ∆t for ∆t small, we have

Ri,t,t+∆t ≈ exp

{(

δit + µit −
1

2
‖σit‖2

)

∆t+ σ⊤

it ∆zt

}

,

where ∆zt = zt+∆t − zt is d-dimensional and normally distributed with mean vector 0 and

variance-covariance matrix I · ∆t (here I is the d× d identity matrix). The gross rate of return is

thus approximately lognormally distributed with mean

Et [Ri,t,t+∆t] ≈ exp

{(

δit + µit −
1

2
‖σit‖2

)

∆t

}

Et [exp {σ⊤

it ∆zt}] = e(δit+µit)∆t,

cf. Appendix B.

The log-return is

lnRi,t,t′ =

∫ t′

t

(

δiu + µiu −
1

2
‖σiu‖2

)

du+

∫ t′

t

σ⊤

iu dzu

with mean and variance given by

Et[lnRi,t,t′ ] =

∫ t′

t

(

δiu + µiu −
1

2
‖σiu‖2

)

du,

Vart[lnRi,t,t′ ] =

∫ t′

t

Et
[
‖σiu‖2

]
du,

according to Theorem 2.2.

We can write the dynamics of all I prices compactly as

dP t = diag(P t)
[
µt dt+ σ t dzt

]
, (3.5)

where diag(P t) is defined in (3.1), µt is the vector (µ1t, . . . , µIt)
⊤ and σ t is the I×d matrix whose

i’th row is σ⊤

it.

A risk-free asset is an asset where the rate of return over the next instant is always known. We

can think of this as an asset with a constant price and a continuous dividend yield process rf =

(rft )t∈[0,T ] or as an asset with a zero continuous dividend yield and a price process accumulating

the interest rate payments, P ft = exp
{∫ t

0
rfs ds

}

.

3.3 Portfolios and trading strategies

Individuals can trade assets at all time points of the model, except for the last date. The combi-

nation of holdings of different assets at a given point in time is called a portfolio. We assume that

there are no restrictions on the portfolios that investors may form and that there are no trading

costs.
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3.3.1 The one-period framework

In a one-period model an individual chooses a portfolio θ = (θ1, . . . , θI)
⊤ at time 0 with θi being

the number of units held of asset i. It is not possible to rebalance the portfolio but the individual

simply cashes in the dividends at time 1. Let Dθ be the random variable that represents the

dividend of the portfolio θ. If state ω is realized, the total dividend from a portfolio θ is

Dθ(ω) =
I∑

i=1

θiDi(ω) = θ ·D(ω),

i.e. Dθ = θ ·D.

Denote the price or value of a portfolio θ by P θ. We will throughout this book assume that

prices are linear so that

P θ =
I∑

i=1

θiPi = θ · P .

This is called the Law of One Price. Since we ignore transaction costs, any candidate for an

equilibrium pricing system will certainly have this property. In Section 3.4 we will discuss the link

between the Law of One Price and the absence of arbitrage.

The fraction of the total portfolio value invested in asset i is then πi = θiPi/P
θ and the vector

π = (π1, . . . , πI)
⊤

is called the portfolio weight vector. If we let 1 = (1, . . . , 1)
⊤

, we have π · 1 =
∑I
i=1 πi = 1. Note that diag(P )1 = P and thus P θ = P⊤θ = (diag(P )1)

⊤

θ = 1⊤ diag(P )θ so

that

π =
diag(P )θ

P⊤θ
=

diag(P )θ

1⊤ diag(P )θ
. (3.6)

Given θ and the price vector P we can derive π. Conversely, given π, the total portfolio value P θ,

and the price vector P , we can derive θ. We therefore have two equivalent ways of representing a

portfolio.

The gross rate of return on a portfolio θ is the random variable

Rθ =
Dθ

P θ
=

∑I
i=1 θiDi

P θ
=

∑I
i=1 θiPiRi
P θ

=
I∑

i=1

θiPi
P θ

Ri =
I∑

i=1

πiRi = π ·R, (3.7)

where πi is the portfolio weight of asset i. We observe that the gross return on a portfolio is just

a weighted average of the gross rates of return on the assets in the portfolio. Similarly for the net

rate of return since
∑I
i=1 πi = 1 and thus

rθ = Rθ − 1 =

(
I∑

i=1

πiRi

)

− 1 =

I∑

i=1

πi (Ri − 1) =

I∑

i=1

πiri = π · r,

where r = (r1, . . . , rI)
⊤

is the vector of net rates of return on the basic assets.

3.3.2 The discrete-time framework

In a multi-period model individuals are allowed to rebalance their portfolio at any date considered

in the model. A trading strategy is an I-dimensional adapted stochastic process θ = (θt)t∈T

where θt = (θ1t, . . . , θIt)
⊤ denotes the portfolio held at time t or rather immediately after trading

at time t. θit is the number of units of asset i held at time t.
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A trading strategy θ generates a dividend process Dθ. Immediately before time t the portfolio

is given by θt−1 so the investor will receive dividends θt−1 ·Dt at time t, and then rebalance the

portfolio to θt immediately after time t. The net gain or dividend at time t is therefore equal to

Dθ
t = θt−1 ·Dt − (θt − θt−1) · P t = θt−1 · (P t +Dt) − θt · P t, t = 1, 2, . . . , T − 1. (3.8)

We can think of this as a budget constraint saying that the sum of the withdrawn dividend and

our additional investment (θt − θt−1) · P t has to equal the dividends we receive from the current

portfolio. The terminal dividend is

Dθ
T = θT−1 ·DT . (3.9)

Given the Law of One Price, the initial price of the trading strategy is P θ = θ0 · P 0. We can let

Dθ
0 = −P θ so that the dividend process Dθ is defined at all t ∈ T.

For t = 1, . . . , T define

V θ
t = θt−1 · (P t +Dt)

which is the time t value of the portfolio chosen at the previous trading date. This is the value of the

portfolio just after dividends are received at time t and before the portfolio is rebalanced. Define

V θ
0 = θ0 · P 0. We call V θ = (V θ

t )t∈T the value process of the trading strategy θ. According

to (3.8), we have V θ
t = Dθ

t + θt · P t for t = 1, . . . , T and, in particular, V θ
T = Dθ

T . The change in

the value of the trading strategy between two adjacent dates is

V θ
t+1 − V θ

t = θt · (P t+1 +Dt+1) − θt−1 · (P t +Dt)

= θt · (P t+1 +Dt+1) −Dθ
t − θt · P t

= θt · (P t+1 − P t +Dt+1) −Dθ
t . (3.10)

The first term on the right-hand side of the last expression is the net return on the portfolio θt

from time t to t+ 1, the latter term is the net dividend we have withdrawn at time t.

The trading strategy is said to be self-financing if all the intermediate dividends are zero, i.e.

if Dθ
t = 0 for t = 1, . . . , T − 1. Using (3.8) this means that

(θt − θt−1) · P t = θt−1 ·Dt, t = 1, . . . , T − 1.

The left-hand side is the extra investment due to the rebalancing at time t, the right-hand side is

the dividend received at time t. A self-financing trading strategy requires an initial investment of

P θ = θ0 ·P 0 and generates a terminal dividend of Dθ
T = θT−1 ·DT . At the intermediate dates no

money is invested or withdrawn so increasing the investment in some assets must be fully financed

by dividends or selling off other assets. If θ is self-financing, we have V θ
t = P θ

t ≡ θt ·P t, the time t

price of the portfolio θt, for t = 0, 1, . . . , T − 1. Moreover, the change in the value of the trading

strategy is just the net return, cf. (3.10).

Portfolio weights...

Returns...

3.3.3 The continuous-time framework

Also in the continuous-time framework with T = [0, T ] a trading strategy is an I-dimensional

adapted stochastic process θ = (θt)t∈T where θt = (θ1t, . . . , θIt)
⊤ denotes the portfolio held at

time t or rather immediately after trading at time t.
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Consistent with the discrete-time framework we define the value of the trading strategy θ at any

given time t as the price of the portfolio just chosen at that time plus any lump-sum dividends

received at that time. Since we only allow for lump-sum dividends at the terminal date, we define

V θ
t = θt · P t, t < T (3.11)

and V θ
T = θT ·DT ≡ Dθ

T , the terminal lump-sum dividend. The time 0 value is the cost of initiating

the trading strategy, which we can think of as a negative initial dividend, Dθ
0 = −V θ

0 = θ0 · P 0.

We assume that between time 0 and time T no lump-sum dividends can be withdrawn from

the investment but funds can be withdrawn at a continuous rate as represented by the process

αθ = (αθ
t ) describing the rate with which we withdraw funds from our investments. Intermediate

lump-sum withdrawals could be allowed at the expense of additional notational complexity. For

later use note that an application of Itô’s Lemma implies that the increment to the value process

is given by

dV θ
t = θt · dP t + dθt · P t + dθt · dP t. (3.12)

Assume for a moment that we do not change our portfolio over a small time interval [t, t+ ∆t].

The total funds withdrawn over this interval is αθ
t ∆t. Let ∆θt+∆t = θt+∆t − θt and ∆P t+∆t =

P t+∆t−P t. The total dividends received from the portfolio θt over the interval is
∑I
i=1 θitδitPit∆t,

which we can rewrite as θ⊤

t diag(P t)δt∆t, where diag(P t) is the matrix defined in (3.1). Then the

budget constraint over this interval is

αθ
t ∆t+ ∆θt+∆t · P t+∆t = θ⊤

t diag(P t)δt∆t.

The left-hand side is the sum of the funds we withdraw and the net extra investment. The right-

hand side is the funds we receive in dividends. Let us add and subtract (∆θt+∆t) ·P t in the above

equation. Rearranging we obtain

αθ
t ∆t+ ∆θt+∆t · ∆P t+∆t + ∆θt+∆t · P t = θ⊤

t diag(P t)δt∆t.

The equivalent equation for an infinitesimal interval [t, t+ dt] is

αθ
t dt+ dθt · dP t + dθt · P t = θ⊤

t diag(P t)δt dt.

Using this, we can rewrite the value dynamics in (3.12) as

dV θ
t = θt · dP t + θ⊤

t diag(P t)δt dt− αθ
t dt.

Substituting in (3.5), this implies that

dV θ
t = θ⊤

t diag(P t)
[
(µt + δt) dt+ σ t dzt

]
− αθ

t dt. (3.13)

As discussed earlier we can define a portfolio weight vector

πt =
diag(P t)θt
P⊤

t θt
=

diag(P t)θt
V θ
t

.

The value dynamics can therefore be rewritten as

dV θ
t = V θ

t π
⊤

t

[
(µt + δt) dt+ σ t dzt

]
− αθ

t dt. (3.14)
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A trading strategy is called self-financing if no funds are withdrawn, i.e. αθ
t ≡ 0. In that case

the value dynamics is simply

dV θ
t = θ⊤

t diag(P t)
[
(µt + δt) dt+ σ t dzt

]
. (3.15)

This really means that for any t ∈ (0, T ),

V θ
t = θ0 · P 0 +

∫ t

0

θ⊤

s diag(P s)
[
(µs + δs) ds+ σ s dzs

]

= θ0 · P 0 +

∫ t

0

θ⊤

s diag(P s) (µs + δs) ds+

∫ t

0

θ⊤

s diag(P s)σ s dzs.

(3.16)

Returns...

3.4 Arbitrage

We have already made an assumption about prices, namely that prices obey the Law of One Price,

i.e. prices are linear. We will now make the slightly stronger assumption that prices are set so that

there is no arbitrage. An arbitrage is basically a risk-free profit.

3.4.1 The one-period framework

In the one-period framework we define an arbitrage as a portfolio θ satisfying one of the following

two conditions:

(i) P θ < 0 and Dθ ≥ 0;

(ii) P θ ≤ 0 and Dθ ≥ 0 with P
(
Dθ > 0

)
> 0.

Here Dθ is the random variable that represents the dividend of the portfolio θ. The inequality

Dθ ≥ 0 means that the dividend will be non-negative no matter which state is realized, i.e.

Dθ(ω) ≥ 0 for all ω ∈ Ω. (In a finite-state economy this can be replaced by the condition Dθ ≥ 0

on the dividend vector, which means that all elements of the vector are non-negative. The condition

P
(
Dθ > 0

)
> 0 can be replaced by the condition Dθ

ω > 0 for some state ω.)

An arbitrage offers something for nothing. It offers a non-negative dividend no matter which

state is realized and its price is non-positive so that you do not have to pay anything. Either you

get something today (case (i)) or you get something at the end in some state (case (ii)). This is

clearly attractive to any greedy individual, i.e. any individual preferring more to less. Therefore,

a market with arbitrage cannot be a market in equilibrium. Since we are interested in equilibrium

pricing systems, we need only to care about pricing systems that do not admit arbitrage.

Absence of arbitrage implies that the law of one price holds. To see this, first suppose that

P θ < θ · P . Then an arbitrage can be formed by purchasing the portfolio θ for the price of P θ

and, for each i = 1, . . . , I selling θi units of asset i at a unit price of Pi. The end-of-period net

dividend from this position will be zero no matter which state is realized. The total initial price of

the position is P θ − θ · P , which is negative. Hence, in the absence of arbitrage, we cannot have

that P θ < θ · P . The inequality P θ > θ · P can be ruled out by a similar argument.

On the other hand, the law of one price does not rule out arbitrage. For example, suppose that

there are two possible states. Asset 1 gives a dividend of 0 in state 1 and a dividend of 1 in state 2
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and costs 0.9. Asset 2 gives a dividend of 1 in state 1 and a dividend of 2 in state 2 and costs 1.6.

Suppose the law of one price holds so that the price of any portfolio (θ1, θ2)
⊤ is 0.9θ1 + 1.6θ2.

Consider the portfolio (−2, 1)⊤ i.e. a short position in two units of asset 1 and a long position of

on unite of asset 2. The dividend of this portfolio will be 1 in state 1 and 0 in state 2 and the price

is 0.9 · (−2) + 1.6 · 1 = −0.2. This portfolio is clearly an arbitrage.

3.4.2 The discrete-time and continuous-time frameworks

In both the discrete-time and the continuous-time framework we define an arbitrage to be a self-

financing trading strategy θ satisfying one of the following two conditions:

(i) V θ
0 < 0 and V θ

T ≥ 0 with probability one,

(ii) V θ
0 ≤ 0, V θ

T ≥ 0 with probability one, and V θ
T > 0 with strictly positive probability.

As we have seen above, V θ
T = Dθ

T and V θ
0 = −Dθ

0 for self-financing trading strategies. We can

therefore equivalently define an arbitrage in terms of dividends. A self-financing trading strategy

is an arbitrage if it generates non-negative initial and terminal dividends with one of them being

strictly positive with a strictly positive probability. Due to our assumptions on the dividends of

the individual assets, the absence of arbitrage will imply that the prices of individual assets are

strictly positive.

Ruling out arbitrages defined in (i) and (ii) will also rule out shorter term risk-free gains. Suppose

for example that we can construct a trading strategy with a non-positive initial value (i.e. a non-

positive price), always non-negative values, and a strictly positive value at some time t < T . Then

this strictly positive value can be invested in any asset until time T generating a strictly positive

terminal value with a strictly positive probability. The focus on self-financing trading strategies is

therefore no restriction. Note that the definition of an arbitrage implies that a self-financing trading

strategy with a terminal dividend of zero (in any state) must have a value process identically equal

to zero.

3.4.3 Continuous-time doubling strategies

In a continuous-time setting it is theoretically possible to construct some strategies that generate

something for nothing. These are the so-called doubling strategies, which were apparently first

mentioned in a finance setting by Harrison and Kreps (1979). Think of a series of coin tosses

numbered n = 1, 2, . . . . The n’th coin toss takes place at time 1 − 1/n ∈ [0, 1). In the n’th toss,

you get α2n−1 if heads comes up, and looses α2n−1 otherwise, where α is some positive number.

You stop betting the first time heads comes up. Suppose heads comes up the first time in toss

number (k+1). Then in the first k tosses you have lost a total of α(1+2+ · · ·+2k−1) = α(2k−1).

Since you win α2k in toss number k + 1, your total profit will be α2k − α(2k − 1) = α. Since the

probability that heads comes up eventually is equal to one, you will gain α with probability one.

The gain is obtained before time 1 and can be made as large as possible by increasing α.

Similar strategies, with future dividends appropriately discounted, can be constructed in continuous-

time models of financial markets—at least if a risk-free asset is traded—but are clearly impossible

to implement in real life. As shown by Dybvig and Huang (1988), doubling strategies can be ruled

out by requiring that trading strategies have values that are bounded from below, i.e. that some
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constant K exists such that V θ
t ≥ −K for all t. A trading strategy satisfying such a condition

is said to be credit-constrained. A lower bound is reasonable since nobody can borrow an infi-

nite amount of money. If you have a limited borrowing potential, the doubling strategy described

above cannot be implemented. If you have no future income at all, K = 0 seems reasonable. An

alternative way of eliminating doubling strategies is to impose the condition that the value process

of the trading strategy has finite variance, cf. Duffie (2001). For a doubling strategy the variance

of the value process is in fact infinite.

It seems evident that any greedy investor would implement a doubling strategy, if possible, since

the investor will make a positive net return with a probability of one in finite time. However,

Omberg (1989) shows that a doubling strategy may in fact generate an expected utility of minus

infinity for risk-averse investors. In some events of zero probability a doubling strategy may result

in outcomes associated with a utility of minus infinity. When multiplying zero and minus infinity

in order to compute the expected utility, the result is indeterminate. Omberg computes the actual

expected utility of the doubling strategy by taking an appropriate limit and finds that this is

minus infinity for commonly used utility functions that are unbounded from below. Although this

questions the above definition of an arbitrage, we will stick to that definition which is also the

standard of the literature.

In the rest of this book we will—often implicitly—assume that some conditions are imposed so

that doubling strategies are not implementable or that nobody wants to implement them.

3.5 Redundant assets

An asset is said to be redundant if its dividends can be replicated by a trading strategy in other

assets.

For example, in the one-period framework asset i is redundant if a portfolio θ = (θ1, . . . , θI)
⊤

exists with θi = 0 and

Di = Dθ ≡ θ1D1 + · · · + θi−1Di−1 + θi+1Di+1 + · · · + θIDI .

Recall that the dividends are random variables so the above equation really means that

Di(ω) = θ1D1(ω) + · · · + θi−1Di−1(ω) + θi+1Di+1(ω) + · · · + θIDI(ω), ∀ω ∈ Ω.

Such a portfolio is called a replicating portfolio for asset i.

If an asset i is redundant, its price follows immediately from the law of one price:

Pi = θ1P1 + · · · + θi−1Pi−1 + θi+1Pi+1 + · · · + θIPI .

We can thus focus on pricing the non-redundant assets, then the prices of all the other assets, the

redundant assets, follow.

Note that the number of non-redundant assets cannot exceed the number of states. If there are

more assets than states, there will be some redundant asset.

Example 3.1 Consider a one-period economy with three possible end-of-period states and four

traded assets. The dividends are given in Table 3.1. With four assets and three states at least one
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state-contingent dividend

state 1 state 2 state 3

Asset 1 1 1 1

Asset 2 0 1 2

Asset 3 4 0 1

Asset 4 9 0 1

Table 3.1: The state-contingent dividends of the assets considered in Example 3.1.

asset is redundant. The dividend vector of asset 4 can be written as a non-trivial linear combination

of the dividend vectors of assets 1, 2, and 3 since
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.

A portfolio of one unit of asset 1, minus one unit of asset 2, and two units of asset 3 perfectly

replicates the dividend of asset 4, which is therefore redundant. In terms of random variables, we

have the relation

D1 −D2 + 2D3 = D4

among the dividends of the four assets. On the other hand, asset 1 is redundant since it can be

perfectly replicated by a portfolio of one unit of asset 2, minus two units of asset 3, and one unit

of asset 4. Similarly, asset 2 is redundant and asset 3 is redundant. Hence, either of the four assets

can be removed without affecting the set of dividend vectors that can be generated by forming

portfolios. Note that once one of the assets has been removed, neither of the three remaining assets

will be redundant anymore. Whether an asset is redundant or not depends on the set of other

assets available for trade. This implies that we must remove redundant assets one by one: first we

remove one redundant asset, then we look for another asset which is still redundant – if we find

one, we can remove that, etc. 2

In the multi-period model an asset is said to be redundant if its dividend process can be generated

by a trading strategy in the other assets. In the discrete-time framework, asset i is redundant if

there exists a trading strategy θ with θit = 0 for all t and all ω so that

Dit = Dθ
t ≡ θt−1 · (Dt + P t) − θt · P t, t = 1, . . . , T.

Such a θ is called a replicating trading strategy for asset i.

Just as in the one-period setting, redundant assets are uniquely priced by no-arbitrage.

Theorem 3.1 If θ is a replicating trading strategy for asset i, the unique arbitrage-free price of

asset i at any time t is

Pit = θt · P t.

Proof: The trading strategy θ̂ defined by θ̂t = θt − ei, where ei = (0, . . . , 0, 1, 0, . . . , 0)⊤, is

self-financing and V θ̂
T = 0. No-arbitrage implies that V θ̂

t = 0. The result now follows since V θ̂
t =
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θ̂t · P t = θt · P t − Pit. 2

The above definition of redundancy can be generalized to a continuous-time setting, where the

theorem is also valid.

The theorem is useful for the pricing of derivatives and applied, e.g., in the Cox, Ross, and

Rubinstein (1979) binomial model (see Exercise 3.1 at the end of this chapter) and the Black and

Scholes (1973) continuous-time model for the pricing of stock options.

3.6 Marketed dividends and market completeness

By forming portfolios and trading strategies investors can generate other dividends than those of

the individual basic assets. Any dividend that can be generated by trading the basic assets is said

to be a marketed dividend. If all the dividends you can think of are marketed, the financial market

is said to be complete. Otherwise the financial market is said to be incomplete. We will see in later

chapters that some important results will depend on whether the financial market is complete or

incomplete. Below we provide formal definitions and characterize complete markets.

3.6.1 The one-period framework

In the one-period framework dividends are random variables. A random variable is said to be a

marketed dividend or spanned by traded assets if it is identical to the dividend of some portfolio

of the traded assets. The dividend of a portfolio θ is the random variable Dθ = θ ·D. The set of

marketed dividends is thus

M = {x|x = θ ·D for some portfolio θ} . (3.17)

Note that M is a subset of the set L of all random variables on the probability space (Ω,F,P) with

finite variance.

If some of the basic assets are redundant, they will not help us in generating dividends. Suppose

that there are k ≤ I non-redundant assets. The k-dimensional random variable of dividends of

these assets is denoted by D̂ and a portfolio of these assets is denoted by a k-dimensional vector

θ̂. We can obtain exactly the same dividends by using only the non-redundant assets as by using

all dividends so

M =
{

x|x = θ̂ · D̂ for some portfolio θ̂
}

. (3.18)

The financial market is said to be complete if any dividend is marketed, i.e. if any random

variable x is the dividend of some portfolio. In symbols, the market is complete if M = L.

With k non-redundant assets, the set of marketed dividends will be a k-dimensional linear

subspace in L. You have k choice variables, namely how much to invest in each of the k non-

redundant assets. The dimension of L is the number of possible states. For each state ω you have

to make sure that the dividend of the portfolio will equal the desired dividend x(ω). Whether the

market is complete or not is therefore determined by the relation between the number of states and

the number of non-redundant assets. If the state space is infinite, the market is clearly incomplete.

With a finite state space Ω = {1, 2, . . . , S}, there can be at most S non-redundant assets, i.e.

k ≤ S. If k < S, the market will be incomplete. If k = S, the market will be complete. Details
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follow now: With a finite state space dividends can be represented by S-dimensional vectors and

the dividends of all the I basic assets by the I × S dividend matrix D. A marketed dividend is

then an S-dimensional vector x for which a portfolio θ can be found such that

D⊤θ = x

Removing redundant assets we eliminate rows in the dividend matrix D. As long as one of the

assets is redundant, the rows of D will be linearly dependent. The maximum number of linearly

independent rows of a matrix is called the rank of the matrix. It can be shown that this is also the

maximum number of linearly independent columns of the matrix. With k non-redundant assets,

the rank of D is equal to k. Removing the rows corresponding to those assets from D we obtain a

matrix D̂ of dimension k×S, where k ≤ S since we cannot have more than S linearly independent

S-dimensional vectors. Then the set of marketed dividend vectors is

M =
{

D̂
⊤

θ̂ | θ̂ ∈ Rk
}

since we can attain the same dividend vectors by forming portfolios of only the non-redundant

assets as by forming portfolios of all the assets.

In the finite-state economy, the market is complete if M = RS , i.e. any state-contingent dividend

can be generated by forming portfolios of the traded assets. The market is complete if and only if

for any x ∈ RS , we can find θ ∈ RI such that

D⊤θ = x.

Market completeness is thus a question of when we can solve S equations in I unknowns. From

linear algebra we have the following result:

Theorem 3.2 With a finite state space, Ω = {1, 2, . . . , S}, the market is complete if and only if

the rank of the I × S dividend matrix D is equal to S.

Clearly, a necessary (but not sufficient) condition for a complete market is that I ≥ S, i.e. that

there are at least as many assets as states. If the market is complete, the “pruned” dividend matrix

D̂ will be a non-singular S × S matrix.

Example 3.2 The market considered in Example 3.1 is complete since there are as many non-

redundant assets as there are states. Any potential dividend vector can be formed by some portfolio

of three of the traded assets. For example, if we let D be the dividend matrix of the first three

assets, we can generate any dividend vector x by solving D⊤θ = x for the portfolio θ of the first

three assets, i.e. θ =
(
D⊤
)−1

x. In the present case, we have

D =







1 1 1

0 1 2

4 0 1






, D⊤ =







1 0 4

1 1 0

1 2 1






, (D⊤)−1 =







0.2 1.6 −0.8

−0.2 −0.6 0.8

0.2 −0.4 0.2






.

For example, the portfolio providing a dividend vector of (5,−10, 5)⊤ is given by

θ =







0.2 1.6 −0.8

−0.2 −0.6 0.8

0.2 −0.4 0.2













5

−10

5







=







−19

9

6






.

2
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3.6.2 Multi-period framework

In a multi-period setting the market is said to be complete if for any random variable X there

is a trading strategy θ such that Dθ
T = X in all states. This implies that any terminal payment

you may think of can be obtained by some trading strategy. If you think of a payment before the

terminal date T , this can be transformed into a terminal payment by investing it in a given asset

until time T . Hence the definition covers all relevant dates and the market will thus be complete

if any adapted stochastic process can be generated by some trading strategy in the given assets.

More formally, let L denote the set of all random variables (with finite variance) whose outcome

can be determined from the exogenous shocks to the economy over the entire time span T. On

the other hand, let M denote the set of possible time T values that can be generated by forming

self-financing trading strategies in the financial market, i.e.

M =
{
V θ
T |θ self-financing

}
.

Of course, for any trading strategy θ the terminal value V θ
T is a random variable, whose outcome is

not determined until time T . Imposing relevant technical conditions imposed on trading strategies,

the terminal value will have finite variance, so M is always a subset of L. If, in fact, M is equal to

L, the financial market is complete. If not, it is said to be incomplete.

How many assets do we need in order to have a complete market? In the one-period model,

Theorem 3.2 tells us that with S possible states we need at least S sufficiently different assets for

the market to be complete. To generalize this result to the multi-period setting we must be careful.

Consider once again the two-period model illustrated in Figures 2.1 and 2.2 in Chapter 2. Here

there are six possible outcomes, i.e. Ω has six elements. Hence, one might think that we need access

to trade in at least six sufficiently different assets in order for the market to be complete. This is

not correct. We can do with fewer assets. This is based on two observations: (i) the uncertainty

is not revealed completely at once, but little by little, and (ii) we can trade dynamically in the

assets. In the example there are three possible transitions of the economy from time 0 to time 1.

From our one-period analysis we know that three sufficiently different assets are enough to “span”

this uncertainty. From time 1 to time 2 there are either two, three, or one possible transition

of the economy, depending on which state the economy is in at time 1. At most, we need three

sufficiently different assets to span the uncertainty over this period. In total, we can generate any

dividend process if we just have access to three sufficiently different assets in both periods.

In the one-period model, “sufficiently different” means that the matrix of the dividends of the

assets in a given period is of full rank. In the discrete-time multi-period model the payment of a

given asset at the end of each period is the sum of the price and the dividend in that period. The

relevant matrix is therefore the matrix of possible values of price plus dividend at the end of the

period. This matrix tells us how the assets will react to the exogenous shocks over that subperiod.

If we have at least as many assets that respond sufficiently differently to the shocks as we have

possible realizations of these shocks, we can completely hedge the shocks.

The continuous-time financial market with uncertainty generated by a d-dimensional standard

Brownian motion is complete if there are d + 1 sufficiently different assets traded at all times.

For example this is true with an instantaneously risk-free asset plus d risky assets having a price

sensitivity matrix σ t of rank d. The formal proof of this result is pretty complicated and will
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not be given here. We refer the interested reader to Harrison and Pliska (1981, 1983) and Duffie

(2001). However, the result is quite intuitive given the following observations:

• For continuous changes over an instant, only means and variances matter.

• We can approximate the d-dimensional shock dzt by a random variable that takes on d+ 1

possible values and has the same mean and variance as dzt.

• For example, a one-dimensional shock dzt has mean zero and variance dt. This is also true

for a random variable ε which equals
√
dt with a probability of 1/2 and equals −

√
dt with a

probability of 1/2.

• With continuous trading, we can adjust our exposure to the exogenous shocks every instant.

Over each instant we can thus think of the model with uncertainty generated by a d-dimensional

standard Brownian motion as a discrete-time model with d+1 states. Therefore it only takes d+1

sufficiently different assets to complete the market. For example, if all market prices are affected

by a single shock, a one-dimensional Brownian motion, the market will be complete if you can

always find two assets with different sensitivities towards that shock. One of the assets could be a

risk-free asset. Note however that when counting the number of shocks you should include shocks

to variables that contain information about future asset prices.

Let us take a simple, concrete example. Suppose that assets pay no intermediate dividends and

that the price dynamics of an arbitratey asset, asset i, is given by

dPit = Pit [µi dt+ σi dzt] ,

where z = (zt) is a one-dimensional standard Brownian motion and µi, σi are constants. Suppose

that assets i and j have different sensitivities towards the shock, i.e. that σi 6= σj . From (3.14), it

follows that a self-financing trading strategy with a weight of πt on asset i and 1 − πt on asset j

will generate a value process Vt with dynamics

dVt = Vt [(πt(µi − µj) + µj) dt+ (πt(σi − σj) + σj) dzt] .

We can obtain any desired sensitivity towards the shock. The portfolio weight πt = (νt−σj)/(σi−
σj) will generate a portfolio return sensitivity of νt. Now suppose that each µi is a function of some

variable xt and that the dynamics of xt is affected by another shock represented by a standard

Brownian motion ẑ = (ẑt) independent of z, e.g.

dxt = m(xt) dt+ v(xt)
(

ρ dzt +
√

1 − ρ2 dẑt

)

.

Then the full uncertainty of the model is generated by a two-dimensional shock (z, ẑ). Since the

instantaneous price changes are affected only by z, the market is now incomplete. You cannot

hedge against the shock process ẑ.

For a moment think about a continuous-time model where there can be a jump in the value

of one of the key variables. Suppose that in case of a jump the variable can jump to K different

values. The change over an instant in such a variable cannot be represented only by the expectation

and the variance of the jump. To obtain any desired exposure to the jump risk you need K assets

which react sufficiently different to the jump. Typical models with jump risk assume that the
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size of the jump is normally or lognormally distributed. In both cases there are infinitely many

possible realizations of the jump size and, consequently, a market with finitely many assets will be

incomplete.

3.6.3 Discussion

As we shall see in later sections, some fundamental results require that the market is complete. It

is therefore relevant to assess the realism of this property. Market completeness means that every

risk is traded. Individuals can insure against all risks (relevant for asset prices) through trading

in financial assets. Clearly, individuals would like to have that opportunity so if the market is

incomplete there will be an incentive to create new non-redundant assets that will help complete

the market. In fact, at least part of the many new assets that have been introduced in the financial

markets over the last decades do help complete the market, e.g. assets with dividends depending on

the stock market volatility, the weather at a given location, or the number of natural catastrophes.

On the other hand, some risks are difficult to market. For example, due to the obvious information

asymmetry, it is unlikely that individual labor income risk can be fully insured in the financial

market. Maybe you would like to obtain full income insurance but who should provide that, given

that you probably know a lot more about your potential income than anybody else—and that you

can influence your own income while others cannot. Hence, we should not expect that real-life

financial markets are complete in the strict sense.

If the market is incomplete, it is not possible to adjust your exposure to one or several shocks

included in the model. But maybe investors do not care about those shocks. Then the model is

said to be effectively complete. Before solving for prices and optimal decisions of the individuals,

it is generally impossible to decide whether an incomplete market is really effectively complete.

We will return to this discussion and some formal results on that in Chapter 7.

3.7 Concluding remarks

To be added...

3.8 Exercises

EXERCISE 3.1 Consider a one-period model with only two possible end-of-period states. Three

assets are traded in an arbitrage-free market. Asset 1 is a risk-free asset with a price of 1 and an

end-of-period dividend of Rf , the risk-free gross rate of return. Asset 2 has a price of S and offers

a dividend of uS in state 1 and dS in state 2.

(a) Show that if the inequality d < Rf < u does not hold, there will be an arbitrage.

Asset 3 is a call-option on asset 2 with an exercise price of K. The dividend of asset 3 is therefore

Cu ≡ max(uS −K, 0) in state 1 and Cd ≡ max(dS −K, 0) in state 2.

(b) Show that a portfolio consisting of θ1 units of asset 1 and θ2 units of asset 2, where

θ1 = (Rf )−1uCd − dCu
u− d

, θ2 =
Cu − Cd
(u− d)S
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will generate the same dividend as the option.

(c) Show that the no-arbitrage price of the option is given by

C = (Rf )−1 (qCu + (1 − q)Cd) ,

where q = (Rf − d)/(u− d).

EXERCISE 3.2 Imagine a one-period economy with two possible end-of-period states that are

equally likely. Two assets are traded. Asset 1 has an initial price of 1 and pays off 1 in state 1 and

2 in state 2. Asset 2 has an initial price of 3 and gives a payoff of 2 in state 1 and a payoff k in

state 2, where k is some constant.

(a) Argue that if k = 4, the Law of One Price does not hold. Is the Law of One Price violated

for other values of k?

(b) For what values of k is the market complete?

(c) For what values of k is the market free of arbitrage?

(d) Assume k = 8. Is it possible to obtain a risk-free dividend? If so, what is the risk-free rate?

EXERCISE 3.3 Verify Equation (3.4).

EXERCISE 3.4 In a one-period two-state economy the risk-free interest rate over the period is

25%. An asset that pays out 100 in state 1 and 200 in state 2 trades at a price of 110.

(a) What is the no-arbitrage price of a second risky asset that pays out 200 in state 1 and 100

in state 2?

(b) If this second risky asset trades at a higher price than what you computed in (a), how can

you obtain a risk-free profit?
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State prices

4.1 Introduction

If you want to price a set of assets, you could take them one by one and evaluate the dividends of

each asset separately. However, to evaluate all assets in a consistent way (e.g. avoiding arbitrage)

it is a better strategy first to figure out what your general pricing rule should be and subsequently

you can apply that to any given dividend stream. The general pricing rule can be represented by

a state-price deflator, which is the topic of this chapter. Basically, a state-price deflator contains

information about the valuation of additional payments in different states and at different points in

time. Combining that with the state- and time-dependent dividends of any asset, you can compute

a value or price of that asset.

Section 4.2 defines the state-price deflator in each of our general frameworks (one-period, discrete-

time, continuous-time) and derives some immediate consequences for prices and expected returns.

Further important properties of state-price deflators are obtained in Section 4.3. Section 4.4

explains the difference between real and nominal state-price deflators. Finally, Section 4.5 gives a

preview of some alternative ways of representing the information in a state-price deflator. These

alternatives are preferable for some purposes and will be studied in more detail in later chapters.

The concept of state prices was introduced and studied by Arrow (1951, 1953, 1970), Debreu

(1954), Negishi (1960), and Ross (1978).

4.2 Definitions and immediate consequences

This section gives a formal definition of a state-price deflator. Some authors use the name stochastic

discount factor, event-price deflator, or pricing kernel instead of state-price deflator.

4.2.1 The one-period framework

A state-price deflator is a random variable ζ with the properties that

(i) ζ has finite variance,

(ii) ζ > 0, i.e. ζ(ω) > 0 for all states ω ∈ Ω,

61
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(iii) the price of the I basic assets are given by

Pi = E[ζDi], i = 1, 2, . . . , I, (4.1)

or, more compactly, P = E[ζD].

The finite variance assumptions on both the state-price deflator and the dividends ensure that the

expectation E[ζDi] is finite.

We get a similar pricing equation for portfolios:

P θ =
I∑

i=1

θiPi =
I∑

i=1

θi E[ζDi] = E

[

ζ

(
I∑

i=1

θiDi

)]

= E
[
ζDθ

]
. (4.2)

In terms of gross rates of returns, Ri = Di/Pi, a state-price deflator ζ has the property that

1 = E[ζRi], i = 1, 2, . . . , I, (4.3)

or, 1 = E[ζR] in vector notation.

For a risk-free portfolio with a dividend of 1, the price P f is

P f = E [ζ]

and the risk-free gross rate of return is thus

Rf =
1

P f
=

1

E [ζ]
. (4.4)

Exploiting the definition of a covariance, the pricing condition (4.1) can be rewritten as

Pi = E[ζ] E[Di] + Cov[Di, ζ]. (4.5)

A dividend of a given size is valued more highly in a state for which the state-price deflator is high

than in a state where the deflator is low. If a risk-free asset is traded, we can rewrite this as

Pi =
E[Di] +Rf Cov[Di, ζ]

Rf
, (4.6)

i.e. the value of a future dividend is given by the expected dividend adjusted by a covariance term,

discounted at the risk-free rate. If the dividend is positively [negatively] covarying with the state-

price deflator, the expected dividend is adjusted downwards [upwards]. Defining the dividend-beta

of asset i with respect to the state-price deflator as

β[Di, ζ] =
Cov[Di, ζ]

Var[ζ]
(4.7)

and η = −Var[ζ]/E[ζ] < 0, we can rewrite the above pricing equation as

Pi =
E[Di] − β[Di, ζ]η

Rf
. (4.8)

Some basic finance textbooks suggest that a future uncertain dividend can be valued by taking

the expected dividend and discount it by a discount rate reflecting the risk of the dividend. For

asset i, this discount rate R̂i is implicitly defined by Pi = E[Di]/R̂i and combining this with the

above equations, we must have

R̂i =
Rf E[Di]

E[Di] − β[Di, ζ]η
= Rf

1

1 − β[Di,ζ]η
E[Di]

. (4.9)
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The risk-adjusted discount rate does not depend on the scale of the dividend in the sense that

the risk-adjusted discount rate for a dividend of kDi for any constant k is the same as for a

dividend of Di. Note that the risk-adjusted discount rate will be smaller than Rf if the dividend

is negatively covarying with the stare-price deflator. In fact, if E[Di] < β[Di, ζ]η, the risk-adjusted

gross discount rate will be negative! While this possibility is rarely realized in textbooks, it is not

really surprising. Some assets or investments will have a negative expected future dividend but

still a positive value today. This is the case for most insurance contracts. The lesson here is to

be careful if you want to value assets by discounting expected dividends by risk-adjusted discount

rates.

For the gross rate of return, Ri = Di/Pi, we get

1 = E[ζ] E[Ri] + Cov[Ri, ζ]

implying that

E[Ri] =
1

E[ζ]
− Cov[Ri, ζ]

E[ζ]
. (4.10)

If a risk-free asset is available, the above equation specializes to

E[Ri] −Rf = −Cov[Ri, ζ]

E[ζ]
, (4.11)

which again can be rewritten as

E[Ri] −Rf =
Cov[Ri, ζ]

Var[ζ]

(

−Var[ζ]

E[ζ]

)

= β[Ri, ζ]η, (4.12)

where the return-beta β[Ri, ζ] is defined as Cov[Ri, ζ]/Var[ζ] corresponding to the definition of

the market-beta of an asset in the traditional CAPM. An asset with a positive [negative] return-

beta with respect to the state-price deflator will have an expected return smaller [larger] than the

risk-free return. Of course, we can also write the covariance as the product of the correlation and

the standard deviations so that

E[Ri] −Rf = −ρ[Ri, ζ]σ[Ri]
σ[ζ]

E[ζ]
, (4.13)

and the Sharpe ratio of asset i is

E[Ri] −Rf

σ[Ri]
= −ρ[Ri, ζ]

σ[ζ]

E[ζ]
. (4.14)

The expressions involving expected returns and return-betas above are not directly useful if

you want to value a future dividend. For that purpose the equations with expected dividends

and dividend-betas are superior. On the other hand the return-expressions are better for empirical

studies, where you have a historical record of observations of returns and, for example, of a potential

state-price deflator.

Example 4.1 Let ζ be a state-price deflator and consider a dividend given by

Di = a+ bζ + ε,

where a, b are constants, and where ε is a random variable with mean zero and Cov[ε, ζ] = 0. What

is the price of this dividend? We can use the original pricing condition to get

Pi = E[Diζ] = E [(a+ bζ + ε) ζ] = aE[ζ] + bE[ζ2],
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using E[εζ] = Cov[ε, ζ] + E[ε] E[ζ] = 0 + 0 = 0. Alternatively, we can compute

E[Di] = a+ bE[ζ], Cov[Di, ζ] = bVar[ζ],

and use (4.5) to get

Pi = E[ζ] (a+ bE[ζ]) + bVar[ζ]

= aE[ζ] + bE[ζ2]

using the identity Var[ζ] = E[ζ2] − (E[ζ])2. 2

Some empirical tests of asset pricing models focus on excess returns, where returns on all assets

are measured relative to the return on a fixed benchmark asset or portfolio. Let R̄ be the return

on the benchmark. The excess return on asset i is then Rei ≡ Ri − R̄. Since the above equations

hold for both asset i and the benchmark, we get that

E[ζRei ] = 0

and

E[Rei ] = −Cov[Rei , ζ]

E[ζ]
= β[Rei , ζ]η, (4.15)

where β[Rei , ζ] = β[Ri, ζ] − β[R̄, ζ].

If the state space is finite, Ω = {1, 2, . . . , S}, we can alternatively represent a general pricing rule

by a state-price vector, which is an S-dimensional vector ψ = (ψ1, . . . , ψS)⊤ with the properties

(i) ψ > 0, i.e. ψω > 0 for all ω = 1, 2, . . . , S,

(ii) the price of the I assets are given by

Pi = ψ ·Di =
S∑

ω=1

ψωDiω, i = 1, 2, . . . , I, (4.16)

or, more compactly, P = Dψ, where D is the dividend matrix of all the basic assets.

Suppose we can construct an Arrow-Debreu asset for state ω, i.e. a portfolio paying 1 in state ω

and nothing in all other states. The price of this portfolio will be equal to ψω, the “state price for

state ω.” The price of a risk-free dividend of 1 is P f ≡ ψ ·1 =
∑S
ω=1 ψω so that the gross risk-free

rate of return is

Rf =
1

∑S
ω=1 ψω

=
1

ψ · 1 .

There is a one-to-one correspondence between state-price vectors and state-price deflators. With

a finite state space a state-price deflator is equivalent to a vector ζ = (ζ1, ζ2, . . . , ζS)⊤ and we can

rewrite (4.1) as

Pi =

S∑

ω=1

pωζωDiω, i = 1, 2, . . . , I.

We can then define a state-price vector ψ by

ψω = ζωpω. (4.17)
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Conversely, given a state-price vector this equation defines a state-price deflator. With infinitely

many states we cannot meaningfully define state-price vectors but we can still define state-price

deflators in terms of random variables.

Example 4.2 Consider the same market as in Example 3.1. Suppose there is a state-price vector

ψ = (0.3, 0.2, 0.3)⊤. Then we can compute the prices of the four assets as P = Dψ, i.e.









P1

P2

P3

P4









=









1 1 1

0 1 2

4 0 1

9 0 1















0.3

0.2

0.3







=









0.8

0.8

1.5

3









.

In particular, the gross risk-free rate of return is 1/(0.3+0.2+0.3) = 1.25 corresponding to a 25%

risk-free net rate of return.

If the state probabilities are 0.5, 0.25, and 0.25, respectively, the state-price deflator correspond-

ing to the state-price vector is given by

ζ1 =
0.3

0.5
= 0.6, ζ2 =

0.2

0.25
= 0.8, ζ3 =

0.3

0.25
= 1.2.

2

4.2.2 The discrete-time framework

In the discrete-time multi-period framework with time set T = {0, 1, 2, . . . , T} a state-price deflator

is an adapted stochastic process ζ = (ζt)t∈T such that

(i) ζ0 = 1,

(ii) ζt > 0 for all t = 1, 2, . . . , T ,

(iii) for any t ∈ T, ζt has finite variance,

(iv) for any basic asset i = 1, . . . , I and any t ∈ T, the price satisfies

Pit = Et

[
T∑

s=t+1

Dis
ζs
ζt

]

. (4.18)

The condition (i) is just a normalization. The condition (iii) is purely technical and will ensure that

some relevant expectations exist. Condition (iv) gives the price at time t in terms of all the future

dividends and the state-price deflator. This condition will also hold for all trading strategies.

The pricing condition implies a link between the price of an asset at two different points in time,

say t < t′. From (4.18) we have

Pit′ = Et′

[
T∑

s=t′+1

Dis
ζs
ζt′

]

.
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We can now rewrite the price Pit as follows:

Pit = Et

[
T∑

s=t+1

Dis
ζs
ζt

]

= Et





t′∑

s=t+1

Dis
ζs
ζt

+
T∑

s=t′+1

Dis
ζs
ζt





= Et





t′∑

s=t+1

Dis
ζs
ζt

+
ζt′

ζt

T∑

s=t′+1

Dis
ζs
ζt′





= Et





t′∑

s=t+1

Dis
ζs
ζt

+
ζt′

ζt
Et′

[
T∑

s=t′+1

Dis
ζs
ζt′

]



= Et





t′∑

s=t+1

Dis
ζs
ζt

+ Pit′
ζt′

ζt



 . (4.19)

Here the fourth equality follows from the Law of Iterated Expectations, Theorem 2.1. Conversely,

Equation (4.19) implies Equation (4.18).

A particularly simple version of (4.19) occurs for t′ = t+ 1:

Pit = Et

[
ζt+1

ζt
(Pi,t+1 +Di,t+1)

]

, (4.20)

or in terms of the gross rate of return Ri,t+1 = (Pi,t+1 +Di,t+1)/Pit:

1 = Et

[
ζt+1

ζt
Ri,t+1

]

. (4.21)

These equations show that the ratio ζt+1/ζt acts as a one-period state-price deflator between time t

and t + 1 in the sense of the definition in the one-period framework, except that the price at the

end of the period (zero in the one-period case) is added to the dividend. Of course, given the state-

price deflator process ζ = (ζt) we know the state-price deflators ζt+1/ζt for each of the subperiods.

(Note that these will depend on the realized value ζt which is part of the information available at

time t.) Conversely, a sequence of “one-period state-price deflators” ζt+1/ζt and the normalization

ζ0 = 1 define the entire state-price deflator process.

If an asset provides a risk-free gross rate of return Rft over the period between t and t+ 1 that

return will be known at time t and we get that

1 = Et

[
ζt+1

ζt
Rft

]

= Rft Et

[
ζt+1

ζt

]

(4.22)

and hence

Rft =

(

Et

[
ζt+1

ζt

])−1

. (4.23)

Similar to the one-period case, the above equations lead to an expression for the expected excess

return of an asset over a single period:

Et[Ri,t+1] −Rft = −
Covt

[

Ri,t+1,
ζt+1

ζt

]

Et

[
ζt+1

ζt

] = βt

[

Ri,t+1,
ζt+1

ζt

]

ηt, (4.24)
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where

βt

[

Ri,t+1,
ζt+1

ζt

]

=
Covt

[

Ri,t+1,
ζt+1

ζt

]

Vart

[
ζt+1

ζt

] , ηt = −
Vart

[
ζt+1

ζt

]

Et

[
ζt+1

ζt

] .

The same relation holds for net rates of return. Just substitute Ri,t+1 = 1 + ri,t+1 and Rft =

1 + rft on the left-hand side and observe that the ones cancel. On the right-hand side use that

Covt[Ri,t+1, x] = Covt[1 + ri,t+1, x] = Covt[ri,t+1, x] for any random variable x. Therefore we can

work with gross or net returns as we like in such expressions. The conditional Sharpe ratio of

asset i becomes

Et[Ri,t+1] −Rft
σt[Ri,t+1]

= −ρt
[

Ri,t+1,
ζt+1

ζt

] σt

[
ζt+1

ζt

]

Et

[
ζt+1

ζt

] . (4.25)

These expressions are useful for empirical purposes.

For the valuation of a future dividend stream we have to apply (4.18). Applying the covariance

definition once again, we can rewrite the price as

Pit =

T∑

s=t+1

(

Et[Dis] Et

[
ζs
ζt

]

+ Covt

[

Dis,
ζs
ζt

])

.

By definition of a state-price deflator, a zero-coupon bond maturing at time s with a face value

of 1 will have a time t price of

Bst = Et

[
ζs
ζt

]

.

Define the corresponding (annualized) yield ŷst by

Bst =
1

(1 + ŷst )
s−t

⇔ ŷst = (Bst )
−1/(s−t) − 1. (4.26)

Note that this is a risk-free rate of return between time t and time s. Now we can rewrite the

above price expression as

Pit =

T∑

s=t+1

Bst



Et[Dis] +
Covt

[

Dis,
ζs

ζt

]

Bst





=

T∑

s=t+1

Et[Dis] +
Covt[Dis,

ζs
ζt

]
Et[ ζs

ζt
]

(1 + ŷst )
s−t .

(4.27)

Each dividend is valued by discounting an appropriately risk-adjusted expected dividend by the

risk-free return over the period. This generalizes the result in the one-period framework.

Example 4.3 Assume that the state-price deflator ζ = (ζt) satisfies

Et

[
ζt+1

ζt

]

= µζ , Vart

[
ζt+1

ζt

]

= σ2
ζ

for each t = 0, 1, 2, . . . , T − 1. In particular, Et
[
(ζt+1/ζt)

2
]

= σ2
ζ + µ2

ζ . Consider an uncertain

stream of dividends D = (Dt), where the dividend growth rate is given by

Dt+1

Dt
= a+ b

ζt+1

ζt
+ εt+1, t = 0, 1, . . . , T − 1,

where ε1, . . . , εT are independent with Et[εt+1] = 0 and Et[εt+1ζt+1] = 0 for all t.
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First note that

Et

[
Dt+1

Dt

ζt+1

ζt

]

= Et

[(

a+ b
ζt+1

ζt
+ εt+1

)
ζt+1

ζt

]

= aEt

[
ζt+1

ζt

]

+ bEt

[(
ζt+1

ζt

)2
]

= aµζ + b
(
σ2
ζ + µ2

ζ

)
≡ A

for every t = 0, 1, . . . , T − 1. Together with the Law of Iterated Expectations this implies that for

each s > t

Et

[
Ds

Dt

ζs
ζt

]

= Et

[
Ds−1

Dt

ζs−1

ζt

Ds

Ds−1

ζs
ζs−1

]

= Et

[
Ds−1

Dt

ζs−1

ζt
Es−1

[
Ds

Ds−1

ζs
ζs−1

]]

= AEt

[
Ds−1

Dt

ζs−1

ζt

]

= . . .

= As−t.

The price-dividend ratio of the asset is therefore

Pt
Dt

= Et

[
T∑

s=t+1

Ds

Dt

ζs
ζt

]

=

T∑

s=t+1

Et

[
Ds

Dt

ζs
ζt

]

=

T∑

s=t+1

As−t = A+A2 + · · · +AT−t

=
A

1 −A

(
1 −AT−t

)
.

The price is thus

Pt = Dt
A

1 −A

(
1 −AT−t

)
.

2

Some authors formulate the important pricing condition (iv) as follows: for all basic assets

i = 1, . . . , I the state-price deflated gains process Gζi = (Gζit)t∈T defined by

Gζit =

t∑

s=1

Disζs + Pitζt (4.28)

is a martingale. This means that for t < t′, Gζit = E[Gζit′ ], i.e.

t∑

s=1

Disζs + Pitζt = Et





t′∑

s=1

Disζs + Pit′ζt′



 .

Subtracting the sum on the left-hand side and dividing by ζt yield (4.19).

4.2.3 The continuous-time framework

Similar to the discrete-time framework we define a state-price deflator in the continuous-time

framework as an adapted stochastic process ζ = (ζt) with
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(i) ζ0 = 1,

(ii) ζt > 0 for all t ∈ [0, T ],

(iii) for each t, ζt has finite variance,

(iv) for any basic asset i = 1, . . . , I and any t ∈ [0, T ), the price satisfies

Pit = Et

[
∫ T

t

δisPis
ζs
ζt
ds+DiT

ζT
ζt

]

. (4.29)

Under technical conditions, Equation (4.29) will also hold for all trading strategies. As in the

discrete-time case the pricing equation (4.29) implies that for any t < t′ < T

Pit = Et

[
∫ t′

t

δisPis
ζs
ζt
ds+ Pit′

ζt′

ζt

]

. (4.30)

Again, the condition (iv) can be reformulated as follows: for all basic assets i = 1, . . . , I the

state-price deflated gains process Gζi = (Gζit)t∈T defined by

Gζit =







∫ t

0
δisPisζs ds+ Pitζt for t < T ,

∫ T

0
δisPisζs ds+DiT ζT for t = T

(4.31)

is a martingale.

If we invest in one unit of asset i at time t and keep reinvesting the continuously paid dividends

in the asset, we will end up at time T with exp{
∫ T

t
δiu du} units of the asset, cf. the argument in

Section 3.2.3. Therefore, we have the following relation:

Pit = Et

[

e
R T

t
δiu duDiT

ζT
ζt

]

. (4.32)

As in the discrete-time case we can derive information about the short-term risk-free rate of

return and the expected returns on the risky assets from the state-price deflator. First we do this

informally by considering a discrete-time approximation with period length ∆t and let ∆t→ 0 at

some point. In such an approximate model the risk-free one-period gross rate of return satisfies

1

Rft
= Et

[
ζt+∆t

ζt

]

,

according to (4.23). In terms of the annualized continuously compounded one-period risk-free rate

rft , the left-hand side is given by exp{−rft ∆t} ≈ 1 − rft ∆t. Subtracting one on both sides of the

equation and changing signs, we get

rft ∆t = −Et

[
ζt+∆t − ζt

ζt

]

.

Dividing by ∆t and letting ∆t→ 0 we get

rft = − lim
∆t→0

1

∆t
Et

[
ζt+∆t − ζt

ζt

]

= − 1

dt
Et

[
dζt
ζt

]

.

The left-hand side is the continuously compounded short-term risk-free interest rate. The right-

hand side is minus the relative drift of the state-price deflator.
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To obtain an expression for the current expected return on a risky asset start with the equivalent

of (4.21) in the approximating discrete-time model, i.e.

Et

[
ζt+∆

ζt
Ri,t+∆t

]

= 1,

which implies that

Et [Ri,t+∆t] Et

[
ζt+∆

ζt

]

− 1 = −Covt

[

Ri,t+∆t,
ζt+∆

ζt

]

.

For small ∆t, we have

Et [Ri,t+∆t] ≈ e(δit+µit)∆t,

Et

[
ζt+∆t

ζt

]

≈ e−r
f
t ∆t,

Covt

[

Ri,t+∆t,
ζt+∆

ζt

]

≈ Covt

[
Pi,t+∆t

Pit
,
ζt+∆t

ζt

]

= Covt

[
Pi,t+∆t − Pit

Pit
,
ζt+∆t − ζt

ζt

]

.

If we substitute these expressions into the previous equation, use ex ≈ 1 + x on the left-hand side,

divide by ∆t, and let ∆t→ 0 we arrive at

µit + δit − rft = − lim
∆t→0

1

∆t
Covt

[
Pi,t+∆t − Pit

Pit
,
ζt+∆t − ζt

ζt

]

= − 1

dt
Covt

[
dPit
Pit

,
dζt
ζt

]

. (4.33)

The left-hand side is the expected excess rate of return over the next instant. The right-hand side

is the current rate of covariance between the return on the asset and the relative change of the

state-price deflator.

Now let us give a more rigorous treatment. Write the dynamics of a state-price deflator as

dζt = −ζt [mt dt+ λ⊤

t dzt] (4.34)

for some relative drift m and some “sensitivity” vector λ. First focus on the risk-free asset.

By the pricing condition in the definition of a state-price deflator, the process Gζf defined by

Gζft = ζt exp{
∫ t

0
rfu du} has to be a martingale, i.e. have a zero drift. By Itô’s Lemma,

dGζft = Gζft

[

(−mt + rft ) dt− λ⊤

t dzt

]

so we conclude that mt = rft , i.e. the relative drift of a state-price deflator is equal to the negative

of the continuously compounded short-term risk-free interest rate.

Next, for any risky asset i the process Gζi defined by (4.31) must be a martingale. From Itô’s

Lemma and the dynamics of Pi and ζ given in (3.3) and (4.34), we get

dGζit = δitPitζt dt+ ζt dPit + Pitdζt + (dζt)(dPit)

= Pitζt
[
(µit + δit −mt − σ⊤

itλt) dt+ (λt + σit)
⊤

dzt
]
.

With a risk-free asset, we know that mt = rft , so setting the drift equal to zero, we conclude that

the equation

µit + δit − rft = σ⊤

itλt (4.35)

must hold for any asset i. This is equivalent to (4.33). In compact form, the condition on λ can

be written

µt + δt − rft 1 = σ tλt. (4.36)
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A (nice) process λ = (λt) satisfying this equation is called a market price of risk. If the price of

the i’th asset is only sensitive to the j’th exogenous shock, Equation (4.35) reduces to

µit + δit − rft = σijtλjt,

implying that

λjt =
µit + δit − rft

σijt
.

Therefore, λjt is the compensation in terms of excess expected return per unit of risk stemming

from the j’th exogenous shock. This explains the name market price of risk. Summing up, the

dynamics of a state-price deflator is of the form

dζt = −ζt
[

rft dt+ λ⊤

t dzt

]

, (4.37)

where λ is a market price of risk.

4.3 Properties of state-price deflators

After defining state-price deflators, two questions arise naturally: When does a state-price deflator

exist? When is it unique? We will answer these questions in the two following subsections.

4.3.1 Existence

Here is the answer to the existence question:

Theorem 4.1 A state-price deflator exists if and only if prices admit no arbitrage.

Since we have already concluded that we should only consider no-arbitrage prices, we can safely

assume the existence of a state-price deflator.

Let us take the easy part of the proof first: if a state-price deflator exists, prices do not admit

arbitrage. Let us just think of the one-period framework so that the state-price deflator is a strictly

positive random variable and the price of a random dividend of Di is Pi = E[ζDi]. If Di is non-

negative in all states, it is clear that ζDi will be non-negative in all states and, consequently, the

expectation of ζDi will be non-negative. This rules out arbitrage of type (i), cf. the definition

of arbitrage in Section 3.4. If, furthermore, the set of states A = {ω ∈ Ω : Di(ω) > 0} has

strictly positive probability, it is clear that ζDi will be strictly positive on a set of strictly positive

probability and otherwise non-negative, so the expectation of ζDi must be strictly positive. This

rules out type (ii) arbitrage. The same argument applies to the discrete-time framework. In the

continuous-time setting the argument should be slightly adjusted in order to incorporate the lower

bound on the value process that will rule out doubling strategies. It is not terribly difficult, but

involves local martingales and super-martingales which we will not discuss here. The interested

reader is referred to Duffie (2001, p. 105).

How can we show the other and more important implication that no arbitrage guarantees the

existence of a state-price vector or state-price deflator? In Chapter 6 we will do that by constructing

a state-price deflator from the solution to the utility maximization problem of any individual. The

solution will only exist in absence of arbitrage. It is possible to prove the existence of a state-price
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deflator without formally introducing individuals and solving their utility maximization problems.

The alternative proof is based on the so-called Separating Hyperplane Theorem and involves no

economics.

In the one-period framework with a finite state space Ω = {1, 2, . . . , S}, the alternative argument

goes as follows. A given portfolio θ has an initial dividend of −P θ and a terminal dividend given

by the S-dimensional vector Dθ. Let M denote the set of all (S+1) dimensional pairs (−P θ,Dθ)

that is generated by all portfolios, i.e. all θ ∈ RI . Observe that M is a closed and convex subset of

L ≡ R×RS . Let K be the positive orthant of L, i.e. K ≡ R+ ×RS+, where R+ = [0,∞). K is also

a closed and convex subset of L. Note that there is no arbitrage if and only if the only common

element of K and M is the zero element (0,0).

Assume no arbitrage, i.e. K ∩ M = {(0,0)}. By the Separating Hyperplane Theorem (see,

e.g., Rockafellar 1970) there exists a non-zero linear functional F : L → R with the property

that F (z) = 0 for all z ∈ M and F (x) > 0 for all non-zero x ∈ K. Hence, we can find a

strictly positive ϕ0 in R and an S-dimensional vector ϕ with strictly positive elements such that

F (d0,d) = ϕ0d0 +ϕ ·d for all (d0,d) in L. Since (−P θ,Dθ) ∈M for any portfolio θ, we have that

0 = F (−P θ,Dθ) = −ϕ0P
θ +ϕ ·Dθ,

and hence

P θ =
1

ϕ0
ϕ ·Dθ.

The vector ψ = ϕ/ϕ0 is therefore a state-price vector.

Just assuming that prices obey the law of one price would give us a vector ψ satisfying ψ·Di = Pi

for all i. Imposing the stronger no-arbitrage condition ensures us that we can find a strictly positive

vector ψ with that property, i.e. a state-price vector. Dividing by state probabilities, ζω = ψω/pω,

we obtain a state-price deflator.

Example 4.4 Consider again the market in Example 3.1 and ignore asset 4, which is redundant.

Suppose the market prices of the three remaining assets are 1.1, 2.2, and 0.6, respectively. Can you

find a state-price vector ψ? The only candidate is the solution to the equation system Dψ = P ,

i.e.

ψ =
(
D
)−1

P =







1 1 1

0 1 2

4 0 1







−1





1.1

2.2

0.6







=







−0.1

0.2

1






,

which is not strictly positive. Hence there is no state-price vector for this market. Then there must

be an arbitrage, but where? We can see that the three assets are priced such that the implicit value

of an Arrow-Debreu asset for state 1 is negative. The portfolio of the three assets that replicates

this Arrow-Debreu asset is given by

θ =
(
D⊤
)−1

e1 =







0.2 1.6 −0.8

−0.2 −0.6 0.8

0.2 −0.4 0.2













1

0

0







=







0.2

−0.2

0.2






,

which indeed has a price of 0.2 · 1.1− 0.2 · 2.2+0.2 · 0.6 = −0.1. You get 0.1 today for an asset that

pays you one if state 1 is realized and nothing in other states. This is clearly an arbitrage. 2
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4.3.2 Uniqueness

Here is a general result on the uniqueness of state-price deflators:

Theorem 4.2 Assume prices admit no arbitrage. Then there is a unique state-price deflator if

and only if the market is complete. If the market is incomplete, several state-price deflators exist.

In a one-period framework the theorem can be explained as follows. In the absence of arbitrage,

some state-price deflator ζ exists. If ε is a random variable with E[εDi] = 0 for all i, then

E[(ζ + ε)Di] = E[ζDi] + E[εDi] = E[ζDi] = Pi.

If ε is strictly positive with finite variance, then ζ + ε will be a valid state-price deflator. When

can we find such an ε? If the market is complete, the dividends of the basic assets span all random

variables so it will be impossible to find a random variable ε not identically equal to zero with

E[εDi] = 0. Therefore ζ must be the only state-price deflator.

Let us be a bit more precise. Consider, for simplicity, a one-period framework with a finite state

space and look for a state-price vector ψ, i.e. a strictly positive solution to the equation system

Dψ = P . If the market is complete and there are no redundant assets, the dividend matrix D is

an S × S non-singular matrix so the only solution to the equation system is

ψ∗ = D−1P .

If there are redundant assets, they will be uniquely priced by no-arbitrage so it will be sufficient

to look for solutions to D̂ψ = P̂ , where D̂ is the dividend matrix and P̂ the price vector of the

non-redundant assets. In the case of a complete market the matrix D̂ is non-singular. The unique

solution to the equation system is then

ψ∗ = D̂
−1
P̂ . (4.38)

Whether the market is complete or not, the S-dimensional vector

ψ∗ = D̂
⊤
(

D̂ D̂
⊤
)−1

P̂ (4.39)

is a solution since

D̂ψ∗ = D̂ D̂
⊤
(

D̂ D̂
⊤
)−1

P̂ = P̂ .

If ψ∗ is strictly positive, we can therefore conclude that it will be a state-price vector. Note that

ψ∗ is in fact exactly equal to the dividend generated by the portfolio θ̂
∗

=
(

D̂ D̂
⊤
)−1

P̂ , i.e. if ψ∗

is strictly positive, it is a state-price vector in the set of marketed dividend vectors.

In the special case of a complete and arbitrage-free market the elements of ψ∗ will be strictly

positive. Why? Since the market is complete, we can construct an Arrow-Debrey asset for any

state. The dividend vector of the Arrow-Debreu asset for state ω is eω = (0, . . . , 0, 1, 0, . . . , 0)⊤,

where the 1 is the ω’th element of the vector. The price of this portfolio is ψ∗ · eω = ψ∗
ω. To avoid

arbitrage, ψ∗
ω must be strictly positive. This argument works for all ω = 1, . . . , S. Hence, ψ∗ is a

state-price vector if the market is complete.

In fact, if the market is complete, ψ∗ is the only state-price vector. Suppose that both ψ∗ and

ψ∗∗ are state-price vectors. That ψ∗ is a state-price vector implies that the price of the Arrow-

Debreu asset for state ω is ψ∗ · eω = ψ∗
ω. That ψ∗∗ is a state-price vector implies that the price
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of the Arrow-Debreau asset for state ω is ψ∗∗ · eω = ψ∗∗
ω . Hence, we can conclude that ψ∗

ω = ψ∗∗
ω .

This argument works for any ω. Therefore the two vectors ψ∗ and ψ∗∗ are identical.

Now let us turn to state-price deflators. Due to the one-to-one correspondence between state-

price vectors and state-price deflators we expect to find similar results. Define the S-dimensional

vector ζ∗ by

ζ∗ = D̂
⊤
(

E
[

D̂D̂
⊤
])−1

P̂ . (4.40)

To see the meaning of this, let us for simplicity assume that none of the basic assets are redundant

so that ζ∗ = D⊤ (E [DD⊤])
−1
P . Recall that D is the I-dimensional random variable for which

the i’th component is given by the random dividend of asset i. Hence, DD⊤ is an I × I matrix of

random variables with the (i, j)’th entry given by DiDj , i.e. the product of the random dividend

of asset i and the random dividend of asset j. The expectation of a matrix of random variables

is equal to the matrix of expectations of the individual random variables. So E [DD⊤] is also an

I × I matrix. For the general case we see from the definition that ζ∗ is in fact the dividend vector

generated by the portfolio

θ̂
∗

=
(

E
[

D̂D̂
⊤
])−1

P̂

of the non-redundant assets. We can think of ζ∗ as a random variable ζ∗ given by

ζ∗ = D̂
⊤
(

E
[

D̂D̂
⊤
])−1

P̂ . (4.41)

We can see that

E
[

D̂ζ∗
]

= E

[

D̂D̂
⊤
(

E
[

D̂D̂
⊤
])−1

P̂

]

= E
[

D̂D̂
⊤
] (

E
[

D̂D̂
⊤
])−1

P̂ = P̂ .

It follows that ζ∗ is a state-price deflator if it takes only strictly positive values. It can be shown

that no other state-price deflator can be written as the dividend of a portfolio of traded assets. In

a complete market, ζ∗ will be a state-price deflator and it will be unique.

Recall that there is a one-to-one relation between state-price vectors and state-price deflators. In

general ζ∗ is not the state-price deflator associated with ψ∗. However, this will be so if the market

is complete. To see this, let diag(p) denote the diagonal S × S matrix with the state probabilities

along the diagonal and zeros away from the diagonal. In general, E
[

D̂D̂
⊤
]

= D̂ diag(p)D̂
⊤

and

the state-price vector associated with a given state-price deflator ζ is diag(p)ζ, cf. (4.17). With a

complete market, D̂ is a non-singular S × S matrix so

ζ∗ = D̂
⊤
(

E
[

D̂D̂
⊤
])−1

P̂ = D̂
⊤
[

D̂ diag(p)D̂
⊤
]−1

P̂

= D̂
⊤
(

D̂
⊤
)−1

[diag(p)]−1D̂
−1
P̂ = [diag(p)]−1D̂

−1
P̂ ,

and the state-price vector associated with ζ∗ is

diag(p)ζ∗ = D̂
−1
P̂ = ψ∗.

If the market is complete and arbitrage-free we have identified the unique state-price vector ψ∗

and the unique state-price deflator ζ∗. But it is important to realize the following: ψ∗ and ζ∗

are defined in terms of the prices of the basic assets. Observing the prices and state-contingent

dividends of the basic assets, we can extract the state-price deflator. If you want to compute

prices of the basic assets from their state-contingent dividends, ψ∗ and ζ∗ are not useful. We
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need to add more structure to link the state-price vector and deflator to other variables, e.g. the

consumption and portfolio decisions of the individuals in the economy. This is what concrete asset

pricing models have to do. Further discussions of ζ∗ and what we can learn about state prices

from observed prices or returns follow later in this chapter.

Example 4.5 Consider again the complete market first studied in Example 3.1. We ignore asset 4,

which is in any case redundant, and let D be the dividend matrix and P the price vector of the

first three assets. If we assume that P = (0.8, 0.8, 1.5)
⊤

, we can compute the unique state-price

vector ψ∗ as

ψ∗ = D−1P =







1 1 1

0 1 2

4 0 1







−1





0.8

0.8

1.5







=







0.3

0.2

0.3






,

which is consistent with the results of Example 4.2. The portfolio generating this dividend vector

is θ∗ = (0.14, 0.06, 0.04)⊤.

Since the market is complete, the unique state-price deflator ζ∗ is the one associated with ψ∗.

From Example 4.2, we have ζ∗1 = 0.6, ζ∗2 = 0.8, ζ∗3 = 1.2. The portfolio generating this dividend is

θ∗ = (0.44, 0.36, 0.04)⊤.

Suppose now that only assets 1 and 2 were traded with the same prices as above, P1 = P2 = 0.8.

Then

D =

(

1 1 1

0 1 2

)

, DD⊤ =

(

3 3

3 5

)

,
(
DD⊤

)−1
=

(
5
6 − 1

2

− 1
2

1
2

)

and we get

ψ∗ = D⊤
(
DD⊤

)−1
P =







4
15
4
15
4
15 ,






,

which is strictly positive and therefore a state-price vector. It is the dividend of the portfolio that

only consists of 4/15 ≈ 0.2667 units of asset 1. But we can find many other state-price vectors.

We have to look for strictly positive solutions (ψ1, ψ2, ψ3)
⊤ of the two equations

ψ1 + ψ2 + ψ3 = 0.8, ψ2 + 2ψ3 = 0.8.

Subtracting one equation from the other we see that we need to have ψ1 = ψ3. Any vector of the

form ψ = (a, 0.8 − 2a, a)⊤ with 0 < a < 0.4 will be a valid state-price vector. (This includes, of

course, the state-price vector in the three-asset market.) All these vectors will generate the same

price on any marketed dividend but different prices on non-marketed dividends. For example, the

value of the dividend of asset 3, which we now assume is not traded, will be ψ · (4, 0, 1)
⊤

= 5a,

which can be anywhere in the interval (0, 2).

Let us compute ζ∗ in the two-asset market. The computations needed for E[DD⊤] are given in

Table 4.1. We get

E[DD⊤] =

(

1 0.75

0.75 1.25

)

, (E[DD⊤])
−1

=

(

1.8182 −1.0909

−1.0909 1.4545

)

,

θ∗ = (E[DD⊤])
−1
P =

(

0.5818

0.2909

)

, ζ∗ = D⊤θ∗ =







0.5818

0.8727

1.1636






.
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state 1 state 2 state 3

probabilities 0.5 0.25 0.25

state-contingent values expectation

D2
1 1 1 1 1

D1D2 0 1 2 0.75

D2
2 0 1 4 1.25

Table 4.1: Computation of expectations for ζ∗ in Example 4.5.

Since ζ∗ > 0, it is a valid state-price deflator. (Note that this is not the state-price deflator

associated with the state-price vector ψ∗ computed above.) We have infinitely many state-price

deflators for this market. Given any state-price vector ψ = (a, 0.8 − 2a, a)⊤ for 0 < a < 0.4, the

associated state-price deflator is given by ζω = ψω/pω, i.e.

ζ =







a/0.5

(0.8 − 2a)/0.25

a/0.25







=







2a

3.2 − 8a

4a






.

Letting b = 2a, any state-price deflator is of the form ζ = (b, 3.2 − 4b, 2b) for 0 < b < 0.8. 2

In the multi-period discrete-time framework all the above observations and conclusions hold in

each period.

Now consider the continuous-time framework and assume that an instantaneously risk-free asset

is traded. We have seen above that state-price deflators are closely related to market prices of risk.

Whenever we have a market price of risk λ = (λt), i.e. a nice process satisfying

µt + δt − rft 1 = σ tλt, (4.36)

then a state-price deflator can be defined by ζ0 = 1 and

dζt = −ζt
[

rft dt+ λ⊤

t dzt

]

, (4.42)

or, equivalently,

ζt = exp

{

−
∫ t

0

rfs ds−
1

2

∫ t

0

‖λs‖2 ds−
∫ t

0

λ⊤

s dzs

}

. (4.43)

The number of state-price deflators is therefore determined by the number of solutions to (4.36),

which again depends on the rank of the matrix σ t.

Suppose the rank of σ t equals k for all t. If k < d, there are several solutions to (4.36). We can

write one solution as

λ∗
t = σ̂⊤

t

(

σ̂
t
σ̂⊤

t

)−1 (

µ̂t + δ̂t − rft 1
)

, (4.44)

where σ̂
t
is the k×d matrix obtained from σ t by removing rows corresponding to redundant assets,

i.e. rows that can be written as a linear combination of other rows in the matrix. Similarly, µ̂t

and δ̂t are the k-dimensional vectors that are left after deleting from µt and δt, respectively, the

elements corresponding to the redundant assets. In the special case where k = d, we have

λ∗
t = σ̂−1

t

(

µ̂t + δ̂t − rft 1
)

.
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Let ζ∗ be the state-price deflator associated with λ∗, i.e.

ζ∗t = exp

{

−
∫ t

0

rfs ds−
1

2

∫ t

0

‖λ∗
s‖2 ds−

∫ t

0

(λ∗
s)

⊤ dzs

}

. (4.45)

In the one-period framework the (candidate) state-price deflator ζ∗ was shown to be the dividend

of some portfolio of traded assets. What about the continuous-time framework? Consider the self-

financing trading strategy given by the fractions of wealth π∗
t =

(

σ̂
t
σ̂⊤

t

)−1 (

µ̂t + δ̂t − rft 1
)

in

the non-redundant assets and the fraction 1 − (π∗
t )

⊤1 in the instantaneously risk-free asset. The

dynamics of the value V ∗
t of this trading strategy is given by

dV ∗
t = V ∗

t

[(

rft + (π∗
t )

⊤

(

µ̂t + δ̂t − rft 1
))

dt+ (π∗
t )

⊤σ̂
t
dzt

]

= V ∗
t

[(

rft + ‖λ∗
t ‖2
)

dt+ (λ∗
t )

⊤ dzt

]

.
(4.46)

cf. (3.14). It can be shown that π∗
t is the trading strategy with the highest expected continuously

compounded growth rate, i.e. the trading strategy maximizing E[ln (V π
T /V

π
0 )], and it is therefore

referred to as the growth-optimal trading strategy. Consequently, λ∗
t defined in (4.44) is the relative

sensitivity vector of the value of the growth-optimal trading strategy. One can show that ζ∗t =

V ∗
0 /V

∗
t (see Exercise 4.11), so we have a state-price deflator defined in terms of the value of a

trading strategy.

If ε = (εt) is a nice d-dimensional stochastic process with σ tεt = 0 for all t, then λt = λ∗
t + εt

defines a market price of risk since

σ tλt = σ t (λ
∗
t + εt) = σ tλ

∗
t + σ tεt = σ tλ

∗
t = µt + δt − rft 1.

If the market is incomplete, it will be possible to find such an εt and, hence, there will be more

than one state-price deflator.

An example of an incomplete market is a market where the traded assets are only immediately

affected by j < d of the d exogenous shocks. Decomposing the d-dimensional standard Brownian

motion z into (Z, Ẑ), where Z is j-dimensional and Ẑ is (d− j)-dimensional, the dynamics of the

traded risky assets can be written as

dP t = diag(P t)
[
µt dt+ σ t dZt

]
.

For example, the dynamics of rft , µt, or σ t may be affected by the non-traded risks Ẑ, representing

non-hedgeable risk in interest rates, expected returns, and volatilities and correlations, respectively.

Or other variables important for the investor, e.g. his labor income, may be sensitive to Ẑ. Let

us assume for simplicity that there are j risky assets and the j × j matrix σ t is non-singular (i.e.

there are no redundant assets). Then we can define a unique market price of risk associated with

the traded risks by the j-dimensional vector

Λt =
(
σ t
)−1

(µt + δt − rt1) ,

but for any well-behaved (d− j)-dimensional process Λ̂, the process λ = (Λ, Λ̂) will be a market

price of risk for all risks. Each choice of Λ̂ generates a valid market price of risk process and hence

a valid state-price deflator.
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4.3.3 Convex combinations of state-price deflators

A convex combination of some objects (such as vectors, random variables, stochastic process, etc.)

x1, x2, . . . , xL is given by

x =
L∑

l=1

αlxl,

where α1, . . . , αL are positive constants summing up to one. The following theorem says that if

you have a number of state-price deflators, any convex combination of those deflators will also be a

state-price deflator. This is true both in the one-period, the discrete-time, and the continuous-time

framework. In particular, it tells you that once you have two different state-price deflators you can

generate infinitely many state-price deflators. The proof of the theorem is left as Exercise 4.3.

Theorem 4.3 If ζ1, . . . , ζL are state-price deflators, and α1, . . . , αL > 0 with
∑L
l=1 αl = 1, then

the convex combination

ζ =

L∑

l=1

αlζl

is also a state-price deflator.

4.3.4 The candidate deflator ζ∗ and the Hansen-Jagannathan bound

The candidate deflator ζ∗ from the one-period framework is interesting for empirical studies so it

is worthwhile to study it more closely. Let us compute the return associated with the dividend ζ∗.

This return turns out to be important in later sections. For notational simplicity suppose that no

assets are redundant so that

ζ∗ = D⊤ (E [DD⊤])
−1
P , θ∗ = (E [DD⊤])

−1
P .

Let us first rewrite ζ∗ and θ∗ in terms of the gross returns of the assets instead of prices and

dividends. Using (3.2), we get

(E [DD⊤])
−1

= (E [diag(P )RR⊤ diag(P )])
−1

= (diag(P ) E [RR⊤] diag(P ))
−1

= [diag(P )]−1 (E [RR⊤])
−1

[diag(P )]−1, (4.47)

using the facts that prices are non-random and that (AB)−1 = B−1A−1 for non-singular matrices

A and B. Consequently,

θ∗ = (E [DD⊤])
−1
P = [diag(P )]−1 (E [RR⊤])

−1
1,

applying that [diag(P )]−1P = 1, and

ζ∗ = D⊤ (E [DD⊤])
−1
P

= D⊤[diag(P )]−1 (E [RR⊤])
−1

1

=
(
[diag(P )]−1D

)
⊤

(E [RR⊤])
−1

1

= R⊤ (E [RR⊤])
−1

1

= 1⊤ (E [RR⊤])
−1
R,
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using (3.2) and various rules from matrix algebra. The portfolio weight vector is obtained by

substituting θ∗ into (3.6). Since

diag(P )θ∗ = diag(P )[diag(P )]−1 (E [RR⊤])
−1

1 = (E [RR⊤])
−1

1,

we get

π∗ =
(E [RR⊤])

−1
1

1⊤ (E [RR⊤])
−1

1
. (4.48)

The gross return on this portfolio is

R∗ = (π∗)⊤R =
1⊤ (E [RR⊤])

−1
R

1⊤ (E [RR⊤])
−1

1
. (4.49)

This is the gross return corresponding to the dividend ζ∗.

We can also compute R∗ directly as ζ∗ divided by the price of ζ∗ (well-defined since it is a

dividend), i.e. R∗ = ζ∗/P (ζ∗). We can rewrite ζ∗ as

ζ∗ = 1⊤ (E [RR⊤])
−1
R,

and the price of ζ∗ is

P (ζ∗) = E[ζ∗ζ∗] = E
[

P⊤ (E [DD⊤])
−1
DD⊤ (E [DD⊤])

−1
P
]

= P⊤ (E [DD⊤])
−1
P = 1⊤ (E [RR⊤])

−1
1.

Dividing ζ∗ by P (ζ∗) we get (4.49).

In Exercise 4.4 you are asked to show the properties collected in the following lemma:

Lemma 4.1 R∗ has the following properties:

E[R∗] =
1⊤ (E [RR⊤])

−1
E[R]

1⊤ (E [RR⊤])
−1

1
(4.50)

E[(R∗)2] =
1

1⊤ (E [RR⊤])
−1

1
=

1

P (ζ∗)
, (4.51)

E[R∗Ri] = E[(R∗)2], i = 1, . . . , N. (4.52)

In particular,
E[R∗]

E[(R∗)2]
= 1⊤ (E[RR⊤])

−1
E[R]. (4.53)

Any random variable ζ that satisfies Pi = E[ζDi] for all assets i can be decomposed as

ζ = E[ζ] + (P − E[ζ] E[D])
⊤

Σ−1
D (D − E[D]) + ε, (4.54)

where ΣD = Var[D] and ε is a random variable with E[Dε] = 0 and E[ε] = 0. In particular

Cov[D, ε] = 0. So taking variances we get

Var[ζ] = (P − E[ζ] E[D])
⊤

Σ−1
D Var [D − E[D]] Σ−1

D (P − E[ζ] E[D]) + Var[ε]

≥ (P − E[ζ] E[D])
⊤

Σ−1
D (P − E[ζ] E[D])

= (1 − E[ζ] E[R])
⊤

Σ−1 (1 − E[ζ] E[R]) ,
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where Σ = Var[R]. The possible combinations of expectation and standard deviation of state-

price deflators form a hyperbolic region in (E[ζ], σ[ζ])-space. This result is due to Hansen and

Jagannathan (1991) and the right-hand side of the above inequality (or the boundary of the

hyperbolic region) is called the Hansen-Jagannathan bound. In Exercise 4.5 you are asked to show

that ζ∗ satisfies

ζ∗ = E[ζ∗] + (P − E[ζ∗] E[D])
⊤

Σ−1
D (D − E[D]) . (4.55)

Note that no ε is added on the right-hand side. It follows that ζ∗ satisfies the Hansen-Jagannathan

bound with equality.

4.4 Nominal and real state-price deflators

It is important to distinguish between real and nominal dividends and prices. A nominal dividend

[price] is the dividend [price] in units of a given currency, e.g. US dollars or Euros. The corre-

sponding real dividend [price] is the number of units of consumption goods which can be purchased

for the nominal dividend [price]. For simplicity assume that the economy only offers a single con-

sumption good and let Ft denote the price of the good in currency units at time t. (More broadly

we can think of Ft as the value of the Consumer Price Index at time t.) A nominal dividend of D̃t

then corresponds to a real dividend of Dt = D̃t/Ft. A nominal price of P̃t corresponds to a real

price of Pt = P̃t/Ft.

A state-price deflator basically links future dividends to current prices. We can define a nominal

state-price deflator so that the basic pricing condition holds for nominal prices and dividends and,

similarly, define a real state-price deflator so that the basic pricing condition holds for real prices

and dividends. If we continue to indicate nominal quantities by a tilde and real quantities without a

tilde, the definitions of state-price deflators given earlier in this chapter characterize real state-price

deflators.

Consider a multi-period discrete-time economy where ζ = (ζt) is a real state-price deflator so

that, in particular,

Pit = Et

[
T∑

s=t+1

Dis
ζs
ζt

]

,

cf. (4.18). Substituting in Pit = P̃it/Ft and Dis = D̃is/Fs and multiplying through by Ft, we

obtain

P̃it = Et

[
T∑

s=t+1

D̃is
ζs/Fs
ζt/Ft

]

.

Now it is clear that a nominal state-price deflator ζ̃ = (ζ̃t) should be defined from a real state-price

deflator ζ = (ζt) as

ζ̃t =
ζt
Ft
, all t ∈ T. (4.56)

Then the nominal state-price deflator will link nominal dividends to nominal prices in the same

way that a real state-price deflator links real dividends to real prices. This relation also works

in the continuous-time framework. Note that the nominal state-price deflator is positive with an

initial value of ζ̃0 = 1/F0.

In a discrete-time framework the gross nominal return on asset i between time t and time t+ 1

is R̃i,t+1 =
(

P̃i,t+1 + D̃i,t+1

)

/P̃it. The link between the gross real return and the gross nominal
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return follows from

Ri,t+1 =
Pi,t+1 +Di,t+1

Pit
=
P̃i,t+1/Ft+1 + D̃i,t+1/Ft+1

P̃it/Ft

=
P̃i,t+1 + D̃i,t+1

P̃it

Ft
Ft+1

= R̃i,t+1
Ft
Ft+1

.

(4.57)

In terms of the net rates of return ri,t+1 = Ri,t+1 − 1, r̃i,t+1 = R̃i,t+1 − 1, and the percentage

inflation rate ϕt+1 = Ft+1/Ft − 1 we have

1 + ri,t+1 =
1 + r̃i,t+1

1 + ϕt+1
,

which implies that

ri,t+1 =
1 + r̃i,t+1

1 + ϕt+1
− 1 =

r̃i,t+1 − ϕt+1

1 + ϕt+1
≈ r̃i,t+1 − ϕt+1. (4.58)

The above equations show how to obtain real returns from nominal returns and inflation. Given a

time series of nominal returns and inflation, it is easy to compute the corresponding time series of

real returns.

The realized gross inflation rate Ft+1/Ft is generally not known in advance. Therefore the real

return on a nominally risk-free asset is generally stochastic (and conversely). The link between the

nominally risk-free gross return R̃ft and the real risk-free gross return Rft is

1

R̃ft
= Et

[

ζ̃t+1

ζ̃t

]

= Et

[
ζt+1

ζt

Ft
Ft+1

]

= Et

[
ζt+1

ζt

]

Et

[
Ft
Ft+1

]

+ Covt

[
ζt+1

ζt
,
Ft
Ft+1

]

=
1

Rft
Et

[
Ft
Ft+1

]

+ Covt

[
ζt+1

ζt
,
Ft
Ft+1

]

.

We can obtain a more elegant expression in a continuous-time framework. Let ζ = (ζt) denote a

real state-price deflator, which evolves over time according to

dζt = −ζt
[

rft dt+ λ⊤

t dzt

]

,

where rf = (rft ) is the short-term real interest rate and λ = (λt) is the market price of risk.

Assume that the dynamics of the price of the consumption good can be written as

dFt = Ft
[
µϕt dt+ σ⊤

ϕt dzt
]
. (4.59)

We can interpret ϕt+dt = dFt/Ft as the realized inflation rate over the next instant, µϕt = Et[ϕt+dt]

as the expected inflation rate, and σϕt as the sensitivity vector of the inflation rate.

Consider now a nominal bank account which over the next instant promises a risk-free monetary

return represented by the nominal short-term interest rate r̃ft . If we let Ñt denote the time t dollar

value of such an account, we have that

dÑt = r̃ft Ñt dt.

The real price of this account is Nt = Ñt/Ft, since this is the number of units of the consumption

good that has the same value as the account. An application of Itô’s Lemma implies a real price

dynamics of

dNt = Nt

[(

r̃ft − µϕt + ‖σϕt‖2
)

dt− σ⊤

ϕt dzt

]

. (4.60)
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Note that the real return on this instantaneously nominally risk-free asset, dNt/Nt, is risky. Since

the percentage sensitivity vector is given by −σϕt, the expected return is given by the real short

rate plus −σ⊤

ϕtλt. Comparing this with the drift term in the equation above, we have that

r̃ft − µϕt + ‖σϕt‖2 = rft − σ⊤

ϕtλt.

Consequently the nominal short-term interest rate is given by

r̃ft = rft + µϕt − ‖σϕt‖2 − σ⊤

ϕtλt, (4.61)

i.e. the nominal short rate is equal to the real short rate plus the expected inflation rate minus the

variance of the inflation rate minus a risk premium. The presence of the last two terms invalidates

the Fisher relation, which says that the nominal interest rate is equal to the sum of the real interest

rate and the expected inflation rate. The Fisher hypothesis will hold if and only if the inflation

rate is instantaneously risk-free. In Chapter 10 we will discuss the link between real and nominal

interest rates and yields in more detail.

Individuals should primarily be concerned about real values since, in the end, they should care

about the number of goods they can consume. Therefore, most theoretical asset pricing models

make predictions about expected real returns.

4.5 A preview of alternative formulations

The previous sections show that a state-price deflator is a good way to represent the market-

wide pricing mechanism in a financial market. Paired with characteristics of any individual asset,

the state-price deflator leads to the price of the asset. This section shows that we can capture

the same information in other ways. The alternative representations can be preferable for some

specific purposes and we will return to them in later chapters. Here we will only give a preview.

For simplicity we keep the discussion in a one-period framework.

4.5.1 Risk-neutral probabilities

Suppose that a risk-free dividend can be constructed and that it provides a gross return of Rf .

A probability measure Q is called a risk-neutral probability measure if the following conditions are

satisfied:

(i) P and Q are equivalent, i.e. attach zero probability to the same events;

(ii) the random variable dQ/dP (explained below) has finite variance;

(iii) the price of any asset i = 1, . . . , I is given by

Pi = EQ
[
(Rf )−1Di

]
= (Rf )−1 EQ [Di] , (4.62)

i.e. the price of any asset equals the expected discounted dividend using the risk-free interest

rate as the discount rate and the risk-neutral probabilities when computing the expectation.

The risk-free return is not random and can therefore be moved in and out of expectations as in

the above equation. Given the return (or, equivalently, the price) of the risk-free asset, all the

market-wide pricing information is captured by a risk-neutral probability measure.
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In the case of a finite state space Ω = {1, 2, . . . , S}, a probability measure Q is fully characterized

by the state probabilities qω = Q(ω). Since we have assumed that the real-world probability

measure P is such that pω > 0 for all ω, equivalence between P and Q demands that qω > 0 for

all ω. With finite Ω the pricing equation in (iii) can be written as Pi = R−1
f

∑S
ω=1 qωDiω.

Why is Q called a risk-neutral probability measure? Since the gross return on asset i is Ri =

Di/Pi, we can rewrite (4.62) as

EQ[Ri] = Rf , (4.63)

i.e. all assets have an expected return equal to the risk-free return under the risk-neutral probability

measure. If all investors were risk-neutral, they would rank assets according to their expected

returns only and the market could only be in equilibrium if all assets had the same expected

returns. The definition of a risk-neutral probability measure Q thus implies that asset prices in the

real-world are just as they would have been in an economy in which all individuals are risk-neutral

and the state probabilities are given by Q. The price adjustments for risk are thus incorporated

in the risk-neutral probabilities.

Next, let us explore the link between risk-neutral probability measures and state prices. First,

assume a finite state space. Given a state-price vector ψ and the associated state-price deflator ζ,

we can define

qω =
ψω

∑S
s=1 ψs

= Rfψω = Rfpωζω, ω = 1, . . . , S.

All the qω’s are strictly positive and sum to one so they define an equivalent probability measure.

Furthermore, (4.16) implies that

Pi = ψ ·Di =

S∑

ω=1

ψωDiω =

S∑

ω=1

(Rf )−1qωDiω = EQ
[
(Rf )−1Di

]
,

so Q is indeed a risk-neutral probability measure. Note that qω > pω if and only if ζω > (Rf )−1 =

E[ζ], i.e. if the value of the state-price deflator for state ω is higher than average.

The change of measure from the real-world probability measure P to the risk-neutral probability

measure Q is given by the ratios ξω ≡ qω/pω = Rfζω. The change of measure is fully captured

by the random variable ξ that takes on the value ξω if state ω is realized. This random variable

is called the Radon-Nikodym derivative for the change of measure and is often denoted by dQ/dP.

Note that the P-expectation of any Radon-Nikodym derivative ξ = dQ/dP must be 1 to ensure

that the new measure is a probability measure. This is satisfied by our risk-neutral probability

measure since

EP

[
dQ

dP

]

=

S∑

ω=1

pωξω =

S∑

ω=1

pωR
fζω = Rf

S∑

ω=1

pωζω = 1.

When the state space is infinite, state-price deflators still make sense. Given a state-price deflator

ζ, we can define a risk-neutral probability measure Q by the random variable

ξ =
dQ

dP
= Rfζ.

Conversely, given a risk-neutral probability measure Q and the risk-free gross return Rf , we can

define a state-price deflator ζ by

ζ = (Rf )−1 dQ

dP
.
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In the case of a finite state space, the risk-neutral probability measure is given by ξω = qω/pω,

ω = 1, . . . , S, and we can construct a state-price vector ψ and a state-price deflator ζ as

ψω = (Rf )−1qω, ζω = (Rf )−1ξω = (Rf )−1 qω
pω
, ω = 1, . . . , S.

We summarize the above observations in the following theorem:

Theorem 4.4 Assume that a risk-free asset exists. Then there is a one-to-one correspondence

between state-price deflators and risk-neutral probability measures.

Combining this result with Theorems 4.1 and 4.2, we reach the next conclusion.

Theorem 4.5 Assume that a risk-free asset exists. Prices admit no arbitrage if and only if a

risk-neutral probability measure exists. The market is complete if and only if there is a unique risk-

neutral probability measure. If the market is complete and arbitrage-free, the unique risk-neutral

probability measure Q is characterized by dQ/dP = Rfζ
∗, where ζ∗ is given by (4.41).

Risk-neutral probabilities are especially useful for the pricing of derivative assets. In Chapter 11

we will generalize the definition of risk-neutral probabilities to multi-period settings and we will

also define other probability measures that are useful in derivative pricing.

4.5.2 Pricing factors

We will say that a (one-dimensional) random variable x is a pricing factor for the market if there

exists some α, η ∈ R so that

E[Ri] = α+ β[Ri, x]η, i = 1, . . . , I, (4.64)

where the factor-beta of asset i is given by

β[Ri, x] =
Cov[Ri, x]

Var[x]
. (4.65)

The constant η is called the factor risk premium and α the zero-beta return. Due to the linearity

of expectations and covariance, (4.64) will also hold for all portfolios of the I assets. Note that if

a risk-free asset is traded in the market, it will have a zero factor-beta and, consequently, α = Rf .

The relation (4.64) does not directly involve prices. But since the expected gross return is

E[Ri] = E[Di]/Pi, we have Pi = E[Di]/E[Ri] and hence the equivalent relation

Pi =
E[Di]

α+ β[Ri, x]η
. (4.66)

The price is equal to the expected dividend discounted by a risk-adjusted rate. You may find this

relation unsatisfactory since the price implicitly enters the right-hand side through the return-beta

β[Ri, x]. However, we can define a dividend-beta by β[Di, x] = Cov[Di, x]/Var[x] and inserting

Di = RiPi we see that β[Di, x] = Piβ[Ri, x]. Equation (4.64) now implies that

E[Di]

Pi
= α+

1

Pi
β[Di, x]η

so that

Pi =
E[Di] − β[Di, x]η

α
. (4.67)
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Think of the numerator as a certainty equivalent of the risky dividend. The current price is the

certainty equivalent discounted by the zero-beta return, which is the risk-free return if this exists.

What is the link between pricing factors and state-price deflators? It follows from (4.10) that

any state-price deflator ζ itself is a pricing factor. That equation does not require positivity of

the state-price deflator, only the pricing condition. Therefore any random variable x that satisfies

Pi = E[xDi] for all assets works as a pricing factor. More generally, if x is a random variable and

a, b are constants so that Pi = E[(a+bx)Di] for all assets i, then x is a pricing factor. In particular,

whenever we have a state-price deflator of the form ζ = a+ bx, we can use x as a pricing factor.

Conversely, if we have a pricing factor x for which the associated zero-beta return α is non-

zero, we can find constants a, b so that ζ = a + bx satisfies the pricing condition Pi = E[ζDi] for

i = 1, . . . , I. In order to see this let η denote the factor risk premium associated with the pricing

factor x and define

b = − η

αVar[x]
, a =

1

α
− bE[x].

Then ζ = a+ bx works since

E[ζRi] = aE[Ri] + bE[Rix]

= aE[Ri] + b (Cov[Ri, x] + E[Ri] E[x])

= (a+ bE[x]) E[Ri] + bCov[Ri, x]

=
1

α

(

E[Ri] −
Cov[Ri, x]

Var[x]
η

)

=
1

α
(E[Ri] − β[Ri, x]η)

= 1

for any i = 1, . . . , I. Inserting a and b, we get

ζ = a+ bx =
1

α

(

1 − η

Var[x]
(x− E[x])

)

.

Any pricing factor x gives us a candidate a+ bx for a state-price deflator but it will only be a true

state-price deflator if it is strictly positive. The fact that we can find a pricing factor for a given

market does not imply that the market is arbitrage-free.

Can the pricing factor be the return on some portfolio? No problem! Suppose x is a pricing

factor. Look for a portfolio θ which will generate the dividend as close as possible to x in the sense

that it minimizes Var[Dθ − x]. Since

Var
[
Dθ − x

]
= Var [D⊤θ − x] = Var [D⊤θ] + Var[x] − 2Cov [D⊤θ, x]

= θ⊤ Var[D]θ + Var[x] − 2θ⊤ Cov[D, x],

the minimum is obtained for

θ = (Var[D])
−1

Cov[D, x].

This portfolio is called the factor-mimicking portfolio. Using (3.6) and (3.7), the gross return on

this portfolio is

Rx =
θ⊤ diag(P )R

θ⊤ diag(P )1
=

Cov[D, x]⊤(Var[D])−1 diag(P )R

Cov[D, x]⊤(Var[D])−1 diag(P )1
=

Cov[R, x]⊤(Var[R])−1R

Cov[R, x]⊤(Var[R])−11
. (4.68)
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The vector of covariances of the returns on the basic assets and the return on the factor-mimicking

portfolio is

Cov[R, Rx] =
Cov[R, x]

Cov[R, x]⊤(Var[R])−11

and therefore the beta of asset i with respect to Rx is

β[Ri, R
x] =

Cov[Ri, R
x]

Var[Rx]
=

Cov[Ri, x]

Var[Rx] Cov[R, x]⊤(Var[R])−11

= β[Ri, x]
Var[x]

Var[Rx] Cov[R, x]⊤(Var[R])−11
.

Consequently, if x is a pricing factor with zero-beta return α and factor risk premium η, then the

corresponding factor-mimicking return Rx is a pricing factor with zero-beta return and factor risk

premium

η̂ =
ηVar[Rx] Cov[R, x]⊤(Var[R])−11

Var[x]
.

In that sense it is not restrictive to look for pricing factors only in the set of returns.

Note that when the factor x itself is a return, then it must satisfy

E[x] = α+ β[x, x]η = α+ η ⇒ η = E[x] − α

so that

E[Ri] = α+ β[Ri, x] (E[x] − α) . (4.69)

Now it is clear that the standard CAPM simply says that the return on the market portfolio is a

pricing factor.

We will discuss factor models in detail in Chapter 9. There we will also allow for multi-

dimensional pricing factors.

4.5.3 Mean-variance efficient returns

A portfolio is said to be mean-variance efficient if there is no other portfolio with the same expected

return and a lower return variance. The return on a mean-variance efficient portfolio is called a

mean-variance efficient return. The mean-variance frontier is the curve in a (σ[R],E[R])-plane

traced out by all the mean-variance efficient returns.

The analysis of mean-variance efficient portfolios was introduced by Markowitz (1952, 1959) as

a tool for investors in making portfolio decisions. Nevertheless, mean-variance efficient portfolios

are also relevant for asset pricing purposes due to the following theorem:

Theorem 4.6 A return is a pricing factor if and only if it is a mean-variance efficient return

different from the minimum-variance return.

Combining this with results from the previous subsection, we can conclude that (almost) any

mean-variance return Rmv give rise to a (candidate) state-price deflator of the form ζ = a+ bRmv.

And the standard CAPM can be reformulated as “the return on the market portfolio is mean-

variance efficient.”

We will not provide a proof of the theorem here but return to the issue in Chapter 9.



4.6 Concluding remarks 87

4.6 Concluding remarks

This chapter has introduced state-price deflators as a way representing the general pricing mecha-

nism of a financial market. Important properties of state-price deflators were discussed. Examples

have illustrated the valuation of assets with a given state-price deflator. But what determines

the state-price deflator? Intuitively, state prices reflect the value market participants attach to an

extra payment in a given state at a given point in time. This must be related to their marginal

utility of consumption. To follow this idea, we must consider the optimal consumption choice of

individuals. This is the topic of the next two chapters.

4.7 Exercises

EXERCISE 4.1 Imagine a one-period economy where the state-price deflator ζ is lognormally

distributed with E[ln ζ] = µζ and Var[ln ζ] = σ2
ζ . What is the maximal Sharpe ratio of a risky

asset? (Look at Equation (4.14).) What determines the sign of an asset’s Sharpe ratio?

EXERCISE 4.2 Consider a one-period, three-state economy with two assets traded. Asset 1

has a price of 0.9 and pays a dividend of 1 no matter what state is realized. Asset 2 has a price of

2 and pays 1, 2, and 4 in state 1, 2, and 3, respectively. The real-world probabilities of the states

are 0.2, 0.6, and 0.2, respectively. Assume absence of arbitrage.

(a) Find the state-price vector ψ∗ and the associated state-price deflator. What portfolio gen-

erates a dividend of ψ∗?

(b) Find the state-price deflator ζ∗ and the associated state-price vector. What portfolio gener-

ates a dividend of ζ∗?

(c) Find a portfolio with dividends 4, 3, and 1 in states 1, 2, and 3, respectively. What is the

price of the portfolio?

EXERCISE 4.3 Give a proof of Theorem 4.3 both for the one-period framework and the

continuous-time framework.

EXERCISE 4.4 Show Lemma 4.1.

EXERCISE 4.5 Assume a one-period framework with no redundant assets. Show that ζ∗ can

be rewritten as in (4.55).

EXERCISE 4.6 Consider a one-period economy where the assets are correctly priced by a state-

price deflator M . A nutty professor believes that the assets are priced according to a model in

which Y is a state-price deflator, where Y is a random variable with E[Y ] = E[M ]. Refer to this

model as the Y -model.

(a) Show that the Y -model prices a risk-free asset correctly.
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(b) Argue that the expected return on an arbitrary asset i according to the Y -model is given by

EY [Ri] ≡
1

E[M ]
− 1

E[M ]
Cov[Y,Ri].

(c) Show that
|E [Ri] − EY [Ri] |

σ[Ri]
≤ σ[Y −M ]

E[M ]

so that the mispricing of the Y -model (in terms of expected returns) is limited.

(d) What can you say about the returns for which the left-hand side in the above inequality will

be largest?

(e) Under which condition on Y will the Y -model price all assets correctly?

EXERCISE 4.7 Consider a one-period economy where two basic financial assets are traded

without portfolio constraints or transaction costs. There are three equally likely end-of-period

states of the economy and the prices and state-contingent dividends of the two assets are given in

the following table:

state-contingent dividend price

state 1 state 2 state 3

Asset 1 1 1 0 0.5

Asset 2 2 2 2 1.8

The economy is known to be arbitrage-free.

(a) Characterize the set of state-contingent dividends that can be attained by combining the two

assets.

(b) Characterize the set of state-price vectors ψ = (ψ1, ψ2, ψ3) consistent with the prices and

dividends of the two basic assets.

(c) Find the state-price vector ψ∗ that belongs to the set of attainable dividend vectors.

(d) Characterize the set of state-price deflators ζ = (ζ1, ζ2, ζ3) consistent with the prices and

dividends of the two basic assets.

(e) What is the risk-free (gross) return Rf over the period?

(f) What prices of the state-contingent dividend vector (1,1,5) are consistent with absence of

arbitrage?

(g) What prices of the state-contingent dividend vector (1,2,5) are consistent with absence of

arbitrage?
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(h) Show that the state-price deflator ζ∗ that belongs to the set of attainable dividend vectors is

given by the vector (0.75, 0.75, 1.2), i.e. it has the value 0.75 in states 1 and 2 and the value

1.2 in state 3.

EXERCISE 4.8 Consider a two-period economy where the resolution of uncertainty can be

represented by the tree in Figure 2.2 in Chapter 2. Assume that three assets are traded. Their

dividend processes are illustrated in Figure 4.1, where a triple (D1,D2,D3) near a node means that

asset i = 1, 2, 3 pays a dividend of Di if/when that node is reached. For example, if the economy at

time 2 is in the scenario F22, assets 1 and 2 will pay a dividend of 1 and asset 3 will pay a dividend

of 2. In Figure 4.1, the numbers near the lines connecting nodes denote values of the next-period

state-price deflator, i.e. ζ1/ζ0 = ζ1 over the first period and ζ2/ζ1 over the second period. For

example, the value of ζ2/ζ1 given that the economy is in scenario F11 at time 1 is 1 if the economy

moves to scenario F21 and 2/3 if the economy moves to scenario F22. This characterizes completely

the state-price deflator to be used in the computations below.

(0, 0, 0)

(1, 2, 0)

(1, 3, 0)

(1, 4, 1)

(1, 2, 3)

(1, 2, 3)

(1, 1, 2)

(1, 2, 3)

(1, 3, 4)

(1, 3, 5)

6/5

1

3/5

1

2/3

1
9/10

9/10

9/10

t = 0 t = 1 t = 2

Figure 4.1: Dividends and state prices.

(a) Find the price processes of the three assets. (You should find that the time 0 price of asset

1 is 1.802.)

(b) Find the short-term (one-period) interest rate process. What are the one-period and the

two-period zero-coupon yields at time 0?

(c) Is the market complete?
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EXERCISE 4.9 Consider a discrete-time economy where a state-price deflator ζ = (ζt) satisfies

ln

(
ζt+1

ζt

)

∼ N(µζ , σ
2
ζ )

for each t = 0, 1, . . . , T − 1. An asset pays a dividend process D = (Dt) satisfying

Dt+1

Dt
= a

(
ζt+1

ζt

)b

+ εt+1, t = 0, 1, . . . , T − 1,

where a and b are constants, and ε1, . . . , εT are independent with Et[εt+1] = 0 and Et[εt+1ζt+1] = 0

for all t. What is the price of the asset at any time t (in terms of a, b, µζ , σ
2
ζ )?

EXERCISE 4.10 Consider a continuous-time economy in which the state-price deflator follows

a geometric Brownian motion:

dζt = −ζt
[
rf dt+ λ⊤ dzt

]
,

where rf and λ are constant.

(a) What is the price Bst of a zero-coupon bond maturing at time s with a face value of 1?

Define the continuously compounded yield yst for maturity s via the equation Bst = e−y
s
t (s−t).

(b) Compute yst . What can you say about the yield curve s 7→ yst ?

EXERCISE 4.11 Show that ζ∗t = V ∗
0 /V

∗
t , where V ∗ and ζ∗ are given by (4.46) and (4.45).

EXERCISE 4.12 In a one-period framework show that if x is a pricing factor and k1, k2 are

constants with k2 6= 0, then y = k1 + k2x is also a pricing factor.

EXERCISE 4.13 Consider a two-period arbitrage-free economy where the resolution of uncer-

tainty is illustrated in the following binomial tree.

(4, 10)

(10, 4)

(2, 8)

(8, 2)

(6, 10)

(10, 6)

0.95

0.9

1

0.9

0.95

0.85

t = 0 t = 1 t = 2
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Each branch in the tree has a conditional probability of 1
2 . Assets in the economy are priced by a

state-price deflator ζ = (ζt)t∈{0,1,2}. The numbers along the branches show the possible values of

the state-price deflator over that period, i.e. ζ1/ζ0 over the first period and ζ2/ζ1 over the second

period. The pair of numbers written at each node shows the dividend payments of asset 1 and

asset 2, respectively, if that node is reached. For example, if the up-branch is realized in both

periods, then asset 1 will pay a dividend of 10 and asset 2 a dividend of 6 at time 2.

(a) For each of the two assets compute the following quantities in both the up-node and the

down-node at time 1: (i) the conditional expectation of the dividend received at time 2, (ii)

the ex-dividend price, and (iii) the expected net rate of return over the second period.

(b) For each of the two assets compute the following quantities at time 0: (i) the expectation of

the dividend received at time 1, (ii) the price, and (iii) the expected net rate of return over

the first period.

(c) Compare the prices of the two assets. Compare the expected returns of the two assets.

Explain the differences.

(d) Is it always possible in this economy to construct a portfolio with a risk-free dividend over

the next period? If so, find the one-period risk-free return at time 0 and in each of the two

nodes at time 1.

(e) Is the market complete? Explain!





Chapter 5

Modeling the preferences of

individuals

5.1 Introduction

In order to say anything concrete about the asset supply and demand of individuals we have to

formalize the decision problem faced by individuals. We assume that individuals have preferences

for consumption and must choose between different consumption plans, i.e. plans for how much to

consume at different points in time and in different states of the world. The financial market allows

individuals to reallocate consumption over time and over states and hence obtain a consumption

plan different from their endowment.

Although an individual will typically obtain utility from consumption at many different dates

(or in many different periods), we will first address the simpler case with consumption at only

one future point in time. In such a setting a “consumption plan” is simply a random variable

representing the consumption at that date. Even in one-period models individuals should be

allowed to consume both at the beginning of the period and at the end of the period, but we will

first ignore the influence of current consumption on the well-being of the individual. We do that

both since current consumption is certain and we want to focus on how preferences for uncertain

consumption can be represented, but also to simplify the notation and analysis somewhat. Since

we have in mind a one-period economy, we basically have to model preferences for end-of-period

consumption.

Sections 5.2–5.4 discuss how to represent individual preferences in a tractable way. We will

demonstrate that under some fundamental assumptions (“axioms”) on individual behavior, the

preferences can be modeled by a utility index which to each consumption plan assigns a real

number with higher numbers to the more preferred plans. Under an additional axiom we can

represent the preferences in terms of expected utility, which is even simpler to work with and used

in most models of financial economics. Section 5.5 defines and discusses the important concept

of risk aversion. Section 5.6 introduces the utility functions that are typically applied in models

of financial economics and provides a short discussion of which utility functions and levels of risk

aversions that seem to be reasonable for representing the decisions of individuals. In Section 5.7

we discuss extensions to preferences for consumption at more than one point in time.

93
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There is a large literature on how to model the preferences of individuals for uncertain outcomes

and the presentation here is by no means exhaustive. The literature dates back at least to Swiss

mathematician Daniel Bernoulli in 1738 (see English translation in Bernoulli (1954)), but was put

on a firm formal setting by von Neumann and Morgenstern (1944). For some recent textbook

presentations on a similar level as the one given here, see Huang and Litzenberger (1988, Ch. 1),

Kreps (1990, Ch. 3), Gollier (2001, Chs. 1-3), and Danthine and Donaldson (2002, Ch. 2).

5.2 Consumption plans and preference relations

It seems fair to assume that whenever the individual compares two different consumption plans, she

will be able either to say that she prefers one of them to the other or to say that she is indifferent

between the two consumption plans. Moreover, she should make such pairwise comparisons in

a consistent way. For example, if she prefers plan 1 to plan 2 and plan 2 to plan 3, she should

prefer plan 1 to plan 3. If these properties hold, we can formally represent the preferences of the

individual by a so-called preference relation. A preference relation itself is not very tractable so

we are looking for simpler ways of representing preferences. First, we will find conditions under

which it makes sense to represent preferences by a so-called utility index which attaches a real

number to each consumption plan. If and only if plan 1 has a higher utility index than plan 2, the

individual prefers plan 1 to plan 2. Attaching numbers to each possible consumption plan is also not

easy so we look for an even simpler representation. We show that under an additional condition

we can represent preferences in an even simpler way in terms of the expected value of a utility

function. A utility function is a function defined on the set of possible levels of consumption. Since

consumption is random it then makes sense to talk about the expected utility of a consumption

plan. The individual will prefer consumption plan 1 to plan 2 if and only if the expected utility

from consumption plan 1 is higher than the expected utility from consumption plan 2. This

representation of preferences turns out to be very tractable and is applied in the vast majority of

asset pricing models.

Our main analysis is formulated under some simplifying assumptions that are not necessarily

appropriate. At the end of this section we will briefly discuss how to generalize the analysis and

also discuss the appropriateness of the axioms on individual behavior that need to be imposed in

order to obtain the expected utility representation.

We assume that there is uncertainty about how the variables affecting the well-being of an

individual (e.g. asset returns) turn out. We model the uncertainty by a probability space (Ω,F,P).

In most of the chapter we will assume that the state space is finite, Ω = {1, 2, . . . , S}, so that there

are S possible states of which exactly one will be realized. For simplicity, think of this as a model

of one-period economy with S possible states at the end of the period. The set F of events that

can be assigned a probability is the collection of all subsets of Ω. The probability measure P is

defined by the individual state probabilities pω = P(ω), ω = 1, 2, . . . , S. We assume that all pω > 0

and, of course, we have that p1 + . . . pS = 1. We take the state probabilities as exogenously given

and known to the individuals.

Individuals care about their consumption. It seems reasonable to assume that when an individual

chooses between two different actions (e.g. portfolio choices), she only cares about the consumption

plans generated by these choices. For example, she will be indifferent between two choices that
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state ω 1 2 3

state prob. pω 0.2 0.3 0.5

cons. plan 1, c(1) 3 2 4

cons. plan 2, c(2) 3 1 5

cons. plan 3, c(3) 4 4 1

cons. plan 4, c(4) 1 1 4

Table 5.1: The possible state-contingent consumption plans in the example.

cons. level z 1 2 3 4 5

cons. plan 1, πc(1) 0 0.3 0.2 0.5 0

cons. plan 2, πc(2) 0.3 0 0.2 0 0.5

cons. plan 3, πc(3) 0.5 0 0 0.5 0

cons. plan 4, πc(4) 0.5 0 0 0.5 0

Table 5.2: The probability distributions corresponding to the state-contingent consumption plans

shown in Table 5.1.

generate exactly the same consumption plans, i.e. the same consumption levels in all states. In

order to simplify the following analysis, we will assume a bit more, namely that the individual

only cares about the probability distribution of consumption generated by each portfolio. This is

effectively an assumption of state-independent preferences.

We can represent a consumption plan by a random variable c on (Ω,F,P). We assume that

there is only one consumption good and since consumption should be non-negative, c is valued in

R+ = [0,∞). As long as we are assuming a finite state space Ω = {1, 2, . . . , S} we can equivalently

represent the consumption plan by a vector (c1, . . . , cS), where cω ∈ [0,∞) denotes the consumption

level if state ω is realized, i.e. cω ≡ c(ω). Let C denote the set of consumption plans that the

individual has to choose among. Let Z ⊆ R+ denote the set of all the possible levels of the

consumption plans that are considered, i.e. no matter which of these consumption plans we take,

its value will be in Z no matter which state is realized. Each consumption plan c ∈ C is associated

with a probability distribution πc, which is the function πc : Z → [0, 1], given by

πc(z) =
∑

ω∈Ω: cω=z

pω,

i.e. the sum of the probabilities of those states in which the consumption level equals z.

As an example consider an economy with three possible states and four possible state-contingent

consumption plans as illustrated in Table 5.1. These four consumption plans may be the prod-

uct of four different portfolio choices. The set of possible end-of-period consumption levels is

Z = {1, 2, 3, 4, 5}. Each consumption plan generates a probability distribution on the set Z. The

probability distributions corresponding to these consumption plans are as shown in Table 5.2. We

see that although the consumption plans c(3) and c(4) are different they generate identical proba-

bility distributions. By assumption individuals will be indifferent between these two consumption

plans.

Given these assumptions the individual will effectively choose between probability distributions
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on the set of possible consumption levels Z. We assume for simplicity that Z is a finite set, but the

results can be generalized to the case of infinite Z at the cost of further mathematical complexity.

We denote by P(Z) the set of all probability distributions on Z that are generated by consumption

plans in C. A probability distribution π on the finite set Z is simply a function π : Z → [0, 1] with

the properties that
∑

z∈Z π(z) = 1 and π(A ∪B) = π(A) + π(B) whenever A ∩B = ∅.
We assume that the preferences of the individual can be represented by a preference relation �

on P(Z), which is a binary relation satisfying the following two conditions:

(i) if π1 � π2 and π2 � π3, then π1 � π3 [transitivity]

(ii) ∀π1, π2 ∈ P(Z) : either π1 � π2 or π2 � π1 [completeness]

Here, π1 � π2 is to be read as “π1 is preferred to π2”. We write π1 6� π2 if π1 is not preferred

to π2. If both π1 � π2 and π2 � π1, we write π1 ∼ π2 and say that the individual is indifferent

between π1 and π2. If π1 � π2, but π2 6� π1, we say that π1 is strictly preferred to π2 and write

π1 ≻ π2.

Note that if π1, π2 ∈ P(Z) and α ∈ [0, 1], then απ1 + (1 − α)π2 ∈ P(Z). The mixed distribution

απ1 + (1 − α)π2 assigns the probability (απ1 + (1 − α)π2) (z) = απ1(z) + (1 − α)π2(z) to the

consumption level z. When can think of the mixed distribution απ1 + (1−α)π2 as the outcome of

a two-stage “gamble.” The first stage is to flip a coin which with probability α shows head and with

probability 1 − α shows tails. If head comes out, the second stage is the “consumption gamble”

corresponding to the probability distribution π1. If tails is the outcome of the first stage, the

second stage is the consumption gamble corresponding to π2. When we assume that preferences

are represented by a preference relation on the set P(Z) of probability distributions, we have

implicitly assumed that the individual evaluates the two-stage gamble (or any multi-stage gamble)

by the combined probability distribution, i.e. the ultimate consequences of the gamble. This is

sometimes referred to as consequentialism.

Let z be some element of Z, i.e. some possible consumption level. By 1z we will denote the

probability distribution that assigns a probability of one to z and a zero probability to all other

elements in Z. Since we have assumed that the set Z of possible consumption levels only has a

finite number of elements, it must have a maximum element, say zu, and a minimum element,

say zl. Since the elements represent consumption levels, it is certainly natural that individuals

prefer higher elements than lower. We will therefore assume that the probability distribution

1zu is preferred to any other probability distribution. Conversely, any probability distribution is

preferred to the probability distribution 1zl . We assume that 1zu is strictly preferred to 1zl so

that the individual is not indifferent between all probability distributions. For any π ∈ P(Z) we

thus have that,

1zu ≻ π ≻ 1zl or 1zu ∼ π ≻ 1zl or 1zu ≻ π ∼ 1zl .

5.3 Utility indices

A utility index for a given preference relation � is a function U : P(Z) → R that to each probability

distribution over consumption levels attaches a real-valued number such that

π1 � π2 ⇔ U(π1) ≥ U(π2).
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Note that a utility index is only unique up to a strictly increasing transformation. If U is a utility

index and f : R → R is any strictly increasing function, then the composite function V = f ◦ U,

defined by V(π) = f (U(π)), is also a utility index for the same preference relation.

We will show below that a utility index exists under the following two axiomatic assumptions

on the preference relation �:

Axiom 5.1 (Monotonicity) Suppose that π1, π2 ∈ P(Z) with π1 ≻ π2 and let a, b ∈ [0, 1]. The

preference relation � has the property that

a > b ⇔ aπ1 + (1 − a)π2 ≻ bπ1 + (1 − b)π2.

This is certainly a very natural assumption on preferences. If you consider a weighted average of

two probability distributions, you will prefer a high weight on the best of the two distributions.

Axiom 5.2 (Archimedean) The preference relation � has the property that for any three prob-

ability distributions π1, π2, π3 ∈ P(Z) with π1 ≻ π2 ≻ π3, numbers a, b ∈ (0, 1) exist such that

aπ1 + (1 − a)π3 ≻ π2 ≻ bπ1 + (1 − b)π3.

The axiom basically says that no matter how good a probability distribution π1 is, it is so that

for any π2 ≻ π3 we can find some mixed distribution of π1 and π3 to which π2 is preferred. We just

have to put a sufficiently low weight on π1 in the mixed distribution. Similarly, no matter how bad

a probability distribution π3 is, it is so that for any π1 ≻ π2 we can find some mixed distribution

of π1 and π3 that is preferred to π2. We just have to put a sufficiently low weight on π3 in the

mixed distribution.

We shall say that a preference relation has the continuity property if for any three probability

distributions π1, π2, π3 ∈ P(Z) with π1 ≻ π2 ≻ π3, a unique number α ∈ (0, 1) exists such that

π2 ∼ απ1 + (1 − α)π3.

We can easily extend this to the case where either π1 ∼ π2 or π2 ∼ π3. For π1 ∼ π2 ≻ π3,

π2 ∼ 1π1 +(1−1)π3 corresponding to α = 1. For π1 ≻ π2 ∼ π3, π2 ∼ 0π1 +(1−0)π3 corresponding

to α = 0. In words the continuity property means that for any three probability distributions there

is a unique combination of the best and the worst distribution so that the individual is indifferent

between the third “middle” distribution and this combination of the other two. This appears

to be closely related to the Archimedean Axiom and, in fact, the next lemma shows that the

Monotonicity Axiom and the Archimedean Axiom imply continuity of preferences.

Lemma 5.1 Let � be a preference relation satisfying the Monotonicity Axiom and the Archimedean

Axiom. Then it has the continuity property.

Proof: Given π1 ≻ π2 ≻ π3. Define the number α by

α = sup{k ∈ [0, 1] | π2 ≻ kπ1 + (1 − k)π3}.

By the Monotonicity Axiom we have that π2 ≻ kπ1 + (1 − k)π3 for all k < α and that kπ1 +

(1 − k)π3 � π2 for all k > α. We want to show that π2 ∼ απ1 + (1 − α)π3. Note that by the
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Archimedean Axiom, there is some k > 0 such that π2 ≻ kπ1 + (1 − k)π3 and some k < 1 such

that kπ1 + (1 − k)π3 ≻ π2. Consequently, α is in the open interval (0, 1).

Suppose that π2 ≻ απ1 + (1 − α)π3. Then according to the Archimedean Axiom we can find

a number b ∈ (0, 1) such that π2 ≻ bπ1 + (1 − b){απ1 + (1 − α)π3}. The mixed distribution on

the right-hand side has a total weight of k = b + (1 − b)α = α + (1 − α)b > α on π1. Hence we

have found some k > α for which π2 ≻ kπ1 + (1 − k)π3. This contradicts the definition of α.

Consequently, we must have that π2 6≻ απ1 + (1 − α)π3.

Now suppose that απ1 + (1 − α)π3 ≻ π2. Then we know from the Archimedean Axiom that a

number a ∈ (0, 1) exists such that a{απ1 + (1 − α)π3} + (1 − a)π3 ≻ π2. The mixed distribution

on the left-hand side has a total weight of aα < α on π1. Hence we have found some k < α for

which kπ1 + (1 − k)π3 ≻ π2. This contradicts the definition of α. We can therefore also conclude

that απ1 + (1 − α)π3 6≻ π2. In sum, we have π2 ∼ απ1 + (1 − α)π3. 2

The next result states that a preference relation which satisfies the Monotonicity Axiom and

has the continuity property can always be represented by a utility index. In particular this is true

when � satisfies the Monotonicity Axiom and the Archimedean Axiom.

Theorem 5.1 Let � be a preference relation which satisfies the Monotonicity Axiom and has the

continuity property. Then it can be represented by a utility index U, i.e. a function U : P(Z) → R

with the property that

π1 � π2 ⇔ U(π1) ≥ U(π2).

Proof: Recall that we have assumed a best probability distribution 1zu and a worst probability

distribution 1zl in the sense that

1zu ≻ π ≻ 1zl or 1zu ∼ π ≻ 1zl or 1zu ≻ π ∼ 1zl

for any π ∈ P(Z). For any π ∈ P(Z) we know from the continuity property that a unique number

απ ∈ [0, 1] exists such that

π ∼ απ1zu + (1 − απ)1zl .

If 1zu ∼ π ≻ 1zl , απ = 1. If 1zu ≻ π ∼ 1zl , απ = 0. If 1zu ≻ π ≻ 1zl , απ ∈ (0, 1).

We define the function U : P(Z) → R by U(π) = απ. By the Monotonicity Axiom we know that

U(π1) ≥ U(π2) if and only if

U(π1)1zu + (1 − U(π1))1zl � U(π2)1zu + (1 − U(π2))1zl ,

and hence if and only if π1 � π2. It follows that U is a utility index. 2

5.4 Expected utility representation of preferences

Utility indices are functions of probability distributions on the set of possible consumption levels.

With many states of the world and many assets to trade in, the set of such probability distributions

will be very, very large. This will significantly complicate the analysis of optimal choice using
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utility indices to represent preferences. To simplify the analysis financial economists traditionally

put more structure on the preferences so that they can be represented in terms of expected utility.

We say that a preference relation � on P(Z) has an expected utility representation if there exists

a function u : Z → R such that

π1 � π2 ⇔
∑

z∈Z

π1(z)u(z) ≥
∑

z∈Z

π2(z)u(z). (5.1)

Here
∑

z∈Z π(z)u(z) is the expected utility of end-of-period consumption given the consumption

probability distribution π. The function u is called a von Neumann-Morgenstern utility function

or simply a utility function. Note that u is defined on the set Z of consumption levels, which

in general has a simpler structure than the set of probability distributions on Z. Given a utility

function u, we can obviously define a utility index by U(π) =
∑

z∈Z π(z)u(z).

5.4.1 Conditions for expected utility

When can we use an expected utility representation of a preference relation? The next lemma is

a first step.

Lemma 5.2 A preference relation � has an expected utility representation if and only if it can be

represented by a linear utility index U in the sense that

U (aπ1 + (1 − a)π2) = aU(π1) + (1 − a)U(π2)

for any π1, π2 ∈ P(Z) and any a ∈ [0, 1].

Proof: Suppose that � has an expected utility representation with utility function u. Define

U : P(Z) → R by U(π) =
∑

z∈Z π(z)u(z). Then clearly U is a utility index representing � and U

is linear since

U (aπ1 + (1 − a)π2) =
∑

z∈Z

(aπ1(z) + (1 − a)π2(z))u(z)

= a
∑

z∈Z

π1(z)u(z) + (1 − a)
∑

z∈Z

π2(z)u(z)

= aU(π1) + (1 − a)U(π2).

Conversely, suppose that U is a linear utility index representing �. Define a function u : Z → R

by u(z) = U(1z). For any π ∈ P(Z) we have

π ∼
∑

z∈Z

π(z)1z.

Therefore,

U(π) = U

(
∑

z∈Z

π(z)1z

)

=
∑

z∈Z

π(z)U(1z) =
∑

z∈Z

π(z)u(z).

Since U is a utility index, we have π1 � π2 ⇔ U(π1) ≥ U(π2), which the computation above shows

is equivalent to
∑

z∈Z π1(z)u(z) ≥ ∑

z∈Z π2(z)u(z). Consequently, u gives an expected utility
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z 1 2 3 4

π1 0 0.2 0.6 0.2

π2 0 0.4 0.2 0.4

π3 1 0 0 0

π4 0.5 0.1 0.3 0.1

π5 0.5 0.2 0.1 0.2

Table 5.3: The probability distributions used in the illustration of the Substitution Axiom.

representation of �. 2

The question then is under what assumptions the preference relation � can be represented by

a linear utility index. As shown by von Neumann and Morgenstern (1944) we need an additional

axiom, the so-called Substitution Axiom.

Axiom 5.3 (Substitution) For all π1, π2, π3 ∈ P(Z) and all a ∈ (0, 1], we have

π1 ≻ π2 ⇔ aπ1 + (1 − a)π3 ≻ aπ2 + (1 − a)π3

and

π1 ∼ π2 ⇔ aπ1 + (1 − a)π3 ∼ aπ2 + (1 − a)π3.

The Substitution Axiom is sometimes called the Independence Axiom or the Axiom of the Irrele-

vance of the Common Alternative. Basically, it says that when the individual is to compare two

probability distributions, she need only consider the parts of the two distributions which are differ-

ent from each other. As an example, suppose the possible consumption levels are Z = {1, 2, 3, 4}
and consider the probability distributions on Z given in Table 5.3. Suppose you want to compare

the distributions π4 and π5. They only differ in the probabilities they associate with consumption

levels 2, 3, and 4 so it should only be necessary to focus on these parts. More formally observe

that

π4 ∼ 0.5π1 + 0.5π3 and π5 ∼ 0.5π2 + 0.5π3.

π1 is the conditional distribution of π4 given that the consumption level is different from 1 and

π2 is the conditional distribution of π5 given that the consumption level is different from 1. The

Substitution Axiom then says that

π4 ≻ π5 ⇔ π1 ≻ π2.

The next lemma shows that the Substitution Axiom is more restrictive than the Monotonicity

Axiom.

Lemma 5.3 If a preference relation � satisfies the Substitution Axiom, it will also satisfy the

Monotonicity Axiom.

Proof: Given π1, π2 ∈ P(Z) with π1 ≻ π2 and numbers a, b ∈ [0, 1]. We have to show that

a > b ⇔ aπ1 + (1 − a)π2 ≻ bπ1 + (1 − b)π2.
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Note that if a = 0, we cannot have a > b, and if aπ1 + (1− a)π2 ≻ bπ1 + (1− b)π2 we cannot have

a = 0. We can therefore safely assume that a > 0.

First assume that a > b. Observe that it follows from the Substitution Axiom that

aπ1 + (1 − a)π2 ≻ aπ2 + (1 − a)π2

and hence that aπ1 + (1 − a)π2 ≻ π2. Also from the Substitution Axiom we have that for any

π3 ≻ π2, we have

π3 ∼
(

1 − b

a

)

π3 +
b

a
π3 ≻

(

1 − b

a

)

π2 +
b

a
π3.

Due to our observation above, we can use this with π3 = aπ1 + (1 − a)π2. Then we get

aπ1 + (1 − a)π2 ≻ b

a
{aπ1 + (1 − a)π2} +

(

1 − b

a

)

π2

∼ bπ1 + (1 − b)π2,

as was to be shown.

Conversely, assuming that

aπ1 + (1 − a)π2 ≻ bπ1 + (1 − b)π2,

we must argue that a > b. The above inequality cannot be true if a = b since the two combined

distributions are then identical. If b was greater than a, we could follow the steps above with a and

b swapped and end up concluding that bπ1 + (1 − b)π2 ≻ aπ1 + (1 − a)π2, which would contradict

our assumption. Hence, we cannot have neither a = b nor a < b but must have a > b. 2

Next we state the main result:

Theorem 5.2 Assume that Z is finite and that � is a preference relation on P(Z). Then � can

be represented by a linear utility index if and only if � satisfies the Archimedean Axiom and the

Substitution Axiom.

Proof: First suppose the preference relation � satisfies the Archimedean Axiom and the Substi-

tution Axiom. Define a utility index U : P(Z) → R exactly as in the proof of Theorem 5.1, i.e.

U(π) = απ, where απ ∈ [0, 1] is the unique number such that

π ∼ απ1zu + (1 − απ)1zl .

We want to show that, as a consequence of the Substitution Axiom, U is indeed linear. For that

purpose, pick any two probability distributions π1, π2 ∈ P(Z) and any number a ∈ [0, 1]. We want

to show that U (aπ1 + (1 − a)π2) = aU(π1) + (1 − a)U(π2). We can do that by showing that

aπ1 + (1 − a)π2 ∼ (aU(π1) + (1 − a)U(π2))1zu + (1 − {aU(π1) + (1 − a)U(π2)})1zl .

This follows from the Substitution Axiom:

aπ1 + (1 − a)π2 ∼ a{U(π1)1zu + (1 − U(π1))1zl} + (1 − a){U(π2)1zu + (1 − U(π2))1zl}
∼ (aU(π1) + (1 − a)U(π2))1zu + (1 − {aU(π1) + (1 − a)U(π2)})1zl .
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Now let us show the converse, i.e. if � can be represented by a linear utility index U, then it must

satisfy the Archimedean Axiom and the Substitution Axiom. In order to show the Archimedean

Axiom, we pick π1 ≻ π2 ≻ π3, which means that U(π1) > U(π2) > U(π3), and must find numbers

a, b ∈ (0, 1) such that

aπ1 + (1 − a)π3 ≻ π2 ≻ bπ1 + (1 − b)π3,

i.e. that

U (aπ1 + (1 − a)π3) > U(π2) > U (bπ1 + (1 − b)π3) .

Define the number a by

a = 1 − 1

2

U(π1) − U(π2)

U(π1) − U(π3)
.

Then a ∈ (0, 1) and by linearity of U we get

U (aπ1 + (1 − a)π3) = aU(π1) + (1 − a)U(π3)

= U(π1) + (1 − a) (U(π3) − U(π1))

= U(π1) −
1

2
(U(π1) − U(π2))

=
1

2
(U(π1) + U(π2))

> U(π2).

Similarly for b.

In order to show the Substitution Axiom, we take π1, π2, π3 ∈ P(Z) and any number a ∈ (0, 1].

We must show that π1 ≻ π2 if and only if aπ1 + (1 − a)π3 ≻ aπ2 + (1 − a)π3, i.e.

U(π1) > U(π2) ⇔ U (aπ1 + (1 − a)π3) > U (aπ2 + (1 − a)π3) .

This follows immediately by linearity of U:

U (aπ1 + (1 − a)π3) = aU(π1) + U ((1 − a)π3)

> aU(π2) + U ((1 − a)π3)

= U (aπ2 + (1 − a)π3)

with the inequality holding if and only if U(π1) > U(π2). Similarly, we can show that π1 ∼ π2 if

and only if aπ1 + (1 − a)π3 ∼ aπ2 + (1 − a)π3. 2

The next theorem shows which utility functions that represent the same preference relation. The

proof is left for the reader as Exercise 5.1.

Theorem 5.3 A utility function for a given preference relation is only determined up to a strictly

increasing affine transformation, i.e. if u is a utility function for �, then v will be so if and only

if there exist constants a > 0 and b such that v(z) = au(z) + b for all z ∈ Z.

If one utility function is an affine function of another, we will say that they are equivalent. Note

that an easy consequence of this theorem is that it does not really matter whether the utility is

positive or negative. At first, you might find negative utility strange but we can always add a

sufficiently large positive constant without affecting the ranking of different consumption plans.
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Suppose U is a utility index with an associated utility function u. If f is any strictly increasing

transformation, then V = f ◦ U is also a utility index for the same preferences, but f ◦ u is only

the utility function for V if f is affine.

The expected utility associated with a probability distribution π on Z is
∑

z∈Z π(z)u(z). Recall

that the probability distributions we consider correspond to consumption plans. Given a con-

sumption plan, i.e. a random variable c, the associated probability distribution is defined by the

probabilities

π(z) = P ({ω ∈ Ω|c(ω) = z}) =
∑

ω∈Ω:c(ω)=z

pω.

The expected utility associated with the consumption plan c is therefore

E[u(c)] =
∑

ω∈Ω

pωu(c(ω)) =
∑

z∈Z

∑

ω∈Ω:c(ω)=z

pωu(z) =
∑

z∈Z

π(z)u(z).

Of course, if c is a risk-free consumption plan in the sense that a z exists such that c(ω) = z for all

ω, then the expected utility is E[u(c)] = u(z). With a slight abuse of notation we will just write

this as u(c).

5.4.2 Some technical issues

Infinite Z. What if Z is infinite, e.g. Z = R+ ≡ [0,∞)? It can be shown that in this case a

preference relation has an expected utility representation if the Archimedean Axiom, the Substi-

tution Axiom, an additional axiom (“the sure thing principle”), and “some technical conditions”

are satisfied. Fishburn (1970) gives the details.

Expected utility in this case: E[u(c)] =
∫

Z
u(z)π(z) dz, where π is a probability density function

derived from the consumption plan c.

Boundedness of expected utility. Suppose u is unbounded from above and R+ ⊆ Z. Then

there exists (zn)
∞
n=1 ⊆ Z with zn → ∞ and u(zn) ≥ 2n. Expected utility of consumption plan π1

with π1(zn) = 1/2n:
∞∑

n=1

u(zn)π1(zn) ≥
∞∑

n=1

2n
1

2n
= ∞.

If π2, π3 are such that π1 ≻ π2 ≻ π3, then the expected utility of π2 and π3 must be finite. But

for no b ∈ (0, 1) do we have

π2 ≻ bπ1 + (1 − b)π3 [expected utility = ∞].

• no problem if Z is finite

• no problem if R+ ⊆ Z, u is concave, and consumption plans have finite expectations:

u concave ⇒ u is differentiable in some point b and

u(z) ≤ u(b) + u′(b)(z − b), ∀z ∈ Z.

If the consumption plan c has finite expectations, then

E[u(c)] ≤ E[u(b) + u′(b)(c− b)] = u(b) + u′(b) (E[c] − b) <∞.
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z 0 1 5

π1 0 1 0

π2 0.01 0.89 0.1

π3 0.9 0 0.1

π4 0.89 0.11 0

Table 5.4: The probability distributions used in the illustration of the Allais Paradox.

Subjective probability. We have taken the probabilities of the states of nature as exogenously

given, i.e. as objective probabilities. However, in real life individuals often have to form their own

probabilities about many events, i.e. they form subjective probabilities. Although the analysis is

a bit more complicated, Savage (1954) and Anscombe and Aumann (1963) show that the results

we developed above carry over to the case of subjective probabilities. For an introduction to this

analysis, see Kreps (1990, Ch. 3).

5.4.3 Are the axioms reasonable?

The validity of the Substitution Axiom, which is necessary for obtaining the expected utility rep-

resentation, has been intensively discussed in the literature. Some researchers have conducted

experiments in which the decisions made by the participating individuals conflict with the Substi-

tution Axiom.

The most famous challenge is the so-called Allais Paradox named after Allais (1953). Here is

one example of the paradox. Suppose Z = {0, 1, 5}. Consider the consumption plans in Table 5.4.

The Substitution Axiom implies that π1 ≻ π2 ⇒ π4 ≻ π3. This can be seen from the following:

0.11($1) + 0.89 ($1) ∼ π1 ≻ π2 ∼ 0.11

(
1

11
($0) +

10

11
($5)

)

+ 0.89 ($1) ⇒

0.11($1) + 0.89 ($0)
︸ ︷︷ ︸

π4∼

≻ 0.11

(
1

11
($0) +

10

11
($5)

)

+ 0.89 ($0) ∼ 0.9($0) + 0.1($5)
︸ ︷︷ ︸

π3∼

Nevertheless individuals preferring π1 to π2 often choose π3 over π4. Apparently people tend to

over-weight small probability events, e.g. ($0) in π2.

Other “problems”:

• the “framing” of possible choices, i.e. the way you get the alternatives presented, seem to

affect decisions

• models assume individuals have unlimited rationality

5.5 Risk aversion

In this section we focus on the attitudes towards risk reflected by the preferences of an individual.

We assume that the preferences can be represented by a utility function u and that u is strictly

increasing so that the individual is “greedy,” i.e. prefers high consumption to low consumption.

We assume that the utility function is defined on some interval Z of R, e.g. Z = R+ ≡ [0,∞).
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5.5.1 Risk attitudes

Fix a consumption level c ∈ Z. Consider a random variable ε with E[ε] = 0. We can think of

c+ ε as a random variable representing a consumption plan with consumption c+ ε(ω) if state ω

is realized. Note that E[c+ ε] = c. Such a random variable ε is called a fair gamble or a zero-mean

risk.

An individual is said to be (strictly) risk-averse if she for all c ∈ Z and all fair gambles ε

(strictly) prefers the sure consumption level c to c + ε. In other words, a risk-averse individual

rejects all fair gambles. Similarly, an individual is said to be (strictly) risk-loving if she for all

c ∈ Z (strictly) prefers c + ε to c, and said to be risk-neutral if she for all c ∈ Z is indifferent

between accepting any fair gamble or not. Of course, individuals may be neither risk-averse, risk-

neutral, or risk-loving, for example if they reject fair gambles around some values of c and accept

fair gambles around other values of c. Individuals may be locally risk-averse, locally risk-neutral,

and locally risk-loving. Since it is generally believed that individuals are risk-averse, we focus on

preferences exhibiting that feature.

We can think of any consumption plan c as the sum of its expected value E[c] and a fair gamble

ε = c − E[c]. It follows that an individual is risk-averse if she prefers the sure consumption E[c]

to the random consumption c, i.e. if u(E[c]) ≥ E[u(c)]. By Jensen’s Inequality, this is true exactly

when u is a concave function and the strict inequality holds if u is strictly concave and c is a

non-degenerate random variable, i.e. it does not have the same value in all states. Recall that

u : Z → R concave means that for all z1, z2 ∈ Z and all a ∈ (0, 1) we have

u (az1 + (1 − a)z2) ≥ au(z1) + (1 − a)u(z2).

If the strict inequality holds in all cases, the function is said to be strictly concave. By the above

argument, we have the following theorem:

Theorem 5.4 An individual with a utility function u is (strictly) risk-averse if and only if u is

(strictly) concave.

Similarly, an individual is (strictly) risk-loving if and only if the utility function is (strictly)

convex. An individual is risk-neutral if and only if the utility function is affine.

5.5.2 Quantitative measures of risk aversion

We will focus on utility functions that are continuous and twice differentiable on the interior of Z.

By our assumption of greedy individuals, we then have u′ > 0, and the concavity of the utility

function for risk-averse investors is then equivalent to u′′ ≤ 0.

The certainty equivalent of the random consumption plan c is defined as the c∗ ∈ Z such that

u(c∗) = E[u(c)],

i.e. the individual is just as satisfied getting the consumption level c∗ for sure as getting the random

consumption c. With Z ⊆ R, c∗ uniquely exists due to our assumptions that u is continuous and

strictly increasing. From the definition of the certainty equivalent it is clear that an individual will

rank consumption plans according to their certainty equivalents.
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For a risk-averse individual we have the certainty equivalent c∗ of a consumption plan is smaller

than the expected consumption level E[c]. The risk premium associated with the consumption

plan c is defined as λ(c) = E[c] − c∗ so that

E[u(c)] = u(c∗) = u(E[c] − λ(c)).

The risk premium is the consumption the individual is willing to give up in order to eliminate the

uncertainty.

The degree of risk aversion is associated with u′′, but a good measure of risk aversion should be

invariant to strictly positive, affine transformations. This is satisfied by the Arrow-Pratt measures

of risk aversion defined as follows. The Absolute Risk Aversion is given by

ARA(c) = −u
′′(c)

u′(c)
. (5.2)

The Relative Risk Aversion is given by

RRA(c) = −cu
′′(c)

u′(c)
= cARA(c). (5.3)

We can link the Arrow-Pratt measures to the risk premium in the following way. Let c̄ ∈ Z

denote some fixed consumption level and let ε be a fair gamble. The resulting consumption plan

is then c = c̄+ ε. Denote the corresponding risk premium by λ(c̄, ε) so that

E[u(c̄+ ε)] = u(c∗) = u (c̄− λ(c̄, ε)) . (5.4)

We can approximate the left-hand side of (5.4) by

E[u(c̄+ ε)] ≈ E

[

u(c̄) + εu′(c̄) +
1

2
ε2u′′(c̄)

]

= u(c̄) +
1

2
Var[ε]u′′(c̄),

using E[ε] = 0 and Var[ε] = E[ε2] − E[ε]2 = E[ε2], and we can approximate the right-hand side

of (5.4) by

u (c̄− λ(c̄, ε)) ≈ u(c̄) − λ(c̄, ε)u′(c̄).

Hence we can write the risk premium as

λ(c̄, ε) ≈ −1

2
Var[ε]

u′′(c̄)

u′(c̄)
=

1

2
Var[ε] ARA(c̄).

Of course, the approximation is more accurate for “small” gambles. Thus the risk premium for a

small fair gamble around c̄ is roughly proportional to the absolute risk aversion at c̄. We see that

the absolute risk aversion ARA(c̄) is constant if and only if λ(c̄, ε) is independent of c̄.

Loosely speaking, the absolute risk aversion ARA(c) measures the aversion to a fair gamble of

a given dollar amount around c, such as a gamble where there is an equal probability of winning

or loosing 1000 dollars. Since we expect that a wealthy investor will be less averse to that gamble

than a poor investor, the absolute risk aversion is expected to be a decreasing function of wealth.

Note that

ARA′(c) = −u
′′′(c)u′(c) − u′′(c)2

u′(c)2
=

(
u′′(c)

u′(c)

)2

− u′′′(c)

u′(c)
< 0 ⇒ u′′′(c) > 0,

that is, a positive third-order derivative of u is necessary for the utility function u to exhibit

decreasing absolute risk aversion.
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Now consider a “multiplicative” fair gamble around c̄ in the sense that the resulting consumption

plan is c = c̄ (1 + ε) = c̄+ c̄ε, where E[ε] = 0. The risk premium is then

λ(c̄, c̄ε) ≈ 1

2
Var[c̄ε] ARA(c̄) =

1

2
c̄2 Var[ε] ARA(c̄) =

1

2
c̄Var[ε] RRA(c̄)

implying that

λ(c̄, c̄ε)

c̄
≈ 1

2
Var[ε] RRA(c̄). (5.5)

The fraction of consumption you require to engage in the multiplicative risk is thus (roughly) pro-

portional to the relative risk aversion at c̄. Note that utility functions with constant or decreasing

(or even modestly increasing) relative risk aversion will display decreasing absolute risk aversion.

Some authors use terms like risk tolerance and risk cautiousness. The absolute risk tolerance

at c is simply the reciprocal of the absolute risk aversion, i.e.

ART(c) =
1

ARA(c)
= − u′(c)

u′′(c)
.

Similarly, the relative risk tolerance is the reciprocal of the relative risk aversion. The risk cau-

tiousness at c is defined as the rate of change in the absolute risk tolerance, i.e. ART′(c).

5.5.3 Comparison of risk aversion between individuals

An individual with utility function u is said to be more risk-averse than an individual with utility

function v if for any consumption plan c and any fixed c̄ ∈ Z with E[u(c)] ≥ u(c̄), we have

E[v(c)] ≥ v(c̄). So the v-individual will accept all gambles that the u-individual will accept – and

possibly some more. Pratt (1964) has shown the following theorem:

Theorem 5.5 Suppose u and v are twice continuously differentiable and strictly increasing. Then

the following conditions are equivalent:

(a) u is more risk-averse than v,

(b) ARAu(c) ≥ ARAv(c) for all c ∈ Z,

(c) a strictly increasing and concave function f exists such that u = f ◦ v.

Proof: First let us show (a) ⇒ (b): Suppose u is more risk-averse than v, but that ARAu(ĉ) <

ARAv(ĉ) for some ĉ ∈ Z. Since ARAu and ARAv are continuous, we must then have that

ARAu(c) < ARAv(c) for all c in an interval around ĉ. Then we can surely find a small gamble

around ĉ, which the u-individual will accept, but the v-individual will reject. This contradicts the

assumption in (a).

Next, we show (b) ⇒ (c): Since v is strictly increasing, it has an inverse v−1 and we can define

a function f by f(x) = u
(
v−1(x)

)
. Then clearly f(v(c)) = u(c) so that u = f ◦ v. The first-order

derivative of f is

f ′(x) =
u′
(
v−1(x)

)

v′ (v−1(x))
,
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which is positive since u and v are strictly increasing. Hence, f is strictly increasing. The second-

order derivative is

f ′′(x) =
u′′
(
v−1(x)

)
−
{
v′′
(
v−1(x)

)
u′
(
v−1(x)

)}
/v′
(
v−1(x)

)

v′ (v−1(x))
2

=
u′
(
v−1(x)

)

v′ (v−1(x))
2

(
ARAv

(
v−1(x)

)
− ARAu

(
v−1(x)

))
.

From (b), it follows that f ′′(x) < 0, hence f is concave.

Finally, we show that (c) ⇒ (a): assume that for some consumption plan c and some c̄ ∈ Z, we

have E[u(c)] ≥ u(c̄) but E[v(c)] < v(c̄). We want to arrive at a contradiction.

f (v(c̄)) = u(c̄) ≤ E[u(c)] = E[f(v(c))]

< f (E[v(c)])

< f (v(c̄)) ,

where we use the concavity of f and Jensen’s Inequality to go from the first to the second line, and

we use that f is strictly increasing to go from the second to the third line. Now the contradiction

is clear. 2

5.6 Utility functions in models and in reality

5.6.1 Frequently applied utility functions

CRRA utility. (Also known as power utility or isoelastic utility.) Utility functions u(c) in this

class are defined for c ≥ 0:

u(c) =
c1−γ

1 − γ
, (5.6)

where γ > 0 and γ 6= 1. Since

u′(c) = c−γ and u′′(c) = −γc−γ−1,

the absolute and relative risk aversions are given by

ARA(c) = −u
′′(c)

u′(c)
=
γ

c
, RRA(c) = cARA(c) = γ.

The relative risk aversion is constant across consumption levels c, hence the name CRRA (Constant

Relative Risk Aversion) utility. Note that u′(0+) ≡ limc→0 u
′(c) = ∞ with the consequence that

an optimal solution will have the property that consumption/wealth c will be strictly above 0

with probability one. Hence, we can ignore the very appropriate non-negativity constraint on

consumption since the constraint will never be binding. Furthermore, u′(∞) ≡ limc→∞ u′(c) = 0.

Some authors assume a utility function of the form u(c) = c1−γ , which only makes sense for

γ ∈ (0, 1). However, empirical studies indicate that most investors have a relative risk aversion

above 1, cf. the discussion below. The absolute risk tolerance is linear in c:

ART(c) =
1

ARA(c)
=
c

γ
.
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Figure 5.1: Some CRRA utility functions.

Except for a constant, the utility function

u(c) =
c1−γ − 1

1 − γ

is identical to the utility function specified in (5.6). The two utility functions are therefore equiv-

alent in the sense that they generate the same optimal choices. The advantage in using the latter

definition is that this function has a well-defined limit as γ → 1. From l’Hôspital’s rule we have

that

lim
γ→1

c1−γ − 1

1 − γ
= lim
γ→1

−c1−γ ln c

−1
= ln c,

which is the important special case of logarithmic utility. When we consider CRRA utility,

we will assume the simpler version (5.6), but we will use the fact that we can obtain the optimal

strategies of a log-utility investor as the limit of the optimal strategies of the general CRRA investor

as γ → 1.

Some CRRA utility functions are illustrated in Figure 5.1.

HARA utility. (Also known as extended power utility.) The absolute risk aversion for CRRA

utility is hyperbolic in c. More generally a utility function is said to be a HARA (Hyperbolic

Absolute Risk Aversion) utility function if

ARA(c) = −u
′′(c)

u′(c)
=

1

αc+ β

for some constants α, β such that αc + β > 0 for all relevant c. HARA utility functions are

sometimes referred to as affine (or linear) risk tolerance utility functions since the absolute risk

tolerance is

ART(c) =
1

ARA(c)
= αc+ β.

The risk cautiousness is ART′(c) = α.
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How do the HARA utility functions look like? First, let us take the case α = 0, which implies

that the absolute risk aversion is constant (so-called CARA utility) and β must be positive.

d(lnu′(c))

dc
=
u′′(c)

u′(c)
= − 1

β

implies that

lnu′(c) = − c

β
+ k1 ⇒ u′(c) = ek1e−c/β

for some constant k1. Hence,

u(c) = − 1

β
ek1e−c/β + k2

for some other constant k2. Applying the fact that increasing affine transformations do not change

decisions, the basic representative of this class of utility functions is the negative exponential

utility function

u(c) = −e−ac, c ∈ R, (5.7)

where the parameter a = 1/β is the absolute risk aversion. Constant absolute risk aversion is

certainly not very reasonable. Nevertheless, the negative exponential utility function is sometimes

used for computational purposes in connection with normally distributed returns, e.g. in one-period

models.

Next, consider the case α 6= 0. Applying the same procedure as above we find

d(lnu′(c))

dc
=
u′′(c)

u′(c)
= − 1

c+ β
⇒ lnu′(c) = − 1

α
ln(αc+ β) + k1

so that

u′(c) = ek1 exp

{

− 1

α
ln(αc+ β)

}

= ek1 (αc+ β)
−1/α

. (5.8)

For α = 1 this implies that

u(c) = ek1 ln(c+ β) + k2.

The basic representative of such utility functions is the extended log utility function

u(c) = ln (c− c̄) , c > c̄, (5.9)

where we have replaced β by −c̄. For α 6= 1, Equation (5.8) implies that

u(c) =
1

α
ek1

1

1 − 1
α

(αc+ β)
1−1/α

+ k2.

For α < 0, we can write the basic representative is

u(c) = − (c̄− c)
1−γ

, c < c̄, (5.10)

where γ = 1/α < 0. We can think of c̄ as a satiation level and call this subclass satiation HARA

utility functions. The absolute risk aversion is

ARA(c) =
−γ
c̄− c

,

which is increasing in c, conflicting with intuition and empirical studies. Some older financial

models used the quadratic utility function, which is the special case with γ = −1 so that u(c) =

− (c̄− c)
2
. An equivalent utility function is u(c) = c− ac2.
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For α > 0 (and α 6= 1), the basic representative is

u(c) =
(c− c̄)1−γ

1 − γ
, c > c̄, (5.11)

where γ = 1/α > 0. The limit as γ → 1 of the equivalent utility function (c−c̄)1−γ−1
1−γ is equal to the

extended log utility function u(c) = ln(c− c̄). We can think of c̄ as a subsistence level of wealth or

consumption (which makes sense only if c̄ ≥ 0) and refer to this subclass as subsistence HARA

utility functions. The absolute and relative risk aversions are

ARA(c) =
γ

c− c̄
, RRA(c) =

γc

c− c̄
=

γ

1 − (c̄/c)
,

which are both decreasing in c. The relative risk aversion approaches ∞ for c → c̄ and decreases

to the constant γ for c→ ∞. Clearly, for c̄ = 0, we are back to the CRRA utility functions so that

these also belong to the HARA family.

Mean-variance preferences. For some problems it is convenient to assume that the expected

utility associated with an uncertain consumption plan only depends on the expected value and the

variance of the consumption plan. This is certainly true if the consumption plan is a normally

distributed random variable since its probability distribution is fully characterized by the mean and

variance. However, it is generally not appropriate to use a normal distribution for consumption

(or wealth or asset returns).

For a quadratic utility function, u(c) = c− ac2, the expected utility is

E[u(c)] = E
[
c− ac2

]
= E[c] − aE

[
c2
]

= E[c] − a
(
Var[c] + E[c]2

)
,

which is indeed a function of the expected value and the variance of the consumption plan. Alas,

the quadratic utility function is inappropriate for several reasons. Most importantly, it exhibits

increasing absolute risk aversion.

For a general utility function the expected utility of a consumption plan will depend on all

moments. This can be seen by the Taylor expansion of u(c) around the expected consumption,

E[c]:

u(c) = u(E[c]) + u′(E[c])(c− E[c]) +
1

2
u′′(E[c])(c− E[c])2 +

∞∑

n=3

1

n!
u(n)(E[c])(c− E[c])n,

where u(n) is the n’th derivative of u. Taking expectations, we get

E[u(c)] = u(E[c]) +
1

2
u′′(E[c]) Var[c] +

∞∑

n=3

1

n!
u(n)(E[c]) E [(c− E[c])n] .

Here E [(c− E[c])n] is the central moment of order n. The variance is the central moment of order 2.

Obviously, a greedy investor (which just means that u is increasing) will prefer higher expected

consumption to lower for fixed central moments of order 2 and higher. Moreover, a risk-averse

investor (so that u′′ < 0) will prefer lower variance of consumption to higher for fixed expected

consumption and fixed central moments of order 3 and higher. But when the central moments

of order 3 and higher are not the same for all alternatives, we cannot just evaluate them on the

basis of their expectation and variance. With quadratic utility, the derivatives of u of order 3

and higher are zero so there it works. In general, mean-variance preferences can only serve as an

approximation of the true utility function.
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5.6.2 What do we know about individuals’ risk aversion?

From our discussion of risk aversion and various utility functions we expect that individuals are

risk averse and exhibit decreasing absolute risk aversion. But can this be supported by empirical

evidence? Do individuals have constant relative risk aversion? And what is a reasonable level of

risk aversion for individuals?

You can get an idea of the risk attitudes of an individual by observing how they choose between

risky alternatives. Some researchers have studied this by setting up “laboratory experiments” in

which they present some risky alternatives to a group of individuals and simply see what they

prefer. Some of these experiments suggest that expected utility theory is frequently violated,

see e.g. Grether and Plott (1979). However, laboratory experiments are problematic for several

reasons. You cannot be sure that individuals will make the same choice in what they know is an

experiment as they would in real life. It is also hard to formulate alternatives that resemble the

rather complex real-life decisions. It seems more fruitful to study actual data on how individuals

have acted confronted with real-life decision problems under uncertainty. A number of studies do

that.

Friend and Blume (1975) analyze data on household asset holdings. They conclude that the

data is consistent with individuals having roughly constant relative risk aversion and that the

coefficients of relative risk aversion are “on average well in excess of one and probably in excess of

two” (quote from page 900 in their paper). Pindyck (1988) finds support of a relative risk aversion

between 3 and 4 in a structural model of the reaction of stock prices to fundamental variables.

Other studies are based on insurance data. Using U.S. data on so-called property/liability

insurance, Szpiro (1986) finds support of CRRA utility with a relative risk aversion coefficient

between 1.2 and 1.8. Cicchetti and Dubin (1994) work with data from the U.S. on whether

individuals purchased an insurance against the risk of trouble with their home telephone line.

They conclude that the data is consistent with expected utility theory and that a subsistence

HARA utility function performs better than log utility or negative exponential utility.

Ogaki and Zhang (2001) study data on individual food consumption from Pakistan and India

and conclude that relative risk aversion is decreasing for poor individuals, which is consistent with

a subsistence HARA utility function.

It is an empirical fact that even though consumption and wealth have increased tremendously

over the years, the magnitude of real rates of return has not changed dramatically. As indicated

by (5.5) relative risk premia are approximately proportional to the relative risk aversion. As we

shall see in later chapters, basic asset pricing theory implies that relative risk premia on financial

assets (in terms of expected real return in excess of the real risk-free return) will be proportional

to the “average” relative risk aversion in the economy. If the “average” relative risk aversion was

significantly decreasing (increasing) in the level of consumption or wealth, we should have seen

decreasing (increasing) real returns on risky assets in the past. The data seems to be consistent

with individuals having “on average” close to CRRA utility.

To get a feeling of what a given risk aversion really means, suppose you are confronted with

two consumption plans. One plan is a sure consumption of c̄, the other plan gives you (1 − α)c̄

with probability 0.5 and (1 + α)c̄ with probability 0.5. If you have a CRRA utility function
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γ = RRA α = 1% α = 10% α = 50%

0.5 0.00% 0.25% 6.70%

1 0.01% 0.50% 13.40%

2 0.01% 1.00% 25.00%

5 0.02% 2.43% 40.72%

10 0.05% 4.42% 46.00%

20 0.10% 6.76% 48.14%

50 0.24% 8.72% 49.29%

100 0.43% 9.37% 49.65%

Table 5.5: Relative risk premia for a fair gamble of the fraction α of your consumption.

u(c) = c1−γ/(1 − γ), the certainty equivalent c∗ of the risky plan is determined by

1

1 − γ
(c∗)

1−γ
=

1

2

1

1 − γ
((1 − α)c̄)

1−γ
+

1

2

1

1 − γ
((1 + α)c̄)

1−γ
,

which implies that

c∗ =

(
1

2

)1/(1−γ)
[
(1 − α)1−γ + (1 + α)1−γ

]1/(1−γ)
c̄.

The risk premium λ(c̄, α) is

λ(c̄, α) = c̄− c∗ =

(

1 −
(

1

2

)1/(1−γ)
[
(1 − α)1−γ + (1 + α)1−γ

]1/(1−γ)

)

c̄.

Both the certainty equivalent and the risk premium are thus proportional to the consumption

level c̄. The relative risk premium λ(c̄, α)/c̄ is simply one minus the relative certainty equivalent

c∗/c̄. These equations assume γ 6= 1. In Exercise 5.5 you are asked to find the certainty equivalent

and risk premium for log-utility corresponding to γ = 1.

Table 5.5 shows the relative risk premium for various values of the relative risk aversion coefficient

γ and various values of α, the “size” of the risk. For example, an individual with γ = 5 is willing to

sacrifice 2.43% of the safe consumption in order to avoid a fair gamble of 10% of that consumption

level. Of course, even extremely risk averse individuals will not sacrifice more than they can loose

but in some cases it is pretty close. Looking at these numbers, it is hard to believe in γ-values

outside, say, [1, 10]. In Exercise 5.6 you are asked to compare the exact relative risk premia shown

in the table with the approximate risk premia given by (5.5).

5.7 Preferences for multi-date consumption plans

Above we implicitly considered preferences for consumption at one given future point in time.

We need to generalize the ideas and results to settings with consumption at several dates. In

one-period models individuals can consume both at time 0 (beginning-of-period) and at time 1

(end-of-period). In multi-period models individuals can consume either at each date in the discrete

time set T = {0, 1, 2, . . . , T} or at each date in the continuous time set T = [0, T ]. In any case a

consumption plan is a stochastic process c = (ct)t∈T where each ct is a random variable representing

the state-dependent level of consumption at time t.
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Consider the discrete-time case and, for each t, let Zt ⊆ R denote the set of all possible consump-

tion levels at date t and define Z = Z0 ×Z1 × · · · ×ZT ⊆ RT+1, then any consumption plan c can

again be represented by a probability distribution π on the set Z. For finite Z, we can again apply

Theorem 5.1 so that under the relevant axioms, we can represent preferences by a utility index U,

which to each consumption plan (ct)t∈T = (c0, c1, . . . , cT ) attaches a real number U(c0, c1, . . . , cT )

with higher numbers to the more preferred consumption plans. If we further impose the Substitu-

tion Axiom, Theorem 5.2 ensures an expected utility representation, i.e. the existence of a utility

function U : Z → R so that consumption plans are ranked according to their expected utility, i.e.

U(c0, c1, . . . , cT ) = E [U(c0, c1, . . . , cT )] ≡
∑

ω∈Ω

pωU (c0, c1(ω), . . . , cT (ω)) .

We can call U a multi-date utility function since it depends on the consumption levels at all

dates. Again this result can be extended to the case of an infinite Z, e.g. Z = RT+1
+ , but also

to continuous-time settings where U will then be a function of the entire consumption process

c = (ct)t∈[0,T ].

Often time-additivity is assumed so that the utility the individual gets from consumption in

one period does not directly depend on what she consumed in earlier periods or what she plan to

consume in later periods. For the discrete-time case, this means that

U(c0, c1, . . . , cT ) =

T∑

t=0

ut(ct)

where each ut is a valid “single-date” utility function. Still, when the individual has to choose her

current consumption rate, she will take her prospects for future consumption into account. The

continuous-time analogue is

U((ct)t∈[0,T ]) =

∫ T

0

ut(ct) dt.

In addition it is typically assumed that ut(ct) = e−δtu(ct) for all t. This is to say that the direct

utility the individual gets from a given consumption level is basically the same for all dates, but

the individual prefers to consume any given number of goods sooner than later. This is modeled by

the subjective time preference rate δ, which we assume to be constant over time and independent

of the consumption level. More impatient individuals have higher δ’s. In sum, the life-time utility

is typically assumed to be given by

U(c0, c1, . . . , cT ) =
T∑

t=0

e−δtu(ct)

in discrete-time models and

U((ct)t∈[0,T ]) =

∫ T

0

e−δtu(ct) dt

in continuous-time models. In both cases, u is a “single-date” utility function such as those

discussed in Section 5.6.

Time-additivity is mostly assumed for tractability. However, it is important to realize that the

time-additive specification does not follow from the basic axioms of choice under uncertainty, but

is in fact a strong assumption, which most economists agree is not very realistic. One problem

is that time-additive preferences induce a close link between the reluctance to substitute con-

sumption across different states of the economy (which is measured by risk aversion) and the
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willingness to substitute consumption over time (which can be measured by the so-called elasticity

of intertemporal substitution). Solving intertemporal utility maximization problems of individuals

with time-additive CRRA utility, it turns out that an individual with a high relative risk aversion

will also choose a very smooth consumption process, i.e. she will have a low elasticity of intertem-

poral substitution. There is nothing in the basic theory of choice that links the risk aversion and

the elasticity of intertemporal substitution together. For one thing, risk aversion makes sense even

in an atemporal (i.e. one-date) setting where intertemporal substitution is meaningless and, con-

versely, intertemporal substitution makes sense in a multi-period setting without uncertainty in

which risk aversion is meaningless. The close link between the two concepts in the multi-period

model with uncertainty is an unfortunate consequence of the assumption of time-additive expected

utility.

According to Browning (1991), non-additive preferences were already discussed in the 1890 book

“Principles of Economics” by Alfred Marshall. See Browning’s paper for further references to the

critique on intertemporally separable preferences. Let us consider some alternatives that are more

general and still tractable.

The key idea of habit formation is to let the utility associated with the choice of consumption

at a given date depend on past choices of consumption. In a discrete-time setting the utility index

of a given consumption process c is now given as E[
∑T
t=0 e

−δtu(ct, ht)], where ht is a measure of the

standard of living or the habit level of consumption, e.g. a weighted average of past consumption

rates such as

ht = h0e
−βt + α

t−1∑

s=1

e−β(t−s)cs,

where h0, α, and β are non-negative constants. It is assumed that u is decreasing in h so that

high past consumption generates a desire for high current consumption, i.e. preferences display

intertemporal complementarity. In particular, models where u(c, h) is assumed to be of the power-

linear form,

u(c, h) =
1

1 − γ
(c− h)1−γ , γ > 0, c ≥ h,

turn out to be computationally tractable. This is closely related to the subsistence HARA utility,

but with habit formation the “subsistence level” h is endogenously determined by past consump-

tion. The corresponding absolute and relative risk aversions are

ARA(c, h) ≡ −ucc(c, h)
uc(c, h)

=
γ

c− h
, RRA(c, h) ≡ −cucc(c, h)

uc(c, h)
=

γc

c− h
,

where uc and ucc are the first- and second-order derivatives of u with respect to c. In particular,

the relative risk aversion is decreasing in c. Note that the habit formation preferences are still

consistent with expected utility.

A related line of extension of the basic preferences is to allow the preferences of an individual

to depend on some external factors, i.e. factors that are not fully determined by choices made

by the individual. One example that has received some attention is where the utility which some

individual attaches to her consumption plan depends on the consumption plans of other individuals

or maybe the aggregate consumption in the economy. This is often referred to as “keeping up

with the Jones’es.” If you see your neighbors consume at high rates, you want to consume at

a high rate too. Utility is state-dependent. Models of this type are sometimes said to have an
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external habit, whereas the habit formation discussed above is then referred to as internal habit.

If we denote the external factor by Xt, a time-additive life-time expected utility representation

is E[
∑T
t=0 e

−δtu(ct,Xt)], and a tractable version is u(c,X) = 1
1−γ (c−X)

1−γ
very similar to the

subsistence CRRA or the specific habit formation utility given above. In this case, however,

“subsistence” level is determined by external factors. Another tractable specification is u(c,X) =
1

1−γ (c/X)1−γ .

Another preference specification gaining popularity is the so-called recursive preferences or

Epstein-Zin preferences, suggested and discussed by, e.g., Kreps and Porteus (1978), Epstein and

Zin (1989, 1991), and Weil (1989). The original motivation of this representation of preferences

is that it allows individuals to have preferences for the timing of resolution of uncertainty, which

is not consistent with the standard multi-date expected utility theory and violates the set of

behavioral axioms. With recursive preferences the utility index (in this literature sometimes called

the “felicity”) Ut at some point in time t (capturing the preferences for consumption at time t

and all later dates) depends both on consumption and that date and expectations of next period’s

utility index Ut+1. The most tractable, non-trivial specification is usually written as

Ut =

[
(
1 − e−δ

)
c
(1−γ)/θ
t + e−δ

(

Et

[

U
1−γ
t+1

])1/θ
]θ/(1−γ)

, θ ≡ 1 − γ

1 − 1
ψ

. (5.12)

Here γ has the interpretation of the relative risk aversion, as before, and ψ = θ/(θ + γ − 1) has

the interpretation of the intertemporal elasticity of substitution. It is often easier to work with the

“normalized” utility index Ũt = 1
1−γU

1−γ
t , which represents the same preferences and satisfies

Ũt =
1

1 − γ

[
(
1 − e−δ

)
c
(1−γ)/θ
t + e−δ

(

(1 − γ) Et

[

Ũt+1

])1/θ
]θ

. (5.13)

When γ = 1/ψ, we have θ = 1, and therefore

Ũt =
1

1 − γ

[(
1 − e−δ

)
c1−γt + e−δ(1 − γ) Et

[

Ũt+1

]]

.

There is a similar expression for Ũt+1 in terms of ct+1 and Et+1

[

Ũt+2

]

, which we can substitute

into the above equation. If we keep doing that and assume that ŨT+1 = 0, we obtain

Ũt =
(
1 − e−δ

)
Et

[
T∑

s=t

e−δ(s−t)
1

1 − γ
c1−γt+s

]

. (5.14)

Since the positive constant in front of the expectation does not affect the ordering of alternatives,

we see that time-additive power utility is the special case of recursive preferences where γ = 1/ψ,

i.e. the relative risk aversion equals the inverse of the elasticity of intertemporal substitution. The

continuous-time equivalent of recursive utility is called stochastic differential utility and studied by,

e.g., Duffie and Epstein (1992b). Note that generally recursive preferences are not consistent with

expected utility since Ut depends non-linearly on the probabilities of future consumption levels.

For studying some problems it is useful or even necessary to distinguish between different con-

sumption goods. Until now we have implicitly assumed a single consumption good which is perish-

able in the sense that it cannot be stored. However, individuals spend large amounts on durable

goods such as houses and cars. These goods provide utility to the individual beyond the period

of purchase and can potentially be resold at a later date so that it also acts as an investment.
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Another important good is leisure. Individuals have preferences both for consumption of physical

goods and for leisure. A tractable two-good utility function is the Cobb-Douglas function:

u(c1, c2) =
1

1 − γ

(

cψ1 c
1−ψ
2

)1−γ

,

where ψ ∈ [0, 1] determines the relative weighting of the two goods.

5.8 Exercises

EXERCISE 5.1 Give a proof of Theorem 5.3.

EXERCISE 5.2 (Adapted from Problem 3.3 in Kreps (1990).) Consider the following two

probability distributions of consumption. π1 gives 5, 15, and 30 (dollars) with probabilities 1/3,

5/9, and 1/9, respectively. π2 gives 10 and 20 with probabilities 2/3 and 1/3, respectively.

(a) Show that we can think of π1 as a two-step gamble, where the first gamble is identical to

π2. If the outcome of the first gamble is 10, then the second gamble gives you an additional

5 (total 15) with probability 1/2 and an additional −5 (total 5) also with probability 1/2.

If the outcome of the first gamble is 20, then the second gamble gives you an additional 10

(total 30) with probability 1/3 and an additional −5 (total 15) with probability 2/3.

(b) Observe that the second gamble has mean zero and that π1 is equal to π2 plus mean-zero

noise. Conclude that any risk-averse expected utility maximizer will prefer π2 to π1.

EXERCISE 5.3 (Adapted from Chapter 3 in Kreps (1990).) Imagine a greedy, risk-averse,

expected utility maximizing consumer whose end-of-period income level is subject to some uncer-

tainty. The income will be Y with probability p̄ and Y ′ < Y with probability 1 − p̄. Think of

∆ = Y − Y ′ as some loss the consumer might incur due an accident. An insurance company is

willing to insure against this loss by paying ∆ to the consumer if she sustains the loss. In return,

the company wants an upfront premium of δ. The consumer may choose partial coverage in the

sense that if she pays a premium of aδ, she will receive a∆ if she sustains the loss. Let u denote

the von Neumann-Morgenstern utility function of the consumer. Assume for simplicity that the

premium is paid at the end of the period.

(a) Show that the first order condition for the choice of a is

p̄δu′(Y − aδ) = (1 − p̄)(∆ − δ)u′(Y − (1 − a)∆ − aδ).

(b) Show that if the insurance is actuarially fair in the sense that the expected payout (1− p̄)∆

equals the premium δ, then the consumer will purchase full insurance, i.e. a = 1 is optimal.

(c) Show that if the insurance is actuarially unfair, meaning (1 − p̄)∆ < δ, then the consumer

will purchase partial insurance, i.e. the optimal a is less than 1.
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EXERCISE 5.4 Consider a one-period choice problem with four equally likely states of the

world at the end of the period. The consumer maximizes expected utility of end-of-period wealth.

The current wealth must be invested in a single financial asset today. The consumer has three

assets to choose from. All three assets have a current price equal to the current wealth of the

consumer. The assets have the following end-of-period values:

state 1 2 3 4

probability 0.25 0.25 0.25 0.25

asset 1 100 100 100 100

asset 2 81 100 100 144

asset 3 36 100 100 225

(a) What asset would a risk-neutral individual choose?

(b) What asset would a power utility investor, u(W ) = 1
1−γW

1−γ choose if γ = 0.5? If γ = 2?

If γ = 5?

Now assume a power utility with γ = 0.5.

(c) Suppose the individual could obtain a perfect signal about the future state before she makes

her asset choice. There are thus four possible signals, which we can represent by s1 = {1},
s2 = {2}, s3 = {3}, and s4 = {4}. What is the optimal asset choice for each signal? What

is her expected utility before she receives the signal, assuming that the signals have equal

probability?

(d) Now suppose that the individual can receive a less-than-perfect signal telling her whether

the state is in s1 = {1, 4} or in s2 = {2, 3}. The two possible signals are equally likely. What

is the expected utility of the investor before she receives the signal?

EXERCISE 5.5 Consider an individual with log utility, u(c) = ln c. What is her certainty

equivalent and risk premium for the consumption plan which with probability 0.5 gives her (1−α)c̄

and with probability 0.5 gives her (1+α)c̄? Confirm that your results are consistent with numbers

for γ = 1 shown in Table 5.5.

EXERCISE 5.6 Use Equation (5.5) to compute approximate relative risk premia for the

consumption gamble underlying Table 5.5 and compare with the exact numbers given in the table.



Chapter 6

Individual optimality

6.1 Introduction

Chapter 4 discussed how the general pricing mechanism of a financial market can be represented

by a state-price deflator. Given a state-price deflator we can price all state-contingent dividends.

Conversely, given the market prices of state-contingent dividends we can extract one or several

state-price deflators. Market prices and hence the state-price deflator(s) are determined by the

supply and demand of the individuals in the economy. Therefore, we have to study the portfolio

decisions of individuals. This is the topic of the present chapter. In the next chapter we will then

discuss market equilibrium.

Section 6.2 studies the individual’s maximization problem with various preference specifications

in the one-period setting. Sections 6.3 and 6.4 extend the analysis to the discrete-time and the

continuous-time framework, respectively. The main result of these sections is that the (marginal

utility of) optimal consumption of any individual induces a valid state-price deflator, which gives us

a link between individual optimality and asset prices. This is the cornerstone of the consumption-

based asset pricing models studied in Chapter 8. Section 6.5 introduces the dynamic programming

approach to the solution of multi-period utility maximization problems. In particular, we derive

the so-called envelope condition that links marginal utility of consumption to marginal utility of

optimal investments. In this way the state-price deflator is related to the optimally invested wealth

of the individual plus some state variables capturing other information affecting the decisions of

the individual. This will be useful for the factor pricing models studied in Chapter 9.

6.2 The one-period framework

In the one-period framework the individual consumes at time 0 (the beginning of the period) and

at time 1 (the end of the period). We denote time 0 consumption by c0 and the state-dependent

time 1 consumption by the random variable c. The individual has some initial wealth e0 ≥ 0 at

time 0 and may receive a non-negative state-dependent endowment (income) at time 1 represented

by the random variable e. The individual picks a portfolio θ at time 0 with a time 0 price of

P θ = θ⊤P =
∑I
i=1 θiPi, assuming the Law of One Price, and a time 1 random dividend of

119
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Dθ = θ⊤D =
∑I
i=1 θiDi. The budget constraints are therefore

cω ≤ eω +Dθ
ω = eω +

I∑

i=1

Diωθi, for all ω ∈ Ω, (6.1)

c0 ≤ e0 − P θ = e0 −
I∑

i=1

θiPi. (6.2)

The individual can choose the consumption plan and the portfolio. Since we will always assume

that individuals prefer more consumption to less, it is clear that the budget constraints will hold

as equalities. Therefore we can think of the individual choosing only the portfolio and then the

consumption plan follows from the budget constraints above.

Consumption has to be non-negative both at time 0 and in all states at time 1 so we should add

such constraints when looking for the optimal strategy. However, we assume throughout that the

individual has infinite marginal utility at zero consumption so that the non-negativity constraints

are automatically satisfied and can be ignored. We assume that the preferences are concave so that

first-order conditions provide the optimal choice. When solving the problem we will also assume

that the individual acts as a price taker so that prices are unaffected by her portfolio choice. We

assume that prices admit no arbitrage. If there was an arbitrage, it would be possible to obtain

infinite consumption. We do not impose any constraints on the portfolios the individual may

choose among.

The following subsections characterize the optimal consumption plan for various preference spec-

ifications.

6.2.1 Time-additive expected utility

With time-additive expected utility there is a “single-date” utility function u : R+ → R such that

the objective of the individual is

max
θ

u(c0) + E
[
e−δu(c)

]
, (6.3)

where δ is a subjective time preference rate. Substituting in the budget constraints, we get

max
θ

u

(

e0 −
I∑

i=1

θiPi

)

+ E

[

e−δu

(

e+

I∑

i=1

θiDi

)]

.

The first-order condition with respect to θi is

−Piu′
(

e0 −
I∑

i=1

θiPi

)

+ E

[

e−δDiu
′

(

e+

I∑

i=1

θiDi

)]

= 0

or

Piu
′(c0) = E

[
e−δDiu

′(c)
]
, (6.4)

where c0 and c denotes the optimal consumption plan, i.e. the consumption plan generated by the

optimal portfolio θ. We can rewrite the above equation as

Pi = E

[

e−δ
u′(c)

u′(c0)
Di

]

. (6.5)

This equation links prices to the optimal consumption plan of an individual investor.
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Comparing (6.5) and the pricing condition in the definition of a state-price deflator it is clear

that

ζ = e−δ
u′(c)

u′(c0)
(6.6)

defines a state-price deflator. It is positive since marginal utilities are positive. This state-price

deflator is the marginal rate of substitution of the individual capturing the willingness of the

individual to substitute a bit of time 0 consumption for some time 1 consumption.

The optimality condition (6.5) can also be justified by a variational argument, which goes as

follows. Assume that (c0, c) denotes the optimal consumption plan for the individual. Then any

deviation from this plan will give the individual a lower utility. One deviation is obtained by

investing in ε > 0 additional units of asset i at the beginning of the period. This leaves an initial

consumption of c0 − εPi. On the other hand, the end-of-period consumption in state ω becomes

cω + εDiω. We know that

u(c0 − εPi) + e−δ E [u(c+ εDi)] ≤ u(c0) + e−δ E [u(c)] .

Subtracting the right-hand side from the left-hand side and dividing by ε yields

u(c0 − εPi) − u(c0)

ε
+ e−δ E

[
u(c+ εDi) − u(c)

ε

]

≤ 0.

Letting ε go to zero, the fractions on the left-hand side approaches derivatives and we obtain

−Piu′(c0) + e−δ E [u′(c)Di] ≤ 0,

which implies that

Pi ≥ E

[

e−δ
u′(c)

u′(c0)
Di

]

.

On the other hand, if we consider selling ε > 0 units of asset i at the beginning of the period, the

same reasoning can be used to show that

Pi ≤ E

[

e−δ
u′(c)

u′(c0)
Di

]

.

Hence, the relation must hold as an equality, just as in (6.5).

Example 6.1 For the case of CRRA utility, u(c) = 1
1−γ c

1−γ , we have u′(c) = c−γ . Therefore the

optimal consumption plan satisfies

Pi = E

[

e−δ
(
c

c0

)−γ

Di

]

, (6.7)

and the state-price deflator derived from the individual’s problem is

ζ = e−δ
(
c

c0

)−γ

. (6.8)

2
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6.2.2 Non-additive expected utility

Next consider non-additive expected utility where the objective is to maximize E[U(c0, c)] for some

U : R+ × R+ → R. Again, substituting in the budget constraint, the problem is

max
θ

E

[

U

(

e0 −
I∑

i=1

θiPi, e+

I∑

i=1

θiDi

)]

. (6.9)

The first-order condition with respect to θi is

−Pi E
[

∂U

∂c0

(

e0 −
I∑

i=1

θiPi, e+

I∑

i=1

θiDi

)]

+ E

[

Di
∂U

∂c

(

e0 −
I∑

i=1

θiPi, e+

I∑

i=1

θiDi

)]

= 0

which implies that

Pi = E





∂U
∂c (c0, c)

E
[
∂U
∂c0

(c0, c)
]Di



 , (6.10)

so that the corresponding state-price deflator is

ζ =
∂U
∂c (c0, c)

E
[
∂U
∂c0

(c0, c)
] . (6.11)

This could be supported by a variational argument as in the case of time-additive expected utility.

Again note that these equations hold for the optimal consumption plan.

Example 6.2 Consider the very simple habit-style utility function

U(c0, c) =
1

1 − γ
c1−γ0 +

1

1 − γ
e−δ (c− αc0)

1−γ
.

The subsistence level for time 1 consumption is some fraction α of time 0 consumption. In this

case the relevant marginal utilities are

∂U

∂c0
(c0, c) = c−γ0 − βe−δ (c− βc0)

−γ
,

∂U

∂c
(c0, c) = e−δ (c− βc0)

−γ
.

The first-order condition therefore implies that

Pi = E




e−δ (c− βc0)

−γ

E
[

c−γ0 − βe−δ (c− βc0)
−γ
]Di



 , (6.12)

and the associated state-price deflator is

ζ =
e−δ (c− βc0)

−γ

E
[

c−γ0 − βe−δ (c− βc0)
−γ
] . (6.13)

This simple example indicates that (internal) habit formation leads to pricing expressions that are

considerably more complicated than time-additive utility. 2
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6.2.3 A general utility index

A general utility index U is tractable for a finite state space where we can write the objective as

max
θ

U(c0, c1, . . . , cS),

where cω is consumption in state ω, ω = 1, . . . , S. From the budget constraint cω = eω+
∑I
i=1Diωθi

so the first-order condition implies that

Pi =

S∑

ω=1

∂U

∂cω
(c0, c1, . . . , cS)

∂U

∂c0
(c0, c1, . . . , cS)

Diω. (6.14)

This defines a state-price vector ψ by

ψω =

∂U

∂cω
(c0, c1, . . . , cS)

∂U

∂c0
(c0, c1, . . . , cS)

.

6.2.4 A two-step procedure in a complete market

In a complete market we can separate the consumption and the portfolio decision as follows:

1. find the optimal consumption plan given the budget constraints,

2. find the portfolio financing the optimal consumption plan; such a portfolio will exist when

the market is complete.

Let us show this in the case of a finite state space. Suppose the market is complete and let ψ

denote the unique state-price vector. The individual can obtain any dividend vector D at the cost

of ψ ·D. Hence the individual can first solve the problem

max
c0,c,D

U(c0, c) (6.15)

s.t. c ≤ e+D, (6.16)

c0 ≤ e0 −ψ ·D, (6.17)

c0, c ≥ 0,

for the optimal consumption plan. Here (6.16) is a vector inequality, which means that the in-

equality should hold element by element, i.e.

cω ≤ eω +Dω, ω = 1, . . . , S.

In fact we can eliminate the dividends from the problem. Multiplying (6.16) by ψ, we get

ψ · c ≤ ψ · e+ψ ·D.

Adding this to (6.17), we see that any feasible consumption plan (c0, c) must satisfy

c0 +ψ · c ≤ e0 +ψ · e. (6.18)

This is natural, since the left-hand side is the present value of the consumption plan and the right-

hand side is the present value of the endowment, which is well-defined since market completeness
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ensures that some portfolio will provide a dividend identical to the endowment. Conversely, suppose

a consumption plan (c0, c) satisfies (6.18). Then it will also satisfy the conditions (6.16) and (6.17)

with D = c− e. Thus we can find the utility maximizing consumption plan by solving

max
c0,c

U(c0, c) (6.19)

s.t. c0 +ψ · c ≤ e0 +ψ · e
c0, c ≥ 0,

and we will still assume that the non-negativity constraint will be automatically satisfied. The

Lagrangian for the problem is therefore

L = U(c0, c) + ν (e0 +ψ · e− c0 −ψ · c) ,

where ν is the Lagrange multiplier. The first-order conditions are

∂U

∂c0
(c0, c) = ν,

∂U

∂c
(c0, c) = νψ.

In particular, the optimal consumption plan satisfies

∂U

∂c
(c0, c)

∂U

∂c0
(c0, c)

= ψ.

Given the chosen consumption plan c and the future income e, we can back out the portfolio by

solving D⊤θ = e− c for θ. In a complete market, such a portfolio can always be found.

With an infinite state space and an expected utility representation U(c0, c) = E[U(c0, c)], we can

formulate the complete markets problem as

max
c0,c

E[U(c0, c)] (6.20)

s.t. c0 + E[ζc] ≤ e0 + E[ζe]

c0, c ≥ 0,

where ζ is the unique state-price deflator. The Lagrangian is

L = E[U(c0, c)] + ν (e0 − c0 + E[ζ(e− c)]) = ν (e0 − c0) + E [U(c0, c) + νζ(e− c)] .

We maximize the expectation E [U(c0, c) + νζ(e− c)] by maximizing state-by-state, i.e. maximizing

U(c0, c(ω)) + νζ(ω) (e(ω) − c(ω)) for each state ω. The first-order conditions with respect to c(ω)

implies
∂U

∂c
(c0, c(ω)) = νζ(ω)

and the first-order condition with respect to c0 implies that

E

[
∂U

∂c0
(c0, c)

]

= ν

and, hence,
∂U
∂c (c0, c)

E
[
∂U
∂c0

(c0, c)
] = ζ.
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In particular, with time-additive expected utility U(c0, c) = u(c0) + e−δu(c), we get

e−δ
u′(c)

u′(c0)
= ζ

as found earlier.

If the market is incomplete, the individual cannot implement any consumption plan but only

those that can be financed by portfolios of traded assets. Therefore, we cannot apply the above

technique.

6.2.5 Optimal portfolios and mean-variance analysis

We have not explicitly solved for the optimal portfolio. Although it is certainly relevant to study

the portfolio decisions of individuals in more detail, it is not necessary for asset pricing pur-

poses. The most popular one-period model for portfolio choice is the mean-variance model intro-

duced by Markowitz (1952, 1959). If the individual has mean-variance preferences, cf. Section 5.6,

her optimal portfolio will be a mean-variance efficient portfolio corresponding to a point on the

upward-sloping branch of the mean-variance frontier. Mean-variance analysis does not by itself

say anything about exactly which portfolio a given individual should choose but if we assume a

given mean-variance utility function, the optimal portfolio can be derived. Note, however, that

the conditions justifying mean-variance portfolio choice are highly unrealistic: either returns must

be normally distributed or individuals must have mean-variance preferences. Nevertheless, the

mean-variance frontier remains an important concept in both portfolio choice and asset pricing

(recall Theorem 4.6). Below we will use the traditional Lagrangian approach to characterize the

mean-variance efficient portfolios. In Section 9.4 we will offer an alternative “orthogonal” char-

acterization and use that to show the link between mean-variance returns, pricing factors, and

state-price deflators.

We assume as before that I assets are traded and let R = (R1, . . . , RI)
⊤

denote the vector of

gross returns on these assets. Let µ = E[R] denote the vector of expected gross returns and let

Σ = Var[R] denote the I × I variance-covariance matrix of gross returns. In the characterization

of mean-variance efficient portfolios, we are only interested in their returns so we can represent

portfolios by portfolio weight vectors, i.e. vectors π = (π1, . . . , πI)
⊤

with π · 1 = 1, where πi

is the fraction of total portfolio value invested in asset i. The gross return on a portfolio π is

Rπ = π ·R =
∑I
i=1 πiRi, cf. (3.7). The expectation and the variance of the return on a portfolio

π are

E [Rπ] = E

[
I∑

i=1

πiRi

]

=

I∑

i=1

πi E[Ri] =

I∑

i=1

πiµi = π · µ = π⊤µ,

Var [Rπ] = Var

[
I∑

i=1

πiRi

]

=

I∑

i=1

I∑

j=1

πiπj Cov[Ri, Rj ] = π⊤Σπ.

A portfolio π is then mean-variance efficient if there is an m ∈ R so that π solves

min
π
π⊤Σπ s.t. π⊤µ = m, π⊤1 = 1, (6.21)

i.e. π has the lowest return variance among all portfolios with expected return m.
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Risky assets only

Assume that Σ is positive definite, i.e. that π⊤Σπ > 0 for all π, which means that the variance

of the return on any portfolio is positive. Any portfolio of risky assets will be risky; there is no

risk-free asset and no redundant assets. It follows that Σ is non-singular and that the inverse Σ−1

is also positive definite. We will allow for a risk-free asset later.

The Lagrangian associated with the constrained minimization problem (6.21) is

L = π⊤Σπ + α (m− π⊤µ) + β (1 − π⊤1) ,

where α and β are Lagrange multipliers. The first-order condition with respect to π is

∂L

∂π
= 2Σπ − αµ− β1 = 0,

which implies that

π =
1

2
αΣ−1µ+

1

2
βΣ−11. (6.22)

The first-order conditions with respect to the multipliers simply give the two constraints to the

minimization problem. Substituting the expression (6.22) for π into the two constraints, we obtain

the equations

αµ⊤Σ−1µ+ β1⊤Σ−1µ = 2m,

αµ⊤Σ−11 + β1⊤Σ−11 = 2.

Defining the numbers A,B,C,D by

A = µ⊤Σ−1µ, B = µ⊤Σ−11 = 1⊤Σ−1µ, C = 1⊤Σ−11, D = AC −B2,

we can write the solution to the two equations in α and β as

α = 2
Cm−B

D
, β = 2

A−Bm

D
.

Substituting this into (6.22) we obtain

π = π(m) ≡ Cm−B

D
Σ−1µ+

A−Bm

D
Σ−11. (6.23)

This is the mean-variance efficient portfolio with expected gross return m. Some tedious calcula-

tions show that the variance of the return on this portfolio is equal to

σ2(m) ≡ π(m)⊤Σπ(m) =
Cm2 − 2Bm+A

D
. (6.24)

This is to be verified in Exercise 6.4. Equation (6.24) shows that the combinations of variance and

mean form a parabola in a (mean, variance)-diagram.

Traditionally the portfolios are depicted in a (standard deviation, mean)-diagram. The above

relation can also be written as
σ2(m)

1/C
− (m−B/C)2

D/C2
= 1,

from which it follows that the optimal combinations of standard deviation and mean form a hy-

perbola in the (standard deviation, mean)-diagram. This hyperbola is called the mean-variance
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frontier of risky assets. The mean-variance efficient portfolios are sometimes called frontier port-

folios.

Before we proceed let us clarify a point in the derivation above. We need to divide by D so D

has to be non-zero. In fact, D > 0. To see this, first note that since Σ and therefore Σ−1 are

positive definite, we have A > 0 and C > 0. Moreover,

AD = A(AC −B2) = (Bµ−A1)⊤Σ−1(Bµ−A1) > 0,

again using that Σ−1 is positive definite. Since A > 0, we must have D > 0.

The (global) minimum-variance portfolio is the portfolio that has the minimum variance

among all portfolios. We can find this directly by solving the constrained minimization problem

min
π
π⊤Σπ s.t. π⊤1 = 1 (6.25)

where there is no constraint on the expected portfolio return. Alternatively, we can minimize

the variance σ2(m) in (6.24) over all m. Taking the latter route, we find that the minimum

variance is obtained when the mean return is mmin = B/C and the minimum variance is given by

σ2
min = σ2(mmin) = 1/C. From (6.23) we get that the minimum-variance portfolio is

πmin =
1

C
Σ−11 =

1

1⊤Σ−11
Σ−11. (6.26)

It will be useful to consider the problem

max
π

π⊤µ− α
(
π⊤Σπ

)1/2
s.t. π⊤1 = 1, (6.27)

where α is some constant. The denominator in the objective is clearly the standard deviation of

the return of the portfolio, while the numerator is the expected return in excess of α. This ratio is

the slope of a straight line in the (standard deviation, mean)-diagram that goes through the point
(
(π⊤Σπ)1/2,π⊤µ

)
corresponding to the portfolio π and intersects the mean-axis at α. Applying

the constraint, the objective function can be rewritten as

f(π) =
π⊤(µ− α1)
(
π⊤Σπ

)1/2
= π⊤(µ− α1)

(
π⊤Σπ

)−1/2
.

The derivative is

∂f

∂π
= (µ− α1)

(
π⊤Σπ

)−1/2 −
(
π⊤Σπ

)−3/2
π⊤(µ− α1)Σπ

and ∂f
∂π

= 0 implies that

π⊤(µ− α1)

π⊤Σπ
π = Σ−1 (µ− α1) , (6.28)

which we want to solve for π. Note that the equation has a vector on each side. If two vectors are

identical, they will also be identical after a division by the sum of the elements of the vector. The

sum of the elements of the vector on the left-hand side of (6.28) is

1⊤

(

π⊤(µ− α1)

π⊤Σπ
π

)

=
π⊤(µ− α1)

π⊤Σπ
1⊤π =

π⊤(µ− α1)

π⊤Σπ
,



128 Chapter 6. Individual optimality

where the last equality is due to the constraint. The sum of the elements of the vector on the

right-hand side of (6.28) is simply 1⊤Σ−1 (µ− α1). Dividing each side of (6.28) with the sum of

the elements we obtain the portfolio

π =
Σ−1 (µ− α1)

1⊤Σ−1 (µ− α1)
. (6.29)

In particular, by letting α = 0, we can see that the portfolio

πslope =
1

1⊤Σ−1µ
Σ−1µ =

1

B
Σ−1µ (6.30)

is the portfolio that maximizes the slope of a straight line between the origin and a point on

the mean-variance frontier in the (standard deviation, mean)-diagram. Let us call πslope the

maximum-slope portfolio. This portfolio has mean A/B and variance A/B2.

From (6.23) we see that any mean-variance efficient portfolio can be written as a linear combi-

nation of the maximum-slope portfolio and the minimum-variance portfolio:

π(m) =
(Cm−B)B

D
πslope +

(A−Bm)C

D
πmin. (6.31)

Note that the two multipliers of the portfolios sum to one. This is a two-fund separation result.

Any mean-variance efficient portfolio is a combination of two special portfolios or funds, namely

the maximum slope portfolio and the minimum-variance portfolio. These two portfolios are said

to generate the mean-variance frontier of risky assets. In fact, it can be shown that any other two

frontier portfolios generate the entire frontier.

The following result is both interesting and useful. Let Rπ denote the return on any mean-

variance efficient portfolio different from the minimum-variance portfolio. Then there exists a

unique mean-variance efficient portfolio with a return Rz(π) such that Cov[Rπ, Rz(π)] = 0. The

return Rz(π) is called the zero-beta return for Rπ, which is consistent with the definition of betas

in the section on pricing factors. Furthermore, one can show that

E[Rz(π)] =
A−B E[Rπ]

B − C E[Rπ]

and that the tangent to the mean-variance frontier at the point corresponding to Rπ will intersect

the expected return axis exactly in E[Rz(π)]. These results are to be shown in Exercise 6.5.

Allowing for a risk-free asset

Now let us allow for a risk-free asset with a gross return of Rf . The risk-free asset corresponds

to the point (0, Rf ) in the (standard deviation, mean)-diagram. Either the risk-free asset is one

of the I basic assets or it can be constructed as a portfolio of the basic assets. Without loss of

generality we can assume that the risk-free asset is the I’th basic asset. The remaining M ≡ I − 1

basic assets are risky. Let R̃ = (R1, . . . , RM )
⊤

denote the gross return vector of the risky assets

with expectation µ̃ = E[R̃] and variance Σ̃ = Var[R̃]. Now assume that Σ̃ is positive definite.

We assume that the risk-free return is smaller than the expected return on the minimum-variance

portfolio of the risky assets.

A portfolio of all I assets can be represented by an M -dimensional vector π̃ of the portfolio

weights invested in the risky assets, while the remaining fraction πf ≡ 1 − π̃⊤1 is the invested in
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the risk-free asset. A portfolio involving only the risky assets is an M -dimensional vector π̃ with

π̃⊤1 = 1.

Fix for a moment a portfolio π̃ of risky assets only. The gross return on this portfolio is

Rπ̃ = π̃⊤R̃. Suppose you invest a fraction πf of some amount in the risk-free asset and the

remaining fraction 1 − πf in this particular risky portfolio. The gross return on this combination

will be

R = πfR
f + (1 − πf )R

π̃

with mean and variance given by

E[R] = πfR
f + (1 − πf ) E

[
Rπ̃
]
, Var[R] = (1 − πf )

2
Var

[
Rπ̃
]

If πf ≤ 1, the standard deviation of the return is σ[R] = (1 − πf )σ
[
Rπ̃
]

and we obtain

E[R] = πfR
f +

E
[
Rπ̃
]

σ [Rπ̃]
σ[R]

so varying πf the set of points {(σ[R],E[R]) | πf ≤ 1} will form an upward-sloping straight line

from (0, Rf ) through (σ
[
Rπ̃
]
,E
[
Rπ̃
]
). For πf > 1, the standard deviation of the combined

portfolio is σ[R] = −(1 − πf )σ
[
Rπ̃
]

and we get

E[R] = πfR
f − E

[
Rπ̃
]

σ [Rπ̃]
σ[R],

which defines a downward-sloping straight line from (0, Rf ) and to the right.

Minimizing variance for a given expected return we will move as far to the “north-west” or to the

“south-west” as possible in the (standard deviation, mean)-diagram. Therefore the mean-variance

efficient portfolios will correspond to points on a line which is tangent to the mean-variance frontier

of risky assets and goes through the point (0, Rf ). There are two such lines, an upward-sloping

and a downward-sloping line. The point where the upward-sloping line is tangent to the frontier

of risky assets corresponds to a portfolio which we refer to as the tangency portfolio. This is

a portfolio of risky assets only. It is the portfolio that maximizes the Sharpe ratio over all risky

portfolios. The Sharpe ratio of a portfolio is the ratio (E[Rπ̃] − Rf )/σ[Rπ̃] between the excess

expected return of a portfolio and the standard deviation of the return. To determine the tangency

portfolio we must solve the problem

max
π̃

π̃⊤µ̃−Rf
(

π̃⊤Σ̃π̃
)1/2

s.t. π̃⊤1 = 1. (6.32)

Except for the tildes above the symbols, this problem is identical to the problem (6.27) with α = Rf

which we have already solved. We can therefore conclude that the tangency portfolio is given by

π̃tan =
Σ̃

−1 (
µ̃−Rf1

)

1⊤Σ̃
−1

(µ̃−Rf1)
. (6.33)

The gross return on the tangency portfolio is

Rtan = π̃⊤

tanR̃
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with expectation and standard deviation given by

µtan = µ̃⊤π̃tan =
µ̃⊤Σ̃

−1 (
µ̃−Rf1

)

1⊤Σ̃
−1

(µ̃−Rf1)
, (6.34)

σtan =
(

π̃⊤

tanΣ̃π̃tan

)1/2

=

(

(µ̃−Rf1)⊤Σ̃
−1

(µ̃−Rf1)
)1/2

1⊤Σ̃
−1

(µ̃−Rf1)
. (6.35)

The maximum Sharpe ratio, i.e. the slope of the line, is thus

µtan −Rf

σtan
=

µ̃⊤Σ̃
−1(µ̃−Rf

1)
1⊤Σ̃

−1
(µ̃−Rf1)

−Rf�
(µ̃−Rf1)⊤Σ̃

−1
(µ̃−Rf1)

�1/2

1⊤Σ̃
−1

(µ̃−Rf1)

=
µ̃⊤Σ̃

−1 (
µ̃−Rf1

)
−Rf [1⊤Σ̃

−1 (
µ̃−Rf1

)
]

(

(µ̃−Rf1)⊤Σ̃
−1

(µ̃−Rf1)
)1/2

=
(µ̃−Rf1)⊤Σ̃

−1
(µ̃−Rf1)

(

(µ̃−Rf1)⊤Σ̃
−1

(µ̃−Rf1)
)1/2

=
(

(µ̃−Rf1)⊤Σ̃
−1

(µ̃−Rf1)
)1/2

.

The straight line from the point (0, Rf ) and to and through (σtan, µtan) constitutes the upward-

sloping part of the mean-variance frontier of all assets. Similarly, there is a downward-sloping part

which starts out at (0, Rf ) and has a slope which equals minus the slope of the upward-sloping

frontier. Again we have two-fund separation since all investors will combine just two funds, where

one fund is simply the risk-free asset and the other is the tangency portfolio of only risky assets.

A return R is mean-variance efficient if and only if

R = αRf + (1 − α)Rtan

for some α. If α ≤ 1, you will get a point on the upward-sloping part of the frontier. If α ≥ 1, you

will get a point on the downward-sloping part. Of course, when a risk-free return is traded, it will

be the minimum-variance return. The relation between the mean m and the standard deviation σ

of the portfolios on the efficient frontier will be

σ = |m−Rf | σ[Rtan]

E[Rtan] −Rf
. (6.36)

6.3 The discrete-time framework

In the discrete-time framework each individual has to choose a consumption process c = (ct)t∈T,

where T = {0, 1, . . . , T} and ct denotes the random, i.e. state-dependent, consumption at time t.

The individual also has to choose a trading strategy θ = (θt)t=0,1,...,T−1 with θt representing the

portfolio held from time t until time t+ 1. Again, θt may depend on the information available to

the individual at time t so θ is an adapted stochastic process. The individual has an endowment

or income process e = (et)t∈T, where e0 is the initial endowment (wealth) and et is the possibly

state-dependent income received at time t.
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6.3.1 Time-additive expected utility

Let us first focus on individuals with time-additive expected utility. Standing at time 0 the problem

of an individual investor can therefore be written as

max
θ

u(c0) +
T∑

t=1

e−δt E[u(ct)]

s.t. c0 ≤ e0 − θ0 · P 0,

ct ≤ et +Dθ
t , t = 1, . . . , T,

c0, c1, . . . , cT ≥ 0.

Applying (3.8), we can also write the constraint on time t consumption as

ct ≤ et + θt−1 · (P t +Dt) − θt · P t.

As in the one-period case we will assume that the non-negativity constraint on consumption is

automatically satisfied and that the budget constraints hold as equalities. Therefore the problem

can be reformulated as

max
θ

u (e0 − θ0 · P 0) +

T∑

t=1

e−δt E [u (et + θt−1 · (P t +Dt) − θt · P t)] . (6.37)

The only terms involving the initially chosen portfolio θ0 = (θ10, θ20, . . . , θI0)
⊤ will be

u (e0 − θ0 · P 0) + e−δ E [u (e1 + θ0 · (P 1 +D1) − θ1 · P 1)] .

The first-order condition with respect to θi0 implies that

Pi0 = E

[

e−δ
u′(c1)

u′(c0)
(Pi1 +Di1)

]

.

This can also be verified by a variational argument as in the one-period analysis. More generally,

the first-order condition with respect to θit implies that

Pit = Et

[
e−δu′(ct+1)

u′(ct)
(Pi,t+1 +Di,t+1)

]

. (6.38)

Note that ct and ct+1 in these expressions are the optimal consumption rates of the individual. Not

surprisingly, this condition is equivalent to the conclusion in the one-period framework. In partic-

ular, we can define a state-price deflator ζ = (ζt)t∈T from the individual’s optimal consumption

process by ζ0 = 1 and
ζt+1

ζt
=
e−δu′(ct+1)

u′(ct)
,

which means that

ζt =
ζt
ζt−1

ζt−1

ζt−2
. . .

ζ1
ζ0

= e−δ
u′(ct)

u′(ct−1)
e−δ

u′(ct−1)

u′(ct−2)
. . . e−δ

u′(c1)

u′(c0)

= e−δt
u′(ct)

u′(c0)
.

(6.39)

This is the individual’s marginal rate of substitution between time 0 consumption and time t

consumption.
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6.3.2 Habit formation utility

Next let us consider a non-additive specification of preferences and for concreteness we study a

specification with habit formation. The objective of the individual is

max
θ=(θt)t=0,1,...,T−1

E

[
T∑

t=0

e−δtu(ct, ht)

]

,

where ht is the habit level at time t. First assume that the habit level at time t is some fraction

of the consumption level at time t− 1,

ht = βct−1,

and let h0 = 0. Apply the variational argument given earlier. Let c0, c1, . . . , cT denote the optimal

consumption process and let h0, h1, . . . , hT denote the resulting process for the habit level. What

happens if the individual purchases ε > 0 units extra of asset i at time t and sells those ε units again

at time t+1? Consumption at time t and t+1 will change to ct−εPit and ct+1 +ε(Di,t+1 +Pi,t+1),

respectively. The perturbation will also affect the habit level. With the assumed habit formation,

only the habit level at time t + 1 and time t + 2 will be changed. The new habit levels will be

ht+1 − βεPit at time t + 1 and ht+2 + βε(Di,t+1 + Pi,t+1). Therefore the change in total utility

from time t and onwards will be

u (ct − εPit, ht) − u(ct, ht) + e−δ Et [u (ct+1 + ε(Di,t+1 + Pi,t+1), ht+1 − βεPit) − u (ct+1, ht+1)]

+ e−2δ Et [u (ct+2, ht+2 + βε(Di,t+1 + Pi,t+1)) − u(ct+2, ht+2)] ≤ 0

Dividing by ε and letting ε→ 0, we obtain

− Pituc(ct, ht) + e−δ Et [uc(ct+1, ht+1) (Di,t+1 + Pi,t+1) − βPituh(ct+1, ht+1)]

+ e−2δ Et [uh(ct+2, ht+2)β (Di,t+1 + Pi,t+1)] ≤ 0.

Here a subscript on u indicate the partial derivative of u with respect to that variable. Again the

opposite inequality can be reached by a similar argument. Replacing the inequality sign with an

equality sign and rearranging, we arrive at

Pit
(
uc(ct, ht) + βe−δ Et [uh(ct+1, ht+1)]

)

= e−δ Et
[(
uc(ct+1, ht+1) + βe−δuh(ct+2, ht+2)

)
(Di,t+1 + Pi,t+1)

]

= e−δ Et
[(
uc(ct+1, ht+1) + βe−δ Et+1[uh(ct+2, ht+2)]

)
(Di,t+1 + Pi,t+1)

]
,

where the last equality is due to the Law of Iterated Expectations. Consequently,

Pit = Et

[

e−δ
uc(ct+1, ht+1) + βe−δ Et+1[uh(ct+2, ht+2)]

uc(ct, ht) + βe−δ Et [uh(ct+1, ht+1)]
(Di,t+1 + Pi,t+1)

]

, (6.40)

and a state-price deflator can be defined by

ζt = e−δt
uc(ct, ht) + βe−δ Et[uh(ct+1, ht+1)]

uc(c0, h0) + βe−δ E [uh(c1, h1)]
. (6.41)

Note that if β = 0 we are back to the case of time-additive utility.
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It is probably more realistic that the habit level at time t depends on all the previous consumption

rates but such that the consumption in recent periods are more important for the habit level than

consumption in the far past. This can be captured by a specification like

ht =
t−1∑

s=0

βt−scs,

where β is a constant between 0 and 1. A change in the consumption at time t will now affect

the habit levels at all future dates t+ 1, t+ 2, . . . , T . Following the same line of argumentation as

above, it can be shown that this problem will generate the state-price deflator

ζt = e−δt
uc(ct, ht) +

∑T−t
s=1 β

se−δs Et[uh(ct+s, ht+s)]

uc(c0, h0) +
∑T
s=1 β

se−δs E [uh(cs, hs)]
. (6.42)

6.4 The continuous-time framework

In a continuous-time setting an individual consumes according to a non-negative continuous-time

process c = (ct). Suppose that her preferences are described by time-additive expected utility so

that the objective is to maximize E[
∫ T

0
e−δtu(ct) dt].

We will again go through a variational argument giving a link between the optimal consumption

process and asset prices. For simplicity assume that assets pay no intermediate dividends. Suppose

c = (ct) is the optimal consumption process for some agent and consider the following deviation

from this strategy: at time 0 increase the investment in asset i by ε units. The extra costs of

εPi0 implies a reduced consumption now. Let us suppose that the individual finances this extra

investment by cutting down the consumption rate in the time interval [0,∆t] for some small positive

∆t by εPi0/∆t. The extra ε units of asset i is resold at time t < T , yielding a revenue of εPit. This

finances an increase in the consumption rate over [t, t + ∆t] by εPit/∆t. The consumption rates

outside the intervals [0,∆t] and [t, t+ ∆t] will be unaffected. Given the optimality of c = (ct), we

must have that

E

[
∫ ∆t

0

e−δs
(

u

(

cs −
εPi0
∆t

)

− u(cs)

)

ds+

∫ t+∆t

t

e−δs
(

u

(

cs +
εPit
∆t

)

− u(cs)

)

ds

]

≤ 0.

Dividing by ε and letting ε→ 0, we obtain

E

[

−Pi0
∆t

∫ ∆t

0

e−δsu′(cs) ds+
Pit
∆t

∫ t+∆t

t

e−δsu′(cs) ds

]

≤ 0.

Letting ∆t→ 0, we arrive at

E
[
−Pi0u′(c0) + Pite

−δtu′(ct)
]
≤ 0,

or, equivalently,

Pi0u
′(c0) ≥ E

[
e−δtPitu

′(ct)
]
.

The reverse inequality can be shown similarly so that we have that Pi0u
′(c0) = E[e−δtPtu

′(ct)] or

more generally

Pit = Et

[

e−δ(t
′−t)u

′(ct′)

u′(ct)
Pit′

]

, t ≤ t′ ≤ T.
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With intermediate dividends this relation is slightly more complicated:

Pit = Et

[
∫ t′

t

δisPise
−δ(s−t)u

′(cs)

u′(ct)
ds+ e−δ(t

′−t)u
′(ct′)

u′(ct)
Pit′

]

. (6.43)

We see that

ζt = e−δt
u′(ct)

u′(c0)
(6.44)

defines a state-price deflator, exactly as in the discrete-time case.

If the market is complete, we can easily reach (6.44) solving step one of the two-step procedure

suggested in Section 6.2.4. The problem is

max
c=(ct)

E

[
∫ T

0

e−δtu(ct) dt

]

s.t. E

[
∫ T

0

ζtct

]

≤ e0 + E

[
∫ T

0

ζtet dt

]

,

where ζ = (ζt) is the unique state-price deflator. The left-hand side of the constraint is the present

value of the consumption process, the right-hand side is the sum of the initial wealth e0 and the

present value of the income process. The Lagrangian for this problem is

L = E

[
∫ T

0

e−δtu(ct) dt

]

+ α

(

e0 + E

[
∫ T

0

ζtet dt

]

− E

[
∫ T

0

ζtct

])

= α

(

e0 + E

[
∫ T

0

ζtet dt

])

+ E

[
∫ T

0

(
e−δtu(ct) − αζtct

)
dt

]

.

If we for each t and each state maximize the integrand in the last integral above, we will surely

maximize the Lagrangian. The first-order condition is e−δtu′(ct) = αζt and since ζ0 = 1, we must

have (6.44).

Exercise 6.10 considers an individual with habit formation in a continuous-time setting.

6.5 Dynamic programming

Above we have linked the optimal consumption plan of an individual to asset prices. In Chapter 8

we will see how this leads to consumption-based asset pricing models. While this link is quite

intuitive and theoretically elegant, empirical tests and practical applications of the model suffer

from the fact that available data on individual or aggregate consumption are of poor quality. For

that purpose it is tempting to link asset prices to other variables for which better data are available.

One way to provide such a link is to explain optimal consumption in terms of other variables. If

ct is a function of some variable, say xt, then the equations in this chapter proves a link between

asset prices and x. To figure out what explains the consumption choice of an individual we have

to dig deeper into the utility maximization problem.

We will consider both a discrete-time and a continuous-time framework. In both cases we will for

simplicity assume time-additive expected utility. A central element of the analysis is the indirect

utility function of the individual, which is defined as the maximum expected utility of current and

future consumption. In the discrete-time case the indirect utility at time t is defined as

Jt = sup
(cs,θs)T

s=t

Et

[
T∑

s=t

e−δ(s−t)u(cs)

]

. (6.45)
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There is no portfolio chosen at the final date so it is understood that θT = 0. Consumption at the

final date is equal to the time T value of the portfolio purchased at T − 1. In continuous time the

corresponding definition is

Jt = sup
(cs,θs)s∈[t,T ]

Et

[
∫ T

t

e−δ(s−t)u(cs) ds

]

. (6.46)

For tractability it is necessary to assume that the indirect utility is a function of a limited number

of variables. Surely the indirect utility of a finitely-lived individual will depend on the length of

the remaining life and therefore on calender time t. The indirect utility at a given time t will

also depend on the wealth Wt of the individual at that point in time. Other variables containing

information about current or future investment opportunities or current or future income may have

to be added. Suppose that that extra information can be captured by a single variable xt. In that

case the indirect utility is of the form

Jt = J(Wt, xt, t)

for some function J .

We will show below that both in discrete and in continuous time the optimal consumption

strategy will satisfy the so-called envelope condition:

u′(ct) = JW (Wt, xt, t), (6.47)

where JW is the partial derivative of J with respect to W . This is an intuitive optimality condition.

The left-hand side is the marginal utility of an extra unit of consumption at time t. The right-hand

side is the marginal utility from investing an extra unit at time t in the optimal way. In an optimum

these marginal utilities have to be equal. If that was not the case the allocation of wealth between

consumption and investment should be reconsidered. For example, if u′(ct) > JW (Wt, xt, t), the

consumption ct should be increased and the amount invested should be decreased. Using the

envelope condition, the state-price deflator derived from the individual’s optimization problem can

be rewritten as

ζt = e−δt
u′(ct)

u′(c0)
= e−δt

JW (Wt, xt, t)

JW (W0, x0, 0)
, (6.48)

which links state prices to the optimally invested wealth of the individual and the variable xt. This

will be useful in constructing factor models in Chapter 9.

We will derive (6.47) using the dynamic programming technique. Along the way we will also find

interesting conclusions on the optimal trading strategy of the individual. We do not make specific

assumptions on utility functions or the dynamics of asset prices but stick to a general setting.

More details and a lot of specific models are discussed in Munk (2005a). The basic references

for the discrete-time models are Samuelson (1969), Hakansson (1970), Fama (1970, 1976), and

Ingersoll (1987, Ch. 11). The basic references for the continuous-time models are Merton (1969,

1971, 1973b).

6.5.1 The discrete-time framework

Assume that a risk-free and d risky assets are traded. Let θt denote the d-vector of units invested

in the risky assets at time t and let θ0t denote the units of the risk-free asset. Assume for simplicity
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that the assets do not pay intermediate dividends. Similar to (3.10) the change in the wealth of

the individual between time t and time t+ 1 is

Wt+1 −Wt =

d∑

i=0

θit (Pi,t+1 − Pit) + yt − ct, (6.49)

where yt denotes the income received at time t. After receiving income and consuming at time t,

the funds invested will be Wt+yt−ct. Assuming this is non-negative, we can represent the portfolio

in terms of the fractions of this total investment invested in the different assets, i.e.

πit =
θitPit

Wt + yt − ct
, i = 0, 1, . . . , d.

Define the portfolio weight vector of the risky assets by πt = (π1t, . . . , πdt)
⊤

. By construction the

fraction invested in the risk-free asset is then given by π0t = 1−∑d
i=1 πit = 1− π⊤

t 1. The wealth

at the end of the period can then be restated as

Wt+1 = (Wt + yt − ct)R
W
t+1, (6.50)

where

RWt+1 = 1 + rft + π⊤

t

[

rt+1 − rft 1
]

(6.51)

is the gross rate of return on the portfolio, rft is the risk-free net rate of return, and rt+1 is the

d-vector of the net rates of return of the risky assets over the period. Note that the only random

variable (seen from time t) on the right-hand side of the above expressions is the return vector

rt+1.

In the definition of indirect utility in (6.45) the maximization is over both the current and all

future consumption rates and portfolios. This is clearly a quite complicated maximization problem.

We will now show that we can alternatively perform a sequence of simpler maximization problems.

This result is based on the following manipulations:

Jt = sup
(cs,πs)T

s=t

Et

[
T∑

s=t

e−δ(s−t)u(cs)

]

= sup
(cs,πs)T

s=t

Et

[

u(ct) +

T∑

s=t+1

e−δ(s−t)u(cs)

]

= sup
(cs,πs)T

s=t

Et

[

u(ct) + Et+1

[
T∑

s=t+1

e−δ(s−t)u(cs)

]]

= sup
(cs,πs)T

s=t

Et

[

u(ct) + e−δ Et+1

[
T∑

s=t+1

e−δ(s−(t+1))u(cs)

]]

= sup
ct,πt

Et

[

u(ct) + e−δ sup
(cs,πs)T

s=t+1

Et+1

[
T∑

s=t+1

e−δ(s−(t+1))u(cs)

]]

Here, the first equality is simply due to the definition of indirect utility, the second equality comes

from separating out the first term of the sum, the third equality is valid according to the law of

iterated expectations, the fourth equality comes from separating out the discount term e−δ, and the

final equality is due to the fact the only the inner expectation depends on future consumption rates
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and portfolios. Noting that the inner supremum is by definition the indirect utility at time t+ 1,

we arrive at

Jt = sup
ct,πt

Et
[
u(ct) + e−δJt+1

]
= sup
ct,πt

{
u(ct) + e−δ Et [Jt+1]

}
. (6.52)

This equation is called the Bellman equation, and the indirect utility J is said to have the

dynamic programming property. The decision to be taken at time t is split up in two: (1) the

consumption and portfolio decision for the current period and (2) the consumption and portfolio

decisions for all future periods. We take the decision for the current period assuming that we will

make optimal decisions in all future periods. Note that this does not imply that the decision for

the current period is taken independently from future decisions. We take into account the effect

that our current decision has on the maximum expected utility we can get from all future periods.

The expectation Et [Jt+1] will depend on our choice of ct and πt.
1

The dynamic programming property is the basis for a backward iterative solution procedure.

First, note that JT = u(cT ) = u(WT ), and cT−1 and πT−1 are chosen to maximize

u(cT−1) + e−δ ET−1 [u(WT )] ,

where

WT = (WT−1 + yT−1 − cT−1)R
W
T , RWT = 1 + rfT−1 + π⊤

T−1

[

rT − rfT−11
]

.

This is done for each possible scenario at time T − 1 and gives us JT−1. Then cT−2 and πT−2 are

chosen to maximize

u(cT−2) + e−δ ET−2 [JT−1] ,

and so on until time zero is reached. Since we have to perform a maximization for each scenario

of the world at every point in time, we have to make assumptions on the possible scenarios at

each point in time before we can implement the recursive procedure. The optimal decisions at any

time are expected to depend on the wealth level of the agent at that date, but also on the value of

other time-varying state variables that affect future returns on investment (e.g. the interest rate

level) and future income levels. To be practically implementable only a few state variables can be

incorporated. Also, these state variables must follow Markov processes so only the current values

of the variables are relevant for the maximization at a given point in time.

Suppose that the relevant information is captured by a one-dimensional Markov process x = (xt)

so that the indirect utility at any time t = 0, 1, . . . , T can be written as Jt = J(Wt, xt, t). Then

the dynamic programming equation (6.52) becomes

J(Wt, xt, t) = sup
ct,πt

{
u(ct) + e−δ Et [J(Wt+1, xt+1, t+ 1)]

}
(6.53)

with terminal condition J(WT , xT , T ) = u(WT ). Doing the maximization we have to remember

that Wt+1 will be affected by the choice of ct and πt, cf. Equation (6.50). In particular, we see

that
∂Wt+1

∂ct
= −RWt+1,

∂Wt+1

∂πt
= (Wt + yt − ct)

(

rt+1 − rft 1
)

.

1Readers familiar with option pricing theory may note the similarity to the problem of determining the optimal

exercise strategy of a Bermudan/American option. However, for that problem the decision to be taken is much

simpler (exercise or not) than for the consumption/portfolio problem.
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The first-order condition for the maximization with respect to ct is

u′(ct) + e−δ Et

[

JW (Wt+1, xt+1, t+ 1)
∂Wt+1

∂ct

]

= 0, (6.54)

which implies that

u′(ct) = e−δ Et
[
JW (Wt+1, xt+1, t+ 1)RWt+1

]
. (6.55)

The first-order condition for the maximization with respect to πt is

Et

[

JW (Wt+1, xt+1, t+ 1)
∂Wt+1

∂πt

]

= 0, (6.56)

which implies that

Et

[

JW (Wt+1, xt+1, t+ 1)
(

rt+1 − rft 1
)]

= 0. (6.57)

While we cannot generally solve for the optimal decisions, we can show that the envelope con-

dition (6.47) holds. First note that for the optimal choice ĉt, π̂t we have that

J(Wt, xt, t) = u(ĉt) + e−δ Et

[

J(Ŵt+1, xt+1, t+ 1)
]

,

where Ŵt+1 is next period’s wealth using ĉt, π̂t. Taking derivatives with respect to Wt in this

equation, and acknowledging that ĉt and π̂t will in general depend on Wt, we get

JW (Wt, xt, t) = u′(ĉt)
∂ĉt
∂Wt

+ e−δ Et

[

JW (Ŵt+1, xt+1, t+ 1)
∂Ŵt+1

∂Wt

]

,

where
∂Ŵt+1

∂Wt

= RWt+1

(

1 − ∂ĉt
∂Wt

)

+ (Wt + yt − ct)

(
∂ π̂t
∂Wt

)
⊤ (

rt+1 − rft 1
)

.

Inserting this and rearranging terms, we get

JW (Wt, xt, t) = e−δ Et

[

JW (Ŵt+1, xt+1, t+ 1)RWt+1

]

+
(

u′(ĉt) − e−δ Et

[

JW (Ŵt+1, xt+1, t+ 1)RWt+1

]) ∂ĉt
∂Wt

+ (Wt + yt − ct) e
−δ

(
∂ π̂t
∂Wt

)
⊤

Et

[

JW (Ŵt+1, xt+1, t+ 1)
(

rt+1 − rft 1
)]

.

On the right-hand side the last two terms are zero due to the first-order conditions and only the

leading term remains, i.e.

JW (Wt, xt, t) = e−δ Et

[

J(Ŵt+1, xt+1, t+ 1)RWt+1

]

.

Combining this with (6.55) we obtain the envelope condition (6.47).

6.5.2 The continuous-time framework

As in the discrete-time setting above assume that an instantaneously risk-free asset with a con-

tinuously compounded risk-free rate of rft and d risky assets are traded. We assume for simplicity

that the assets pay no intermediate dividends and write their price dynamics as

dP t = diag(P t)
[
µt dt+ σ t dzt

]
, (3.5)
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where z = (z1, . . . , zd)
⊤ is a d-dimensional standard Brownian motion. We can write this compo-

nentwise as

dPit = Pit



µit dt+
d∑

j=1

σijt dzjt



 , i = 1, . . . , d.

The instantaneous rate of return on asset i is given by dPit/Pit. The d-vector µt = (µ1t, . . . , µdt)
⊤

contains the expected rates of return and the (d×d)-matrix σ t = (σijt)
d
i,j=1 measures the sensitivi-

ties of the risky asset prices with respect to exogenous shocks so that the (d×d)-matrix Σt = σ tσ
⊤

t

contains the variance and covariance rates of instantaneous rates of return. We assume that σ t is

non-singular and, hence, we can define the market price of risk associated with z as

λt = σ−1
t (µt − rft 1),

so that

µt = rt1 + σ tλt,

i.e. µit = rt +
∑d
j=1 σijtλjt. We can now rewrite the price dynamics as

dP t = diag(P t)
[(
rt1 + σ tλt

)
dt+ σ t dzt

]
.

We represent the trading strategy by the portfolio weight process π = (πt), where πt is the

d-vector of fractions of wealth invested in the d risky assets at time t. Again the weight of the

risk-free asset is π0t = 1 − π⊤

t 1 = 1 −∑d
i=1 πit. Analogous to (3.14), the wealth dynamics can be

written as

dWt = Wt

[

rft + π⊤

t σ tλt

]

dt+ [yt − ct] dt+Wtπ
⊤

t σ t dzt. (6.58)

For simplicity we assume in the following that the agent receives no labor income, i.e. yt ≡ 0. We

also assume that a single variable xt captures the time t information about investment opportunities

so that, in particular,

rft = rf (xt), µt = µ(xt, t), σ t = σ (xt, t),

where rf , µ, and σ now (also) denote sufficiently well-behaved functions. The market price of risk

is also given by the state variable:

λ(xt) = σ (xt, t)
−1
(
µ(xt, t) − rf (xt)1

)
.

Note that we have assumed that the short-term interest rate rft and the market price of risk vector

λt do not depend on calendar time directly. The fluctuations in rft and λt over time are presumably

not due to the mere passage of time, but rather due to variations in some more fundamental

economic variables. In contrast, the expected rates of returns and the price sensitivities of some

assets will depend directly on time, e.g. the volatility and the expected rate of return on a bond

will depend on the time-to-maturity of the bond and therefore on calendar time.

Now the wealth dynamics for a given portfolio and consumption strategy is

dWt = Wt

[
rf (xt) + π⊤

t σ (xt, t)λ(xt)
]
dt− ct dt+Wtπ

⊤

t σ (xt, t) dzt.

The state variable x is assumed to follow a one-dimensional diffusion process

dxt = m(xt) dt+ v(xt)
⊤ dzt + v̂(xt) dẑt, (6.59)
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where ẑ = (ẑt) is a one-dimensional standard Brownian motion independent of z = (zt). Hence, if

v̂(xt) 6= 0, there is an exogenous shock to the state variable that cannot be hedged by investments

in the financial market. In other words, the financial market is incomplete. Conversely, if v̂(xt)

is identically equal to zero, the financial market is complete. We shall consider examples of both

cases later. The d-vector v(xt) represents the sensitivity of the state variable with respect to the

exogenous shocks to market prices. Note that the d-vector σ (x, t)v(x) is the vector of instanta-

neous covariance rates between the returns on the risky assets and the state variable. Under the

assumptions made above the indirect utility at time t is Jt = J(Wt, xt, t).

How do we implement the dynamic programming principle in continuous time? First consider

a discrete-time approximation with time set {0,∆t, 2∆t, . . . , T = N∆t}. The Bellman equation

corresponding to this discrete-time utility maximization problem is

J(W,x, t) = sup
ct≥0,πt∈Rd

{
u(ct)∆t+ e−δ∆t Et [J(Wt+∆t, xt+∆t, t+ ∆t)]

}
, (6.60)

cf. (6.52). Here ct and πt are held fixed over the interval [t, t+∆t). If we multiply by eδ∆t, subtract

J(W,x, t), and then divide by ∆t, we get

eδ∆t − 1

∆t
J(W,x, t) = sup

ct≥0,πt∈Rd

{

eδ∆tu(ct) +
1

∆t
Et [J(Wt+∆t, xt+∆t, t+ ∆t) − J(W,x, t)]

}

.

(6.61)

When we let ∆t→ 0, we have that (by l’Hôspital’s rule)

eδ∆t − 1

∆t
→ δ,

and that (by definition of the drift of a process)

1

∆t
Et [J(Wt+∆t, xt+∆t, t+ ∆t) − J(W,x, t)] (6.62)

will approach the drift of J at time t, which according to Itô’s Lemma is given by

∂J

∂t
(W,x, t) + JW (W,x, t)

(
W
[
r(x) + π⊤

t σ (x, t)λ(x)
]
− ct

)

+
1

2
JWW (W,x, t)W 2π⊤

t σ (x, t)σ (x, t)⊤πt + Jx(W,x, t)m(x)

+
1

2
Jxx(W,x, t)(v(x)⊤v(x) + v̂(x)2) + JWx(W,x, t)Wπ

⊤

t σ (x, t)v(x).

The limit of (6.61) is therefore

δJ(W,x, t) = sup
c≥0,π∈Rd

{

u(c) +
∂J

∂t
(W,x, t) + JW (W,x, t)

(
W
[
r(x) + π⊤σ (x, t)λ(x)

]
− c
)

+
1

2
JWW (W,x, t)W 2π⊤σ (x, t)σ (x, t)⊤π + Jx(W,x, t)m(x)

+
1

2
Jxx(W,x, t)(v(x)⊤v(x) + v̂(x)2)

+ JWx(W,x, t)Wπ
⊤σ (x, t)v(x)

}

.

(6.63)

This is called the Hamilton-Jacobi-Bellman (HJB) equation corresponding to the dynamic opti-

mization problem. Subscripts on J denote partial derivatives, however we will write the partial

derivative with respect to time as ∂J/∂t to distinguish it from the value Jt of the indirect utility
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process. The HJB equation involves the supremum over the feasible time t consumption rates

and portfolios (not the supremum over the entire processes!) and is therefore a highly non-linear

second-order partial differential equation.

From the analysis above we will expect that the indirect utility function J(W,x, t) solves the

HJB equation for all possible values of W and x and all t ∈ [0, T ) and that it satisfies the terminal

condition J(W,x, T ) = 0. (We could allow for some utility of terminal consumption or wealth, e.g.

representing the utility of leaving money for your heirs. Then the terminal condition should be of

the form J(W,x, T ) = ū(W ).) This can be supported formally by the so-called verification theorem.

The solution procedure is therefore as follows: (1) solve the maximization problem embedded in the

HJB-equation giving a candidate for the optimal strategies expressed in terms of the yet unknown

indirect utility function and its derivatives. (2) substitute the candidate for the optimal strategies

into the HJB-equation, ignore the sup-operator, and solve the resulting partial differential equation

for J(W,x, t). Such a solution will then also give the candidate optimal strategies in terms of W ,

x, and t.2

Let us find the first-order conditions of the maximization in (6.63). The first-order condition

with respect to c gives us immediately the envelope condition (6.47), which we were really looking

for. Nevertheless, let us also look at the first-order condition with respect to π, i.e.

JW (W,x, t)Wσ (x, t)λ(x) + JWW (W,x, t)W 2σ (x, t)σ (x, t)⊤π + JWx(W,x, t)Wσ (x, t)v(x) = 0

so that the optimal portfolio is

πt = − JW (Wt, xt, t)

WtJWW (Wt, xt, t)

(
σ (xt, t)

⊤
)−1

λ(xt) −
JWx(Wt, xt, t)

WtJWW (Wt, xt, t)

(
σ (xt, t)

⊤
)−1

v(xt). (6.64)

As the horizon shrinks, the indirect utility function J(W,x, t) approaches the terminal utility which

is independent of the state x. Consequently, the derivative JWx(W,x, t) and hence the last term

of the portfolio will approach zero as t → T . Short-sighted investors pick a portfolio given by the

first term on the right-hand side. We can interpret the second term as an intertemporal hedge

term since it shows how a long-term investor will deviate from the short-term investor. The last

term will also disappear for “non-instantaneous” investors in three special cases:

(1) there is no x: investment opportunities are constant; there is nothing to hedge.

(2) JWx(W,x, t) ≡ 0: The state variable does not affect the marginal utility of the investor.

This turns out to be the case for investors with logarithmic utility. Such an investor is not

interested in hedging changes in the state variable.

(3) v(x) ≡ 0: The state variable is uncorrelated with instantaneous returns on the traded assets.

In this case the investor is not able to hedge changes in the state variable.

In all other cases the state variable induces an additional term to the optimal portfolio relative to

the case of constant investment opportunities.

2There is really also a third step, namely to check that the assumptions made along the way and the technical

conditions needed for the verification theorem to apply are all satisfied. The standard version of the verification

theorem is precisely stated and proofed in, e.g. Theorem 11.2.2 in Øksendal (1998) or Theorem III.8.1 in Fleming

and Soner (1993). The technical conditions of the standard version are not always satisfied in concrete consumption-

portfolio problems, however, but at least for some concrete problems a version with an appropriate set of conditions

can be found; see, e.g., Korn and Kraft (2001) and Kraft (2004).
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In general, we have three-fund separation in the sense that all investors will combine the risk-free

asset, the “tangency portfolio” of risky assets given by the portfolio weights

πtan
t =

1

1⊤
(
σ (xt, t)⊤

)−1
λ(xt)

(
σ (xt, t)

⊤
)−1

λ(xt),

and the “hedge portfolio” given by the weights

π
hdg
t =

1

1⊤
(
σ (xt, t)⊤

)−1
v(xt)

(
σ (xt, t)

⊤
)−1

v(xt).

Inserting the definition of λ we can rewrite the expression for the tangency portfolio as

πtan
t =

1

1⊤Σ(xt, t)−1 (µ(xt, t) − rf (xt)1)
Σ(xt, t)

−1
(
µ(xt, t) − rf (xt)1

)
,

which is analogous to the tangency portfolio in the one-period mean-variance analysis, cf. (6.33).

Substituting the candidate optimal values of c and π back into the HJB equation and gathering

terms, we get the second order PDE

δJ(W,x, t) = u (Iu(JW (W,x, t))) − JW (W,x, t)Iu(JW (W,x, t)) +
∂J

∂t
(W,x, t) + r(x)WJW (W,x, t)

− 1

2

JW (W,x, t)2

JWW (W,x, t)
‖λ(x)‖2 + Jx(W,x, t)m(x) +

1

2
Jxx(W,x, t)

(
‖v(x)‖2 + v̂(x)2

)

− 1

2

JWx(W,x, t)
2

JWW (W,x, t)
‖v(x)‖2 − JW (W,x, t)JWx(W,x, t)

JWW (W,x, t)
λ(x)⊤v(x).

(6.65)

Although the PDE (6.65) looks very complicated, closed-form solutions can be found for a number

of interesting model specifications. See, e.g., Munk (2005a).

If more than one, say k, variables are necessary to capture the information about investment

opportunities, the optimal portfolio will involve k hedge portfolios beside the tangency portfolio

and the risk-free asset so that (k + 2)-fund separation holds.

Nielsen and Vassalou (2006) have shown that the only characteristics of investment opportunities

that will induce intertemporal hedging is the short-term risk-free interest rate rft and ‖λt‖, which is

the maximum Sharpe ratio obtainable at the financial market. Since rft is the intercept and ‖λt‖
the slope of the instantaneous mean-variance frontier this result makes good sense. Long-term

investors are concerned about the variations in the investments that are good in the short run.

6.6 Concluding remarks

This chapter has characterized the optimal consumption and portfolio choice of an individual by

the first-order condition of her utility maximization problem. The characterization provides a link

between asset prices and the optimal consumption plan of any individual. In the next chapter we

will look at the market equilibrium.

6.7 Exercises

EXERCISE 6.1 Consider a one-period economy and an individual with a time-additive but

state-dependent expected utility so that the objective is

max
θ

u(c0,X0) + e−δ E[u(c,X)].
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The decisions of the individual does not affect X0 or X. For example, X0 and X could be the

aggregate consumption in the economy at time 0 and time 1, respectively, which are not significantly

affected by the consumption of a small individual. What is the link between prices and marginal

utility in this case? What if u(c,X) = 1
1−γ (c−X)1−γ? What if u(c,X) = 1

1−γ (c/X)1−γ?

EXERCISE 6.2 Consider a one-period economy where four basic financial assets are traded

without portfolio constraints or transaction costs. There are four possible end-of-period states of

the economy. The objective state probabilities and the prices and state-contingent dividends of

the assets are given in the following table:

state 1 state 2 state 3 state 4

probability 1
6

1
4

1
4

1
3

state-contingent dividend price

Asset 1 1 2 2 2 3
2

Asset 2 1 3 0 0 7
6

Asset 3 0 0 1 1 1
3

Asset 4 3 2 1 1 3
2

The economy is known to be arbitrage-free.

(a) Show that asset 4 is redundant and verify that the price of asset 4 is identical to the price of

the portfolio of the other assets that replicates asset 4.

(b) Is the market complete?

(c) Show that the vector ψ∗ =
(

1
6 ,

1
3 ,

1
6 ,

1
6

)
is a valid state-price vector and that it is in the set of

dividends spanned by the basic assets. Characterize the set of all valid state-price vectors.

(d) Show that the vector ζ∗ =
(
1, 4

3 ,
4
7 ,

4
7

)
is a valid state-price deflator and that it is in the set of

dividends spanned by the basic assets. Show that any state-price deflator must be a vector

of the form
(
1, 4

3 , y, 1 − 3
4y
)
, where y ∈

(
0, 4

3

)
.

(e) Show that it is possible to construct a risk-free asset from the four basic assets. What is the

risk-free interest rate?

In the following consider an individual maximizing u(c0)+β E[u(c)], where c0 denotes consumption

at the beginning of the period and c denotes the state-dependent consumption at the end of

the period. Assume u(c) = c1−γ/(1 − γ). For ω ∈ {1, 2, 3, 4}, let cω denote the end-of-period

consumption if state ω is realized.

(f) Show that the optimal consumption plan must satisfy

c2 = c1

(
4

3

)−1/γ

, c4 = c0

(

1

β
− 3

4

(
c3
c0

)−γ
)−1/γ

.

For the remainder of the problem it is assumed that the individual has identical income/endowment

in states 3 and 4.
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(g) Explain why c3 and c4 must be identical, and hence that the optimal consumption plan must

have

c3 = c4 = c0

(
4

7β

)−1/γ

.

(h) Assuming γ = 2, β = 6
7 , and c0 = 1, find the optimal state-dependent end-of-period con-

sumption, i.e. c1, c2, c3, c4.

(i) What is the present value of the optimal consumption plan?

(j) Assuming that the individual receives no end-of-period income in any state, find an optimal

portfolio for this individual.

EXERCISE 6.3 Consider a one-period economy with four possible, equally likely, states at the

end of the period. The agents in the economy consume at the beginning of the period (time 0)

and at the end of the period (time 1). The agents can choose between three different consumption

plans as shown in the following table:

consumption state-contingent time 1 consumption

at time 0 state 1 state 2 state 3 state 4

Consumption plan 1 8 9 16 9 4

Consumption plan 2 8 9 9 9 9

Consumption plan 3 8 4 16 25 4

Denote the time 0 consumption by c0, the uncertain consumption at time 1 by c, and the con-

sumption at time 1 in case state ω is realized by cω.

(a) Consider an agent with logarithmic utility,

U(c0, c1, c2, c3, c4) = ln c0 + E[ln c] = ln c0 +
4∑

ω=1

pω ln cω,

where pω is the probability that state ω is realized. Compute the utility for each of the

three possible consumption plans and determine the optimal consumption plan. Find the

associated state-price vector. Using this state-price vector, what is the price at the beginning

of the period of an asset that gives a payoff of 2 in states 1 and 4 and a payoff of 1 in states 2

and 3?

(b) Answer the same questions with the alternative time-additive square-root utility,

U(c0, c1, c2, c3, c4) =
√
c0 + E[

√
c] =

√
c0 +

4∑

ω=1

pω
√
cω.

(c) Answer the same questions with the alternative habit-style square-root utility,

U(c0, c1, c2, c3, c4) =
√
c0 + E[

√
c− 0.5c0] =

√
c0 +

4∑

ω=1

pω
√
cω − 0.5c0.
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EXERCISE 6.4 Show Equation (6.24).

EXERCISE 6.5 Using the Lagrangian characterization of the mean-variance frontier, show that

for any mean-variance efficient return Rπ different from the minimum-variance portfolio there is

a unique mean-variance efficient return Rz(π) with Cov[Rπ, Rz(π)] = 0. Show that E[Rz(π)] =

(A−B E[Rπ])/(B − C E[Rπ]).

EXERCISE 6.6 Let Rmin denote the return on the minimum-variance portfolio. Let R be any

other return, efficient or not. Show that Cov[R,Rmin] = Var[Rmin].

EXERCISE 6.7 Let R1 denote the return on a mean-variance efficient portfolio and let R2

denote the return on another not necessarily efficient portfolio with E[R2] = E[R1]. Show that

Cov[R1, R2] = Var[R1] and conclude that R1 and R2 are positively correlated.

EXERCISE 6.8 Think of the mean-variance framework in a one-period economy. Show that if

there is a risk-free asset, then any two mean-variance efficient returns (different from the risk-free

return) are either perfectly positively correlated or perfectly negatively correlated. Is that also

true if there is no risk-free asset?

EXERCISE 6.9 In a one-period model where the returns of all the risky assets are normally

distributed, any greedy and risk-averse investor will place herself on the upward-sloping part of

the mean-variance frontier. But where? Consider an agent that maximizes expected utility of end-

of-period wealth with a negative exponential utility function u(W ) = −e−aW for some constant a.

Suppose that M risky assets (with normally distributed returns) and one risk-free asset are traded.

What is the optimal portfolio of the agent? Where is the optimal portfolio located on the mean-

variance frontier?

EXERCISE 6.10 Look at an individual with habit formation living in a continuous-time

complete market economy. The individual wants to maximize his expected utility

E

[
∫ T

0

e−δtu(ct, ht) dt

]

,

where the habit level ht is given by

ht = h0e
−αt + β

∫ t

0

e−α(t−u)cu du.

We can write the budget constraint as

E

[
∫ T

0

ζtct dt

]

≤W0,

where ζ = (ζt) is the state-price deflator and W0 is the initial wealth of the agent (including the

present value of any future non-financial income).

(a) Show that dht = (βct − αht) dt. What condition on α and β will ensure that the habit level

declines, when current consumption equals the habit level?
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(b) Show that the state-price deflator is linked to optimal consumption by the relation

ζt = ke−δt

{

uc(ct, ht) + β Et

[
∫ T

t

e−(δ+α)(s−t)uh(cs, hs) ds

]}

(*)

for some appropriate constant k. Hint: First consider what effect consumption at time t has

on future habit levels.

(c) How does (*) look when u(c, h) = 1
1−γ (c− h)1−γ?



Chapter 7

Market equilibrium

7.1 Introduction

The previous chapter characterized the optimal decisions of utility-maximizing individuals who

take asset prices as given. This chapter will focus on the characterization of market equilibrium

asset prices. We will work throughout in a one-period model and assume that the state space is

finite, Ω = {1, 2, . . . , S}. The results can be generalized to an infinite state space and a multi-period

setting.

First, let us define an equilibrium. Consider a one-period economy with I assets and L greedy and

risk-averse individuals. Each asset i is characterized by its time 0 price Pi and a random variable

Di representing the time 1 dividend. Each individual is characterized by a (strictly increasing and

concave) utility index Ul and an endowment (el0, e
l). An equilibrium for the economy consists of

a price vector P and portfolios θl, l = 1, . . . , L, satisfying the two conditions

(i) for each l = 1, . . . , L, θl is optimal for individual l given P ,

(ii) markets clear, i.e.
∑L
l=1 θ

l
i = 0 for all i = 1, . . . , I.

Associated with an equilibrium (P ;θ1, . . . ,θL) is an equilibrium consumption allocation (cl0, c
l),

l = 1, . . . , L, defined by

cl0 = el0 − θl · P ; clω = elω +Dθl

ω , ω ∈ Ω.

In the market clearing condition we have assumed that the traded assets are in a net supply of

zero and, since the time 0 endowment is a certain number of units of the consumption good, no

one owns any assets at time 0. This might seem restrictive but it does cover the case with initial

asset holdings and positive net supply of assets. Just interpret θl as individual l’s net trade in

the assets, i.e. the change in the portfolio relative to the initial portfolio, and interpret the time 1

endowment as the sum of some income from non-financial sources and the dividend from the initial

portfolio.

We will assume throughout that individuals have homogeneous beliefs, i.e. that they agree that

probabilities of future events are measured by the probability measure P.

Outline of the chapter...

147
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7.2 Pareto-optimality and representative individuals

Define the aggregate initial and future endowment in the economy as

ē0 =

L∑

l=1

el0, ēω =

L∑

l=1

elω.

(If we allow for assets in a positive net supply, the dividends of those assets are to be included in

the time 1 aggregate endowment.) A consumption allocation {(c10, c1), . . . , (cL0 , cL)} is said to be

feasible if
L∑

l=1

cl0 ≤ ē0;

L∑

l=1

clω ≤ ēω, ω ∈ Ω.

Here, the left-hand sums define the aggregate consumption,

C0 =
L∑

l=1

cl0, Cω =
L∑

l=1

clω.

A consumption allocation {(c10, c1), . . . , (cL0 , cL)} is Pareto-optimal if it is feasible and there is

no other feasible consumption plan {(ĉ10, ĉ1), . . . , (ĉL0 , ĉL)} such that Ul(ĉ
l
0, ĉ

l) ≥ Ul(c
l
0, c

l) for all

l = 1, . . . , L with strict inequality for some l.

Pareto-optimality of consumption allocations is closely linked to the solution to the allocation

problem of a hypothetical central planner. Let η = (η1, . . . , ηL)⊤ be a vector of strictly positive

numbers, one for each individual. Define the function Uη : R+ × RS+ → R by

Uη(ē0, ē) = sup

{
L∑

l=1

ηlUl(c
l
0, c

l) |
L∑

l=1

cl0 ≤ ē0,

L∑

l=1

clω ≤ ēω, c
l
0, c

l
ω ≥ 0, for all ω and l

}

.

Here,
∑L
l=1 ηlUl(c

l
0, c

l) is a linear combination of the utilities of the individuals when individual l

follows the consumption plan (cl0, c
l). This linear combination is maximized over all feasible alloca-

tions of the total endowment (ē0, ē). Given the total endowment and the weights η on individuals,

Uη gives the best linear combination of utilities that can be obtained. As long as the individuals’

utility indices are increasing and concave, Uη will also be increasing and concave. We can thus

think of Uη as the utility index of a greedy and risk-averse individual, a central planner giving

weights to the individual utility functions. The following theorem, sometimes called the Second

Welfare Theorem, gives the link to Pareto-optimality:

Theorem 7.1 Given any Pareto-optimal consumption allocation with aggregate consumption (C0,C),

a strictly positive weighting vector η = (η1, . . . , ηL)⊤ exists so that the same allocation maximizes

Uη(C0,C).

Consequently, we can find Pareto-optimal allocations by solving the central planner’s problem

for a given weighting vector η. The Lagrangian of the central planner’s constrained maximization

problem is

L =

L∑

l=1

ηlUl(c
l
0, c

l) + α0

(

C0 −
L∑

l=1

cl0

)

+

S∑

ω=1

αω

(

Cω −
L∑

l=1

clω

)

,
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where α0, α1, . . . , αS are Lagrange multipliers. The first-order conditions are

∂L

∂cl0
= 0 ⇔ ηl

∂Ul

∂cl0
= α0, l = 1, . . . , L, (7.1)

∂L

∂clω
= 0 ⇔ ηl

∂Ul

∂clω
= αω, ω = 1, . . . , S, l = 1, . . . , L, (7.2)

∂L

∂α0
= 0 ⇔

L∑

l=1

cl0 = C0, (7.3)

∂L

∂αω
= 0 ⇔

L∑

l=1

clω = Cω, ω = 1, . . . , S. (7.4)

Note that since we can scale all ηl’s by a positive constant without affecting the maximizing

consumption allocation, we might as well assume α0 = 1. Given strictly increasing and concave

utility functions with infinite marginal utility at zero, the first-order conditions are both necessary

and sufficient for optimality. We can thus conclude that a feasible consumption allocation is Pareto-

optimal if and only if we can find a weighting vector η = (η1, . . . , ηL)⊤ so that (7.1) and (7.2) are

satisfied. In particular, by dividing (7.2) by (7.1), it is clear that we need to have

∂Ul

∂cl
ω

∂Ul

∂cl
0

=
αω
α0
, ω = 1, . . . , S, l = 1, . . . , L, (7.5)

with the consequence that
∂Uk

∂ck
ω

∂Uk

∂ck
0

=

∂Ul

∂cl
ω

∂Ul

∂cl
0

, ω = 1, . . . , S, (7.6)

for any individuals k and l, i.e. the individuals align their marginal rates of substitution. This prop-

erty is often referred to as efficient risk-sharing. The central planner will distribute aggregate

consumption risk so that all individuals have the same marginal willingness to shift consumption

across time and states.

Note that if individuals have time-additive expected utility, i.e.

Ul(c0, c) = ul(c0) + e−δl E[ul(c)] = ul(c0) + e−δl

S∑

ω=1

pωul(cω),

we can replace (7.1) and (7.2) by

ηlu
′
l(c

l
0) = α0, l = 1, . . . , L, (7.7)

ηle
−δlpωu

′
l(c

l
ω) = αω, ω = 1, . . . , S, l = 1, . . . , L. (7.8)

Dividing the second equation by the first, we see that a Pareto-optimal consumption allocation

has the property that

e−δk
u′k(c

k
ω)

u′k(c
k
0)

= e−δl
u′l(c

l
ω)

u′l(c
l
0)
, ω = 1, . . . , S, (7.9)

for any two individuals k and l.

The following theorem shows that all Pareto-optimal consumption allocations have the property

that the consumption of individuals move together.

Theorem 7.2 For any Pareto-optimal consumption allocation, the consumption of any individual

will be a strictly increasing function of aggregate consumption, i.e. for any l, cl = fl(C) for some

strictly increasing function fl.
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Proof: Given some Pareto-optimal consumption allocation (cl0, c
l), l = 1, . . . , L. Assume for

simplicity that preferences can be represented by time-additive expected utility. From Theorem 7.1

we know that we can find a weighting vector η = (η1, . . . , ηL)⊤ so that (7.7) and (7.8) hold. In

particular, we have

ηku
′
k(c

k
0) = ηlu

′
l(c

l
0),

ηke
−δku′k(c

k
ω) = ηle

−δlu′l(c
l
ω), ω = 1, . . . , S,

for any two individuals k and l. Moreover, for any two states ω, ω′ ∈ Ω, we must have

u′k(c
k
ω)

u′k(c
k
ω′)

=
u′l(c

l
ω)

u′l(c
l
ω′)

. (7.10)

Aggregate consumption in state ω is Cω =
∑L
l=1 c

l
ω, where the sum is over all individuals. Suppose

that aggregate consumption is higher in state ω than in state ω′, i.e. Cω > Cω′ . Then there must

at least one individual, say individual l, who consumes more in state ω than in state ω′, clω > clω′ .

Consequently, u′l(c
l
ω) < u′l(c

l
ω′). But then (7.10) implies that u′k(c

k
ω) < u′k(c

k
ω′) and thus ckω > ckω′

for all individuals k. 2

A consequence of the previous theorem is that with Pareto-optimal allocations individuals do

not have to distinguish between states in which aggregate consumption is the same. Aggregate

consumption C at time 1 is a random variable that induces a partition of the state space. Suppose

that the possible values of aggregate consumption are x1, . . . , xK and let Ωk = {ω ∈ Ω|Cω = xk}
be the set of states in which aggregate consumption equals xk. Then Ω = Ω1 ∪ · · · ∪ ΩK . For any

individual l, we can define a valid state-price vector by

ψω = e−δl
pωu

′
l(c

l
ω)

u′l(c
l
0)

= e−δl
pωu

′
l(fl(Cω))

u′l(c
l
0)

.

Define

ψ(k) =
∑

ω∈Ωk

ψω =
∑

ω∈Ωk

e−δl
pωu

′
l(fl(Cω))

u′l(c
l
0)

= e−δl
u′l(fl(xk))

u′l(c
l
0)

∑

ω∈Ωk

pω = e−δl
u′l(fl(xk))

u′l(c
l
0)

P(C = xk),

which can be interpreted as the value of an asset with a dividend of one if aggregate consumption

turns out to be xk and a zero dividend in other cases. The price of any marketed dividend D can

then be written as

P =

S∑

ω=1

ψωDω =

K∑

k=1

∑

ω∈Ωk

ψωDω

=

K∑

k=1

∑

ω∈Ωk

e−δl
pωu

′
l(fl(Cω))

u′l(c
l
0)

Dω =

K∑

k=1

e−δl
u′l(fl(xk))

u′l(c
l
0)

∑

ω∈Ωk

pωDω

=
K∑

k=1

ψ(k)

P(C = xk)

∑

ω∈Ωk

pωDω =
K∑

k=1

ψ(k)
∑

ω∈Ωk

pω
P(C = xk)

Dω

=

K∑

k=1

ψ(k) E[D|C = xk],
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where E[D|C = xk] is the expected dividend conditional on aggregate consumption being xk.

The last equality is due to the fact that pω/P(C = xk) is the conditional probability of the state

ω given that aggregate consumption is xk. To price any marketed dividend we thus need only

prices of Arrow-Debreu style assets on aggregate consumption and the expectation of the dividend

conditional on the aggregate consumption.

The economy is said to have a representative individual if for each equilibrium in the economy

with L individuals there is a vector η such that the equilibrium asset prices are the same in the

economy with the single individual with utility Uη and endowment (ē0, ē). Theorem 7.1 has the

following immediate consequence:

Theorem 7.3 If the equilibrium consumption allocation is Pareto-optimal, the economy has a

representative individual.

Since it is much easier to analyze models with only one individual, many asset pricing models do

assume the existence of a representative individual. Of course, it is interesting to know under what

conditions this assumption is satisfied, i.e. under what conditions the equilibrium consumption

allocation in the underlying multi-individual economy is going to be Pareto-optimal. We will

study that question below. Note that in the representative individual economy there can be no

trade in the financial assets (who should be the other party in the trade?) and the consumption of

the representative individual must equal the total endowment. If you want to model how financial

assets are traded, a representative individual formulation is obviously not useful, but if you just

want to study equilibrium asset prices it is often convenient.

7.3 Pareto-optimality in complete markets

From the analysis in the previous chapter we know that any individual’s marginal rate of substi-

tution is a valid state-price deflator. With time-additive expected utility the state-price deflator

induced by individual l is the random variable

ζl = e−δl
u′l(c

l)

u′l(c
l
0)
,

where cl0 is the optimal time 0 consumption and cl is the optimal state-dependent time 1 consump-

tion. In general, these state prices may not be identical for different investors so that multiple

state-price vectors and deflators can be constructed in this way. However, if the market is complete,

we know that the state-price deflator is unique so we must have ζk = ζl for any two individuals k

and l. This means that ζkω = ζlω for all possible states ω ∈ Ω = {1, 2, . . . , S}. Assuming complete

markets and time-additive utility we can conclude that

e−δk
u′k
(
ckω
)

u′k
(
ck0
) = e−δl

u′l
(
clω
)

u′l
(
cl0
) (7.11)

for any ω, i.e. the marginal rate of substitution is the same for all individuals. From the discussion

above, this will imply efficient risk-sharing and that the consumption allocation is Pareto-optimal.

This result is often called the First Welfare Theorem:

Theorem 7.4 If the financial market is complete, then every equilibrium consumption allocation

is Pareto-optimal.
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Here is a formal proof:

Proof: Recall from (6.19) that in a complete market the utility maximization problem of individ-

ual l can be written as

max
c0,c

Ul(c0, c)

s.t. c0 +ψ · c ≤ el0 +ψ · el

c0, c ≥ 0,

where ψ is the unique state-price vector. Let {(cl0, cl), l = 1, . . . , L} be an equilibrium consumption

allocation, but suppose we can find another consumption allocation {(ĉl0, ĉl), l = 1, . . . , L} which

gives all individuals at least the same utility and some individuals strictly higher utility than

{(cl0, cl), l = 1, . . . , L}. Since we assume strictly increasing utility and (cl0, c
l) maximizes individual

l’s utility subject to the constraint cl0 +ψ · cl ≤ el0 +ψ · el, the inequality

ĉl0 +ψ · ĉl ≥ el0 +ψ · el

must hold for all individuals with strict inequality for at least one individual. Summing up over

all individuals we get

L∑

l=1

(

ĉl0 +ψ · ĉl
)

>

L∑

l=1

(
el0 +ψ · el

)
= ē0 +ψ · ē.

Hence, the consumption allocation {(ĉl0, ĉl), l = 1, . . . , L} is not feasible. 2

A complete market equilibrium provides efficient risk-sharing. From (7.11) it follows that, for

any two states ω and ω′, we have
u′k
(
ckω
)

u′k
(
ckω′

) =
u′l
(
clω
)

u′l
(
clω′

) . (7.12)

Suppose that (7.12) did not hold. Suppose we could find two individuals k and l and two states ω

and ω′ such that
u′k(c

k
ω)

u′k(c
k
ω′)

>
u′l(c

l
ω)

u′l(c
l
ω′)

. (7.13)

Then the two agents could engage in a trade that makes both better off. What trade? Since the

market is complete, Arrow-Debreu assets for all states are traded, in particular for states ω and ω′.

Consider the following trade: Individual k buys εω Arrow-Debreu assets for state ω from individual

l at a unit price of ϕω. And individual l buys εω′ Arrow-Debreu assets for state ω′ from individual

k at a unit price of ϕω′ . The deal is arranged so that the net price is zero, i.e.

εωϕω − εω′ϕω′ = 0 ⇔ εω′ = εω
ϕω′

ϕω
.

The deal will change the consumption of the two individuals in states ω and ω′ but not in other

states, nor at time 0. The total change in the expected utility of individual k will be

pω
(
uk(c

k
ω + εω) − uk(c

k
ω)
)

+ pω′

(

uk(c
k
ω′ − εω

ϕω′

ϕω
) − uk(c

k
ω′)

)

.

Dividing by εω and letting εω → 0, the additional expected utility approaches

pωu
′
k(c

k
ω) − ϕω′

ϕω
u′k(c

k
ω′),
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which is strictly positive whenever
u′k(c

k
ω)

u′k(c
k
ω′)

>
pω′ϕω′

pωϕω
. (7.14)

On the other hand, the total change in the expected utility of individual l will be

pω
(
ul(c

l
ω − εω) − ul(c

l
ω)
)

+ pω′

(

ul(c
l
ω′ + εω

ϕω′

ϕω
) − ul(c

l
ω′)

)

.

Dividing by εω and letting εω → 0, we get

−pωu′l(clω) + pω′

ϕω′

ϕω
u′l(c

l
ω′),

which is strictly positive whenever
u′l(c

l
ω)

u′l(c
l
ω′)

<
pω′ϕω′

pωϕω
. (7.15)

If the inequality (7.13) holds, the two individuals can surely find prices ϕω and ϕω′ so that

both (7.14) and (7.15) are satisfied, i.e. both increase their expected utility.

If the market is incomplete, the individuals might not be able to implement this trade. In other

words, we cannot be sure that (7.12) holds for states for which Arrow-Debreu assets are not traded,

i.e. “uninsurable” states.

Combining theorems stated above, we have the following conclusion:

Theorem 7.5 If the financial market is complete, the economy has a representative individual.

If we want to study asset pricing in a complete market, we might as well assume that the economy

has a single individual. But what is the appropriate weighting vector η for the complete market?

We must ensure that the first-order conditions of the central planner are satisfied when we plug

in the optimal consumption plans of the individuals. Recall that in a complete market the utility

maximization problem of individual l can be formulated as in (6.19). The Lagrangian for this

problem is

Ll = Ul(c
l
0, c

l) + κl

(
S∑

ω=1

ψω
(
elω − clω

)
+ el0 − cl0

)

.

The first-order conditions, again necessary and sufficient, are

∂Ll

∂cl0
= 0 ⇔ ∂Ul

∂cl0
= κl, (7.16)

∂Ll

∂clω
= 0 ⇔ ∂Ul

∂clω
= κlψω, ω = 1, . . . , S, (7.17)

∂Ll

∂κl
= 0 ⇔ cl0 +

S∑

ω=1

ψωc
l
ω = el0 +

S∑

ω=1

ψωe
l
ω. (7.18)

If we set ϕ0 = 1 and ηl = 1/κl for each l = 1, . . . , L, the Equations (7.1)–(7.4) will indeed be

satisfied.

Note that the weight ηl associated with individual l is the inverse of his “shadow price” of his

budget constraint and ηl will therefore depend on the initial endowment of individual l. Redis-

tributing the aggregate initial endowment across individuals will thus change the relative values

of the weights ηl and, hence, the utility function of the representative individual and equilibrium

asset prices.
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Let us briefly consider the special case where all individuals have time-additive expected utilities.

Then the representative individual will also have time-additive expected utility, i.e.

Uη(c0, c) = uη,0(c0) + E [uη,1(c)] = uη,0(c0) +

S∑

ω=1

pωuη,1(cω),

where

uη,0(c0) = sup

{
L∑

l=1

ηlul(c
l
0) | c10, . . . , cL0 > 0 with c10 + · · · + cL0 ≤ c0

}

, (7.19)

uη,1(c) = sup

{
L∑

l=1

e−δlηlul(c
l) | c1, . . . , cL > 0 with c1 + · · · + cL ≤ c

}

. (7.20)

Often a functional form for uη,0 and uη,1 is assumed directly with the property that uη,1(c) =

e−δuη,0(c) = e−δu(c), where δ can be interpreted as the average time preference rate in the

economy. Then the unique state-price deflator follows by evaluating the derivative of uη at the

aggregate endowment,

ζω =
u′η,1(ēω)

u′η,0(ē0)
= e−δ

u′(ēω)

u′(ē0)
.

This will be very useful in order to link asset prices and interest rates to aggregate consumption.

7.4 Pareto-optimality in some incomplete markets

In the previous section we saw that complete market equilibria are Pareto-optimal. However, as

discussed earlier, real-life financial markets are probably not complete. Equilibrium consumption

allocations in incomplete markets will generally not be Pareto-optimal since the individuals cannot

necessarily implement the trades needed to align their marginal rates of substitution. On the other

hand, individuals do not have to be able to implement any possible consumption plan so we do not

need markets to be complete in the strict sense. If every Pareto-optimal consumption allocation

can be obtained by trading in the available assets, the market is said to be effectively complete.

If the market is effectively complete, we can use the representative individual approach to asset

pricing. In this section we will discuss some examples of effectively complete markets.

For any Pareto-optimal consumption allocation we know from Theorem 7.2 that the consumption

of any individual is an increasing function of aggregate consumption. Individual consumption is

measurable with respect to aggregate consumption. As in the discussion below Theorem 7.2,

suppose that the possible values of aggregate consumption are x1, . . . , xK and let Ωk = {ω ∈
Ω|Cω = xk} be the set of states in which aggregate consumption equals xk. If it is possible for

each k to form a portfolio that provides a payment of 1 if the state is in Ωk and a zero payment

otherwise—an Arrow-Debreu style asset for aggregate consumption—then the market is effectively

complete. (See also Exercise 7.3.) The individuals are indifferent between states within a given

subset Ωk. Risk beyond aggregate consumption risk does not carry any premium. Assuming strictly

increasing utility functions, aggregate time 1 consumption will equal aggregate time 1 endowment.

If we think of the aggregate endowment as the total value of the market, aggregate consumption

will equal the value of the market portfolio and we can partition the state space according to the

value or return of the market portfolio. Risk beyond market risk is diversified away and does not

carry any premium.



7.4 Pareto-optimality in some incomplete markets 155

If there is a full set of Arrow-Debreu style assets for aggregate consumption, markets will be

effectively complete for all strictly increasing and concave utility functions. The next theorem,

which is due to Rubinstein (1974), shows that markets are effectively complete under weaker

assumptions on the available assets if individuals have utility functions of the HARA class with

identical risk cautiousness. Before stating the precise result, let us review a few facts about the

HARA utility functions which were defined in Section 5.6. A utility function u is of the HARA

class, if the absolute risk tolerance is affine, i.e.

ART(c) ≡ − u′(c)

u′′(c)
= αc+ β.

The risk cautiousness is ART′(c) = α. Ignoring insignificant constants, the marginal utility must

be either

u′(c) = e−c/β ,

for the case α = 0 (corresponding to negative exponential utility), or

u′(c) = (αc+ β)
−1/α

,

for the case α 6= 0 (which encompasses extended log-utility, satiation HARA utility, and subsistence

HARA utility).

Theorem 7.6 Suppose that

(i) all individuals have time-additive HARA utility functions with identical risk cautiousness;

(ii) a risk-free asset is traded;

(iii) the time 1 endowment of all individuals are spanned by traded assets, i.e. el ∈ M, l = 1, . . . , L.

Then the equilibrium is Pareto-optimal and the economy has a representative individual. The

optimal consumption for any individual is a strictly increasing affine function of aggregate con-

sumption.

Proof: Suppose first that the market is complete. Then we know that the equilibrium consumption

allocation will be Pareto-optimal and we can find a weighting vector η = (η1, . . . , ηL)⊤ so that

ηke
−δku′k(c

k
ω) = ηle

−δlu′l(c
l
ω) (7.21)

for any two individuals k and l and any ω. Assume that the common risk cautiousness α is different

from zero so that

u′l(c) = (αc+ βl)
−1/α

, l = 1, . . . , L.

(The proof for the case α = 0 is similar.) Substituting this into the previous equation, we obtain

ηke
−δk

(
αckω + βk

)−1/α
= ηle

−δl
(
αclω + βl

)−1/α
,

which implies that
(
ηke

−δk
)−α (

αckω + βk
) (
ηle

−δl
)α

= αclω + βl.
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Summing up over l = 1, . . . , L, we get

(
ηke

−δk
)−α (

αckω + βk
)

L∑

l=1

(
ηle

−δl
)α

= α
L∑

l=1

clω +
L∑

l=1

βl = αCω +
L∑

l=1

βl,

where Cω is aggregate consumption (or endowment) in state ω. Solving for ckω, we find that

ckω =
αCω +

∑L
l=1 βl

α (ηke−δk)
−α∑L

l=1 (ηle−δl)
α − βk

α
≡ AkCω +Bk,

which is strictly increasing and affine in Cω.

The same consumption allocation can be obtained in a market where a risk-free asset exists and

the time 1 endowments of all individuals are spanned by traded assets. 2

Under the additional assumption that the time preference rates of individuals are identical,

δl = δ for all l = 1, . . . , L, we can show a bit more:

Theorem 7.7 If the assumptions of Theorem 7.6 are satisfied and individuals have identical

time preference rates, then the relative weights which the representative individual associates to

individuals—and therefore equilibrium asset prices—will be independent of the initial distribution

of aggregate endowment across individuals.

Proof: In order to verify this, we will compute the utility function of the representative individual.

Since we are assuming time-additive utility, we will derive uη,0 and uη,1 defined in (7.19) and (7.20)

for any given weighting vector η. We will focus on the case where the common risk cautiousness

α is non-zero and different from 1 so that

ul(c) =
1

1 − 1/α
(αc+ βl)

1−1/α
, u′l(c) = (αc+ βl)

−1/α
, l = 1, . . . , L.

(In Exercise 7.2 you are asked to do the same for the cases of extended log-utility (α = 1) and neg-

ative exponential utility (α = 0).) The first-order condition for the maximization in the definition

of uη,0 implies that

ηl (αc+ βl)
−1/α

= ν, (7.22)

where ν is the Lagrange multiplier. Rearranging, we get

αcl0 + βl = ν−αηαl .

Summing up over l gives

αc0 +

L∑

l=1

βl = ν−α
L∑

l=1

ηαl ,

so that the Lagrange multiplier is

ν =

(

αc0 +

L∑

l=1

βl

)−1/α( L∑

l=1

ηαl

)1/α

.

Substituting this back into (7.22), we see that the solution to the maximization problem is such

that

ηl (αc+ βl)
−1/α

=

(

αc0 +

L∑

l=1

βl

)−1/α( L∑

l=1

ηαl

)1/α

,
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which implies that

uη,0(c0) =

L∑

l=1

ηl
1

1 − 1/α

(
αcl0 + βl

)1−1/α

=
1

1 − 1/α

L∑

l=1

(
αcl0 + βl

)
ηl
(
αcl0 + βl

)−1/α

=
1

1 − 1/α

(

αc0 +

L∑

l=1

βl

)−1/α( L∑

l=1

ηαl

)1/α L∑

l=1

(
αcl0 + βl

)

=
1

1 − 1/α

(
L∑

l=1

ηαl

)1/α(

αc0 +

L∑

l=1

βl

)1−1/α

.

(7.23)

Almost identical computations lead to

uη,1(c) = e−δ
1

1 − 1/α

(
L∑

l=1

ηαl

)1/α(

αc+

L∑

l=1

βl

)1−1/α

(7.24)

The utility function of the representative individual is therefore of the same class as the individual

utility functions,

Uη(c0, c) = uη,0(c0) + E [uη,1(c)] = uη(c0) + e−δ E[uη(c)],

where

uη(c) =
1

1 − 1/α

(
L∑

l=1

ηαl

)1/α(

αc+

L∑

l=1

βl

)1−1/α

.

More importantly, the state-price deflator is

ζ = e−δ
u′η(c)

u′η(c0)
= e−δ

(
∑L
l=1 η

α
l

)1/α (

αc+
∑L
l=1 βl

)−1/α

(
∑L
l=1 η

α
l

)1/α (

αc0 +
∑L
l=1 βl

)−1/α

= e−δ

(

αc+
∑L
l=1 βl

)−1/α

(

αc0 +
∑L
l=1 βl

)−1/α
,

(7.25)

which is independent of the weighting vector η. The state-price deflator and, hence, the asset

prices are independent of the distribution of endowment across individuals. 2

7.5 Exercises

EXERCISE 7.1 Suppose η1 and η2 are strictly positive numbers and that u1(c) = u2(c) =

c1−γ/(1 − γ) for any non-negative real number c. Define the function uη : R+ → R by

uη(x) = sup {η1u1(y1) + η2u2(y2) | y1 + y2 ≤ x; y1, y2 ≥ 0} .
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Show that uη(x) = kx1−γ/(1 − γ) for some constant k. What is the implication for the utility of

representative individuals?

EXERCISE 7.2 Show Theorem 7.7 for the case of extended log-utility and the case of negative

exponential utility.

EXERCISE 7.3 Suppose that aggregate time 1 consumption can only take on the values

1, 2, . . . ,K for some finite integer K. Assume that European call options on aggregate consumption

are traded for any exercise price 0, 1, 2, . . . ,K. Consider a portfolio with one unit of the option

with exercise price k − 1, one unit of the option with exercise price k + 1, and minus two units of

the option with exercise price k. What is the payoff of this portfolio? Discuss the consequences of

your findings for the (effective) completeness of the market. Could you do just as well with put

options?

EXERCISE 7.4 Assume a discrete-time economy with L agents. Each agent l maximizes time-

additive expected utility E
[
∑T
t=0 β

t
lul(clt)

]

where ul is strictly increasing and concave. Show

that
ζt+1

ζt
=

∑L
l=1 βlu

′
l(cl,t+1)

∑L
l=1 u

′
l(clt)

is a valid one-period state-price deflator, i.e. that it is strictly positive and satisfies Et[(ζt+1/ζt)Rt+1] =

1 for any gross return Rt+1 over the period [t, t+ 1].

EXERCISE 7.5 George and John live in a continuous-time economy in which the relevant

uncertainty is generated by a one-dimensional standard Brownian motion z = (zt)t∈[0,T ]. Both

have time-additive utility of their consumption process: George maximizes

UG(c) = E

[
∫ T

0

e−0.02t ln ct dt

]

,

while John maximizes

UJ(c) = E

[
∫ T

0

e−0.02t

(

− 1

ct

)

dt

]

.

George’s optimal consumption process cG = (cGt) has a constant expected growth rate of 4% and

a constant volatility of 5%, i.e.

dcGt = cGt [0.04 dt+ 0.05 dzt] .

Two assets are traded in the economy. One asset is an instantaneously risk-free bank account with

continuously compounded rate of return rt. The other asset is a risky asset with price process

P = (Pt) satisfying

dPt = Pt [µPt dt+ 0.4 dzt]

for some drift µPt. The market is complete.

(a) What are the relative risk aversions of George and John, respectively?

(b) Using the fact that a state price deflator can be derived from George’s consumption process,

determine the risk-free rate rt and the market price of risk λt. What can you conclude about

the price processes of the two assets?
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(c) Find the drift and volatility of John’s optimal consumption process, cJ = (cJt).

(d) Suppose George and John are the only two individuals in the economy. What can you say

about the dynamics of aggregate consumption? Can the representative agent have constant

relative risk aversion?

EXERCISE 7.6 Consider a discrete-time economy with L individuals with identical preferences

so that agent l = 1, . . . , L at time 0 wants to maximize

E

[
T∑

t=0

βt
1

1 − γ
c1−γl,t

]

where cl,t denotes the consumption rate of individual l at time t. Let c∗l,t be the optimal consump-

tion rate of individual l at time t.

(a) Argue why

ζt+1

ζt
=
β

L

L∑

l=1

(

c∗l,t+1

c∗l,t

)−γ

(*)

is a state-price deflator between time t and time t+ 1.

(b) If the market is complete, explain why the next-period state-price deflator in (*) can be

written as

ζt+1

ζt
= β

(∑L
l=1 c

∗
l,t+1

∑L
l=1 c

∗
l,t

)−γ

.

EXERCISE 7.7 (Use spreadsheet or similar computational tool.) Consider a one-period economy

with 5 possible states and 5 assets traded. The state-contingent dividends and prices of the assets

and the state probabilities are as follows:

state 1 state 2 state 3 state 4 state 5 price

Asset 1 1 1 1 1 1 0.9

Asset 2 0 2 4 6 8 1.7

Asset 3 4 0 2 4 2 2.3

Asset 4 10 0 0 2 2 4.3

Asset 5 4 4 0 4 4 2.8

probability 0.25 0.25 0.2 0.2 0.1

(a) Verify that the market is complete and find the unique state-price deflator.

Consider an individual investor, Alex, with access to the above financial market with the given

prices. Suppose Alex has time-additive expected utility with a time preference rate of δ = 0.03

and a constant relative risk aversion of γ = 2. Suppose his optimal consumption at time 0 is 5 and

that he will receive an income of 5 at time 1 no matter which state is realized.
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(b) What is Alex’ optimal time 1 consumption? What does it cost him to finance that consump-

tion? What is the optimal portfolio for Alex?

Suppose now that there is only one other individual, Bob, in the economy. Bob also has time-

additive expected utility with a time preference rate of 0.03 but a relative risk aversion of 5. Bob’s

optimal time 0 consumption is also 5.

(c) What is Bob’s optimal time 1 consumption?

(d) What is the aggregate time 0 consumption and the state-dependent aggregate time 1 con-

sumption?

(e) What is Bob’s time 0 endowment and state-dependent time 1 endowment? What is Bob’s

optimal portfolio?

(f) Verify that the markets clear.

EXERCISE 7.8 Bruce lives in a continuous-time complete market economy. He has time-

additive logarithmic utility, uB(c) = ln c, with a time preference rate of δB = 0.02, and his optimal

consumption process cB = (cBt) has dynamics

dcBt = cBt [0.03 dt+ 0.1 dzt] ,

where z = (zt) is a standard Brownian motion.

(a) Characterize the state-price deflator induced by Bruce’s optimal consumption process? Iden-

tify the continuously compounded short-term risk-free interest rate and the instantaneous

Sharpe ratio of any risky asset.

Patti lives in the same economy as Bruce. She has time-additive expected utility with a HARA

utility function uP (c) = 1
1−γ (c−c̄)1−γ and a time preference rate identical to Bruce’s, i.e. δP = 0.02.

(b) Explain why Patti’s optimal consumption strategy cP = (cPt) must satisfy

cPt = c̄+

(
cBt
cB0

)1/γ

(cP0 − c̄) .

Find the dynamics of Patti’s optimal consumption process.



Chapter 8

Consumption-based asset pricing

8.1 Introduction

Previous chapters have shown how state-price deflators determine asset prices and how the optimal

consumption choices of individuals determine state-price deflators. In this chapter we combine

these observations and link asset prices to consumption. Models linking expected returns to the

covariance between return and (aggregate) consumption are typically called Consumption-based

Capital Asset Pricing Models (CCAPM). Such models date back to Rubinstein (1976) and Breeden

(1979).

The outline of the chapter is as follows. Section 8.2 develops the CCAPM in the one-period

framework. Section 8.3 derives a general link between asset prices and consumption in a multi-

period setting, while Section 8.4 focuses on a simple and tractable specification. Section 8.5

shows that this simple specification is unable to match important empirical features of aggregate

consumption and return, leaving a number of apparent asset pricing puzzles. Section 8.6 discusses

some problems with such empirical studies. Some extensions of the simple model are presented in

Sections 8.7 and 8.8. These extensions help resolve some of the apparent puzzles.

8.2 The one-period CCAPM

For simplicity let us first investigate the link between asset prices and consumption in the one-

period framework.

As discussed several times the marginal rate of substitution of any individual defines a state-

price deflator. If we assume time-additive expected utility with time preference rate δ and utility

function u, this state-price deflator is

ζ = e−δ
u′(c)

u′(c0)
,

where c0 is optimal time 0 consumption and c is the state-dependent optimal time 1 consumption.

If the economy can be modeled by a representative individual, the equation holds for aggregate

consumption.

Assuming that a risk-free asset is traded, we know from Section 4.2.1 that the gross risk-free
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162 Chapter 8. Consumption-based asset pricing

return is

Rf =
1

E[ζ]
= eδ

1

E[u′(c)/u′(c0)]
(8.1)

and the expected gross return on any asset i is

E[Ri] =
1

E[ζ]
− Cov[Ri, ζ]

E[ζ]

= Rf − Cov[u′(c)/u′(c0), Ri]

E[u′(c)/u′(c0)]

= Rf − σ[u′(c)/u′(c0)]

E[u′(c)/u′(c0)]
σ[Ri]ρ [Ri, u

′(c)/u′(c0)] ,

(8.2)

where σ[x] denotes the standard deviation of the random variable x, while ρ[x, y] is the correlation

between the random variables x and y. An asset with a return which is positively correlated with

the marginal utility of consumption (and hence negatively correlated with the level of consumption)

is attractive, has a high equilibrium price, and thus a low expected return.

In order to obtain a relation between expected returns and consumption itself (rather than

marginal utility of consumption) we need to make further assumptions or approximations. Below

we develop three versions.

8.2.1 The simple one-period CCAPM: version 1

A first-order Taylor approximation of u′(c) around c0 gives that

u′(c)

u′(c0)
≈ u′(c0) + u′′(c0)(c− c0)

u′(c0)
= 1 − γ(c0)g,

where γ(c0) = −c0u′′(c0)/u′(c0) is the relative risk aversion of the individual evaluated at the time 0

consumption level, and g = c/c0 − 1 is the (state-dependent) relative growth rate of consumption

over the period. If we further assume that E[u′(c)/u′(c0)] ≈ 1, we get that

E[Ri] −Rf ≈ γ(c0)Cov[g,Ri] = γ(c0)ρ[g,Ri]σ[g]σ[Ri], (8.3)

where ρ[g,Ri] is the correlation between consumption growth and the return and σ[g] and σ[Ri]

are the standard deviations of consumption growth and return, respectively. The above equation

links expected excess returns to covariance with consumption growth. We can rewrite the equation

as

E[Ri] ≈ Rf + β[Ri, g]η,

where β[Ri, g] = Cov[g,Ri]/Var[g] and η = γ(c0)Var[g]. If we ignore the approximative character

of the equation, it shows that the growth rate of the individual’s optimal consumption is a pricing

factor.

In particular, if there exists a portfolio with a return Rc which is perfectly correlated with

consumption growth, i.e. Rc = a+ bg for constants a and b, then

E[Rc] −Rf ≈ γ(c0)Cov[g,Rc] = γ(c0)bVar[g] ⇒ γ(c0) ≈
1

bVar[g]

(
E[Rc] −Rf

)

and substituting this into (8.3) we get

E[Ri] −Rf ≈ 1

bVar[g]

(
E[Rc] −Rf

)
Cov[g,Ri]

=
1

b
β[Ri, g]

(
E[Rc] −Rf

)
= β[Ri, R

c]
(
E[Rc] −Rf

)
.

(8.4)
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Here the last equality follows from Cov[Rc, Ri] = bCov[g,Ri] and Var[Rc] = b2 Var[g]. Equa-

tion (8.4) is exactly as the classic CAPM but with the return on a consumption-mimicking portfolio

instead of the return on the market portfolio.

If the economy has a representative individual we can use the above relations with aggregate

consumption instead of individual consumption. The factor risk premium η should then reflect the

relative risk aversion of the representative individual.

What if the economy does not have a representative individual? Eq. (8.3) will still hold for any

individual l, i.e.

E[Ri] −Rf ≈ γl(c
l
0)Cov[cl/cl0, Ri] = ARAl(c

l
0)Cov[cl, Ri],

where γl and ARAl are the relative and absolute risk aversion of individual l, so that

(
E[Ri] −Rf

) 1

ARAl(cl0)
≈ Cov[cl, Ri], l = 1, 2, . . . , L.

Summing up over all individuals, we get

(
E[Ri] −Rf

)
L∑

l=1

1

ARAl(cl0)
≈

L∑

l=1

Cov[cl, Ri] = Cov

[
L∑

l=1

cl, Ri

]

= Cov[C,Ri],

where C is aggregate time 1 consumption. If we let C0 denote aggregate time 0 consumption, we

obtain

E[Ri] −Rf ≈
(

L∑

l=1

1

ARAl(cl0)

)−1

C0 Cov[C/C0, Ri]. (8.5)

Again ignoring the approximation, this equation shows that aggregate consumption growth is a

pricing factor even if there is no representative individual. We just need to replace the relative risk

aversion of the representative individual by some complex average of individual risk aversions. The

absolute risk tolerance of individual l is exactly 1/ARAl(c
l
0) so the first term on the right-hand

side of the above equation can be interpreted as the inverse of the aggregate absolute risk tolerance

in the economy. The higher the aggregate absolute risk tolerance, the lower the equilibrium risk

premium on risky assets.

Of course, we prefer exact asset pricing results to approximate. In a later section, we will show

that in continuous-time models the analogues to the above relations will hold as exact equalities

under appropriate assumptions.

8.2.2 The simple one-period CCAPM: version 2

Suppose that

(i) the individual has constant relative risk aversion, u(c) = c1−γ/(1 − γ),

(ii) consumption growth is lognormally distributed,

ln(1 + g) ≡ ln

(
c

c0

)

∼ N(ḡ, σ2
g).

Then
u′(c)

u′(c0)
=

(
c

c0

)−γ

= exp

{

−γ ln

(
c

c0

)}

.
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For a random variable x ∼ N(m, s2), it can be shown (see Appendix B) that

E[e−kx] = e−km+ 1
2k

2s2

for any constant k. In particular,

E[e−γx] = e−γm+ 1
2γ

2s2

and

Var[e−γx] = E[(e−γx)2] −
(
E[e−γx]

)2
= E[e−2γx] −

(

e−γm+ 1
2γ

2s2
)2

= e−2γm+2γ2s2 −
(

e−γm+ 1
2γ

2s2
)2

=
(

e−γm+ 1
2γ

2s2
)2 [

eγ
2s2 − 1

]

.

In our case, we get

E

[
u′(c)

u′(c0)

]

= E

[

exp

{

−γ ln

(
c

c0

)}]

= exp

{

−γḡ +
1

2
γ2σ2

g

}

(8.6)

and
σ [u′(c)/u′(c0)]

E [u′(c)/u′(c0)]
=
√

eγ
2σ2

g − 1 ≈ γσg, (8.7)

where the approximation is based on ex ≈ 1 + x for x ≈ 0. The gross risk-free rate of return is

then given by

Rf = eδ
(

E
[

(c/c0)
−γ
])−1

= exp

{

δ + γḡ − 1

2
γ2σ2

g

}

so that the continuously compounded risk-free rate of return becomes

lnRf = δ + γḡ − 1

2
γ2σ2

g . (8.8)

From (8.2) and (8.7) we conclude that in the simple model the excess expected rate of return on

a risky asset is

E[Ri] −Rf ≈ −γσgρ
[
Ri, (c/c0)

−γ
]
σ[Ri]. (8.9)

A first-order Taylor approximation of the function f(x) = x−γ around 1 gives f(x) ≈ f(1) +

f ′(1)(x− 1) = 1 − γ(x− 1) and with x = c/c0 we get

(
c

c0

)−γ

≈ 1 − γ

(
c

c0
− 1

)

and, consequently,

ρ

[

Ri,

(
c

c0

)−γ
]

≈ ρ

[

Ri, 1 − γ

(
c

c0
− 1

)]

=
Cov

[

Ri, 1 − γ
(
c
c0

− 1
)]

σ[Ri]σ
[

1 − γ
(
c
c0

− 1
)]

=
−γ Cov[Ri, c/c0]

σ[Ri]γσ[c/c0]
= −ρ[Ri, c/c0].

Therefore,

E[Ri] −Rf ≈ γσgρ [Ri, c/c0]σ[Ri], (8.10)

as in (8.3).
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8.2.3 The simple one-period CCAPM: version 3

Assume that the individual has constant relative risk aversion and that the gross asset return Ri

and the consumption growth c/c0 are jointly lognormally distributed. This is a stronger condition

than in version 2, which will allow us to obtain an exact relation between expected return and

consumption growth. (The risk-free return will be as in version 2.) Any state-price deflator ζ

satisfies 1 = E[Riζ] so

1 = E

[

Rie
−δ

(
c

c0

)−γ
]

. (8.11)

Due to the distributional assumption, Rie
−δ
(
c
c0

)−γ

is lognormally distributed. For any lognor-

mally distributed random variable x, we have that

E[x] = E[eln x] = eE[ln x]+ 1
2 Var[ln x],

and hence

ln(E[x]) = E[lnx] +
1

2
Var[lnx]. (8.12)

Taking logs in (8.11), we therefore get

0 = E

[

lnRi − δ − γ ln

(
c

c0

)]

+
1

2
Var

[

lnRi − δ − γ ln

(
c

c0

)]

= E[lnRi] − δ − γ E

[

ln

(
c

c0

)]

+
1

2
Var[lnRi] +

1

2
γ2 Var

[

ln

(
c

c0

)]

− γ Cov

[

lnRi, ln

(
c

c0

)]

= E[lnRi] − lnRf +
1

2
Var[lnRi] − γ Cov

[

lnRi, ln

(
c

c0

)]

,

where the last equality follows from the fact that risk-free rate still satisfies (8.8). Rearranging, we

obtain

E[lnRi] − lnRf +
1

2
Var[lnRi] = γ Cov

[

lnRi, ln

(
c

c0

)]

,

which using (8.12) can be rewritten as

ln(E[Ri]) − lnRf = γ Cov

[

lnRi, ln

(
c

c0

)]

= γσgρ[lnRi, ln(c/c0)]σ[lnRi]. (8.13)

This relation is exact but holds only under the more restrictive assumption of joint lognormality

of consumption and returns.

8.3 General multi-period link between consumption and as-

set returns

Now take the analysis to multi-period settings. Assuming time-additive expected utility we can

define a state-price deflator from the optimal consumption plan of any individual as

ζt = e−δt
u′(ct)

u′(c0)
. (8.14)

This is true both in the discrete-time and in the continuous-time setting. If a representative

individual exists, the equation holds for aggregate consumption.
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Not surprisingly, the multi-period discrete-time setting leads to equations very similar to those

derived in the one-period framework in the previous section. Since

ζt+1

ζt
= e−δ

u′(ct+1)

u′(ct)
,

we get from (4.23) and (4.24) that the risk-free gross return is

Rft = eδ
(

Et

[
u′(ct+1)

u′(ct)

])−1

(8.15)

and that the excess expected gross return on a risky asset is

Et[Ri,t+1] −Rft = −Covt[u
′(ct+1)/u

′(ct), Ri,t+1]

Et[u′(ct+1)/u′(ct)]

= ρt

[

Ri,t+1,
u′(ct+1)

u′(ct)

]

σt[Ri,t+1]

(

− σt[u
′(ct+1)/u

′(ct)]

Et[u′(ct+1)/u′(ct)]

)

.

(8.16)

These equations are the multi-period equivalents of the Equations (8.1) and (8.2) for the one-period

model. As in the one-period case, we can obtain an approximate relation between expected returns

and relative consumption growth, gt+1 = ct+1/ct − 1, over the next period,

Et[Ri,t+1] −Rft ≈ γ(ct)Covt[gt+1, Ri,t+1], (8.17)

and also an approximate consumption-beta equation

Et[Ri,t+1] −Rft ≈ βt[Ri,t+1, R
c
t+1]

(

Et[R
c
t+1] −Rft

)

, (8.18)

where βt[Ri,t+1, R
c
t+1] = Covt[Ri,t+1, R

c
t+1]/Vart[R

c
t+1] and Rct+1 is the gross return on a portfolio

perfectly correlated with consumption growth over this period.

Now let us turn to the continuous-time setting. Suppose that the dynamics of consumption can

be written as

dct = ct [µct dt+ σ⊤

ct dzt] , (8.19)

where µct is the expected relative growth rate of consumption and σct is the vector of sensitivities

of consumption growth to the exogenous shocks to the economy. In particular, the variance of

relative consumption growth is given by ‖σct‖2. Given the dynamics of consumption and the

relation (8.14) we can obtain the dynamics of ζt by an application of Itô’s Lemma on the function

g(t, c) = e−δtu′(c)/u′(c0). The relevant derivatives are

∂g

∂t
(t, c) = −δe−δt u

′(c)

u′(c0)
,

∂g

∂c
(t, c) = e−δt

u′′(c)

u′(c0)
,

∂2g

∂c2
(t, c) = e−δt

u′′′(c)

u′(c0)
,

implying that

∂g

∂t
(t, ct) = −δe−δt u

′(ct)

u′(c0)
= −δζt,

∂g

∂c
(t, ct) = e−δt

u′′(ct)

u′(c0)
=
u′′(ct)

u′(ct)
ζt = −γ(ct)c−1

t ζt,

∂2g

∂c2
(t, ct) = e−δt

u′′′(ct)

u′(c0)
=
u′′′(ct)

u′(ct)
ζt = η(ct)c

−2
t ζt,

where γ(ct) ≡ −ctu′′(ct)/u′(ct) is the relative risk aversion of the individual, and where η(ct) ≡
c2tu

′′′(ct)/u
′(ct) is positive under the very plausible assumption that the absolute risk aversion
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of the individual is decreasing in the level of consumption. Consequently, the dynamics of the

state-price deflator can be expressed as

dζt = −ζt
[(

δ + γ(ct)µct −
1

2
η(ct)‖σct‖2

)

dt+ γ(ct)σ
⊤

ct dzt

]

, (8.20)

Comparing the above equation with (4.37), we can draw the conclusions summarized in the fol-

lowing theorem:

Theorem 8.1 In a continuous-time economy where the optimal consumption process of an in-

dividual with time-additive expected utility satisfies (8.19), the continuously compounded risk-free

short-term interest rate satisfies

rft = δ + γ(ct)µct −
1

2
η(ct)‖σct‖2 (8.21)

and

λt = γ(ct)σct (8.22)

defines a market price of risk process. Here γ(ct) = −ctu′′(ct)/u′(ct) and η(ct) = c2tu
′′′(ct)/u

′(ct).

If we substitute (8.22) into (4.35) we see that the excess expected rate of return on asset i over

the instant following time t can be written as

µit + δit − rft = γ(ct)σ
⊤

itσct = γ(ct)ρict ‖σit‖ ‖σct‖. (8.23)

Here σ⊤

itσct and ρict are the covariance and correlation between the rate of return on asset i and the

consumption growth rate, respectively, and ‖σit‖ and ‖σct‖ are standard deviations (volatilities)

of the rate of return on asset i and the consumption growth rate, respectively. Equation (8.23)

is the continuous-time version of (8.17). Note that the continuous-time relation is exact. Again,

if we can find a trading strategy “mimicking” the consumption process (same volatility, perfect

correlation) we get the “consumption-beta” relation

µit + δit − rft = βcit

(

µ∗
t + δ∗t − rft

)

,

where βcit = σ⊤

itσct/‖σct‖2.

If the market is effectively complete, the above equations are valid for aggregate consumption

if we apply the utility function and time preference rate of the representative individual. The

representative individual version of Equation (8.23) says that risky assets are priced so that the

expected excess return on an asset is given by the product of the relative risk aversion of the

representative individual and the covariance between the asset return and the growth rate of

aggregate consumption. This is the key result in the Consumption-based CAPM (or just CCAPM)

developed by Breeden (1979).

As already indicated in the one-period framework, we can obtain a relation between expected

returns and aggregate consumption also if the market is incomplete and no representative individual

exists. Let us stick to the continuous-time setting. Let cl = (clt) denote the optimal consumption

process of individual number l in the economy and assume that

dclt = clt [µclt dt+ σ⊤

clt dzt] .
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If there are L individuals in the economy, aggregate consumption is Ct =
∑L
l=1 clt and we have

that

dCt =

L∑

l=1

dclt =

(
L∑

l=1

cltµclt

)

dt+

(
L∑

l=1

cltσclt

)⊤

dzt

≡ Ct [µCt dt+ σ⊤

Ct dzt] ,

where µCt ≡
(
∑L
l=1 cltµclt

)

/Ct and σCt =
(
∑L
l=1 cltσclt

)

/Ct. We know from (8.23) that

µit + δit − rft = Al(clt)cltσ
⊤

itσclt, l = 1, . . . , L,

where Al(clt) ≡ −u′′l (clt)/u′l(clt) is the absolute risk aversion of individual l. Consequently,

(

µit + δit − rft

) 1

Al(clt)
= cltσ

⊤

itσclt, l = 1, . . . , L,

and summing up over l, we get

(

µit + δit − rft

) L∑

l=1

(
1

Al(clt)

)

= σ⊤

it

(
L∑

l=1

cltσclt

)

= σ⊤

it (CtσCt) .

Therefore, we have the following relation between excess expected returns and aggregate consump-

tion:

µit + δit − rft =
Ct

∑L
l=1

(
1

Al(clt)

)σ⊤

itσCt. (8.24)

Relative to the complete markets version (8.23), the only difference is that the relative risk aversion

of the representative individual is replaced by some complicated average of the risk aversions of the

individuals. Note that if all individuals have CRRA utility with identical relative risk aversions,

then Al(clt) = γ/clt and the multiplier Ct/
∑L
l=1

(
1

Al(clt)

)

in the above equation reduces to γ.

The Consumption-based CAPM is a very general asset pricing result. Basically any asset pricing

model can be seen as a special case of the Consumption-based CAPM. On the other hand, the

general Consumption-based CAPM is not very useful for applications without further assumptions.

Therefore we turn now to more specific consumption-based models.

8.4 The simple multi-period CCAPM

A large part of the asset pricing literature makes (not always explicitly stated, unfortunately) the

following additional assumptions:

1. the economy has a representative individual with CRRA time-additive utility, i.e. u(C) =
1

1−γC
1−γ ,

2. future aggregate consumption is lognormally distributed.

In the discrete-time version of the model, we can proceed as in version 2 of the one-period model.

The first assumption leads to a marginal rate of substitution given by

u′(Ct+1)

u′(Ct)
=

(
Ct+1

Ct

)−γ

= exp

{

−γ ln

(
Ct+1

Ct

)}

.
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By the second assumption, ln (Ct+1/Ct) ∼ N(ḡ, σ2), and hence

Et

[
u′(Ct+1)

u′(Ct)

]

= Et

[

exp

{

−γ ln

(
Ct+1

Ct

)}]

= exp

{

−γḡ +
1

2
γ2σ2

}

(8.25)

and
σt (u

′(Ct+1)/u
′(Ct))

Et [u′(Ct+1)/u′(Ct)]
=
√

eγ2σ2 − 1 ≈ γσ. (8.26)

According to (8.15), the gross risk-free return over the period from t to t+ 1 is then given by

Rft = eδ
(

Et

[

(Ct+1/Ct)
−γ
])−1

= exp

{

δ + γḡ − 1

2
γ2σ2

}

so that the continuously compounded risk-free rate of return becomes

lnRft = δ + γḡ − 1

2
γ2σ2. (8.27)

From (8.17) we conclude that in the simple model the excess expected gross return on a risky asset

is

Et [Ri,t+1] −Rft ≈ −γσρt
[

Ri,t+1,

(
Ct+1

Ct

)−γ
]

σt [Ri,t+1]

≈ γσρt

[

Ri,t+1,
Ct+1

Ct

]

σt [Ri,t+1] ,

(8.28)

where the last expression follows from a first-order Taylor approximation as in Section 8.2.2. If

we further assume that the future asset price and the future consumption level are simultaneously

lognormally distributed, we are back in version 3 of the one-period model, and the following exact

relation can be shown:

ln (Et[Ri,t+1]) − lnRft = γσρt

[

lnRi,t+1, ln

(
Ct+1

Ct

)]

σt [lnRi,t+1] .

In the formulas above the mean ḡ and variance σ2 of consumption growth can vary over time,

but in the stationary case where both are constant we see that the risk-free interest rate must

also be constant. Furthermore, a risky asset with a constant correlation with consumption growth

will have a constant Sharpe ratio
(

Et [Ri,t+1] −Rft

)

/σt[Ri,t+1]. If the standard deviation of the

return is constant, the expected excess rate of return will also be constant.

In the continuous-time version of the stationary simple consumption-based model, the second

assumption means that µCt and σCt in the consumption process (8.19) are constant, i.e. consump-

tion follows a geometric Brownian motion. It follows from (8.21) and (8.23) that the model with

these assumptions generate a constant continuously compounded short-term risk-free interest rate

of

rf = δ + γµC − 1

2
γ(1 + γ)‖σC‖2 (8.29)

and a constant Sharpe ratio for asset i given by

µit + δit − rf

‖σit‖
= γρiC‖σC‖ (8.30)

if the asset has a constant correlation with consumption.
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8.5 Theory meets data — asset pricing puzzles

The simple consumption-based model has been exposed to numerous empirical tests. Almost

all of these tests focus on the question whether the relation (8.30)—or the similar discrete-time

relation (8.28)—holds for a broad-based stock index for reasonable values of the relative risk

aversion coefficient. Let us use the following stylized figures that are roughly representative for the

U.S. economy over the second half of the 20th century:

• the average annual real excess rate of return on the stock index (relative to the yield on a

short-term government bond) is about 8.0%;

• the empirical standard deviation of the annual real rate of return on the stock index is about

20.0%;

• the empirical standard deviation of annual relative changes in aggregate consumption is about

2.0%;

• the empirical correlation between the real return on the stock index and changes in aggregate

consumption is about 0.2.

Inserting these estimates into (8.30) it follows that the relative risk aversion coefficient γ must be

100. This is certainly an unrealistically high risk aversion for a typical individual, cf. the discussion

in Section 5.6.2. In fact, this computation—which is standard in the literature—exaggerates the

problem somewhat. The estimates of the return and consumption moments are based on discrete

observations, not continuous observations, so we should use the discrete-time version of the model.

If we drop the approximation in (8.26), the discrete-time simple model says that

Et [Ri,t+1] −Rft ≈
√

eγ2σ2 − 1 ρt

[

Ri,t+1,
Ct+1

Ct

]

σt [Ri,t+1]

and plugging in the estimates, we need

γ ≈ 1

σ

√
√
√
√
√ln



1 +

(

Et[Ri,t+1] −Rft
ρσt[Ri,t+1]

)2


 =
1

0.02

√

ln(5) ≈ 63.4.

But 63.4 is still an unreasonably high relative risk aversion.

With γ = 100, Equation (8.29) indicates that an increase of one percentage point in the expected

growth rate of aggregate consumption will be accompanied by an increase in the short-term interest

rate of 100 percentage points—also very unrealistic. Similar results are obtained for other countries

and other data periods.

For a reasonable level of risk aversion (probably in the area 2–5), the expected excess rate of

return predicted by the theory is much smaller than the historical average. This so-called equity

premium puzzle was first pointed out by Mehra and Prescott (1985). Weil (1989) notes that the

simple model predicts a higher level of interest rates than observed empirically. This is the so-called

risk-free rate puzzle.

In the simple model, the real short-term interest rate and the Sharpe ratios of risky assets are

constant over time, which is also inconsistent with empirical observations. Interest rates vary

over time, and recent studies indicate that Sharpe ratios, expected returns, and volatilities on
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stocks vary over the business cycle with high values in recessions and low values in periods of high

economic growth rates, cf. e.g. Cochrane (2001). The future values of these variables are therefore

to some extent predictable, contrasting the simple model. This could be called a predictability

puzzle.

In addition, empirical studies show that the simple model can explain only a small part of the

differences in the average returns on different stocks, cf. e.g. Breeden, Gibbons, and Litzenberger

(1989). This is a cross-sectional stock return puzzle.

Based on the apparently large discrepancy between the model and the data, it is tempting to

conclude that the consumption-based approach to asset pricing is not applicable, and otherwise

intelligent economists have not been able to withstand this temptation. The conclusion is not

fair, however. Firstly, as explained in the following section, there are a number of problems with

the empirical tests of the model which make their conclusions less clear. Secondly, it is only the

very simple special case of the general consumption-based asset pricing model which is tested.

The consumption-based approach in itself is based on only very few and relatively undisputed

assumptions so the lack of empirical support must be blamed on the additional assumptions of

the simple model. In the last 10-15 years, a number of alternative specifications of the general

model have been developed. Most of these alternatives assume either a different representation of

preferences than in the simple model or that the market is incomplete so that the representative

individual approach is invalid. We will discuss these two types of model extensions in Sections 8.7

and 8.8.

8.6 Problems with the empirical studies

A number of issues should be taken into account when the conclusions of the empirical studies of

the consumption-based model are evaluated. In the following we discuss some selected issues.

Firstly, the 8% estimate of the average excess stock return is relatively imprecise. With 50

observations (one per year) and a standard deviation of 20%, the standard error equals 20%/
√

50 ≈
2.8% so that a 95% confidence interval is roughly [2.5%, 13.5%]. With a mean return of 2.5% instead

of 8.0%, the required value of the relative risk aversion drops to 31.25, which is certainly still very

high but nevertheless considerably smaller than the original value of 100.

Secondly, the consumption data used in the tests is of a poor quality as pointed out by e.g.

Breeden, Gibbons, and Litzenberger (1989). The available data on aggregate consumption mea-

sures the expenses for purchases of consumption goods over a given period (usually a quarter or

a month). This is problematic for several reasons. Many, especially very expensive, consumption

goods are durable goods offering consumption “services” beyond the period of purchase. The model

addresses the rate of consumption at a given point in time rather than the sum of consumption

rates over some time interval; see Grossman, Melino, and Shiller (1987). The consumption data

is reported infrequently relative to financial data. Moreover, the aggregate consumption numbers

are undoubtedly subject to various sampling and measurement errors; see Wilcox (1992). These

problems motivate the development of asset pricing models that do not depend on consumption

at all. This is for example the case of the so-called factor models discussed in Chapter 9.

Thirdly, also data for stock returns has to be selected and applied with caution. Most tests of

the asset pricing models are based on data from the U.S. or other economies that have experienced
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relatively high growth at least throughout the last 50 years. Probably investors in these countries

were not so sure 50 years ago that the economy would avoid major financial and political crises

and outperform other countries. Brown, Goetzmann, and Ross (1995) point out that due to

this survivorship bias the realized stock returns overstate the ex-ante expected rate of returns

significantly by maybe as much as 2–4 percentage points. Note however that in many crises in

which stocks do badly, also bonds and deposits tend to provide low returns so it is not clear how

big the effect on the expected excess stock return is.

Fourthly, the pricing relations of the model involve the ex-ante expectations of individuals, while

the tests of the model are based on a single realized sequence of market prices and consumption.

Estimating and testing a model involving ex-ante expectations and other moments requires sta-

tionarity in data in the sense that it must be assumed that each of the annual observations is

drawn from the same probability distribution. For example, the average of the observed annual

stock market returns is only a reasonable estimate of the ex-ante expected annual stock market

return if the stock market return in each of the 50 years is drawn from the same probability distri-

bution. Some important changes in the investment environment over the past years invalidate the

stationarity assumption. For example, Mehra and Prescott (2003) note two significant changes in

the U.S. tax system in the period between 1960 and 2000, a period included in most tests of the

consumption-based model:

• The marginal tax rate for stock dividends has dropped from 43% to 17%.

• Stock returns in most pension savings accounts are now tax-exempt, which was not so in the

1960s. Bond returns in savings accounts have been tax-exempt throughout the period.

Both changes have led to increased demands for stocks with stock price increases as a result. These

changes in the tax rules were hardly predicted by investors and, hence, they can partly explain

why the model has problems explaining the high realized stock returns. Similarly, it can be argued

that the reductions in direct and indirect transaction costs and the liberalizations of international

financial markets experienced over the last decades have increased the demands for stocks and

driven up stock returns above what could be expected ex-ante. The high transaction costs and

restrictions on particularly international investments in the past may have made it impossible or

at least very expensive for investors to obtain the optimal diversification of their investments so

that even unsystematic risks may have been priced with higher required returns as a consequence.1

One can also argue theoretically that the returns of a given stock cannot be stationary. Here

is the argument: in each period there is a probability that the issuing firm defaults and the stock

stops to exist. Then it no longer makes sense to talk about the return probability distribution of

that stock. More generally, the probability distribution of the return in one period may very well

depend on the returns in previous periods.

Fifthly, as emphasized by Bossaerts (2002), standard tests assume that ex-ante expectations of

individuals are correct in the sense that they are confirmed by realizations. The general asset

pricing theory does allow individuals to have systematically over-optimistic or over-pessimistic

expectations. The usual tests implicitly assume that market data can be seen as realizations of

1It is technically complicated to include transaction costs and trading restrictions in asset pricing models, but a

study of He and Modest (1995) indicates that such imperfections at least in part can explain the equity premium

puzzle.
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the ex-ante expectations of individuals. Bossaerts (2002) describes studies which indicate that this

assumption is not necessarily valid.

8.7 CCAPM with alternative preferences

An interesting alternative to the simple consumption-based model is to allow the utility of a given

consumption level at a given point in time t to depend on some benchmark Xt, i.e. the preferences

are modeled by E[
∫ T

0
e−δtu(ct,Xt) dt] in continuous time or E[

∑T
t=0 e

−δtu(ct,Xt)] in discrete time.

This incorporates the case of (internal) habit formation where Xt is determined as a weighted

average of the previous consumption rates of the individual, and the case of state-dependent (or

“external habit”) preferences where Xt is a variable not affected by the consumption decisions of

the individual. If we assume that a high value of the benchmark means that the individual will

be more eager to increase consumption, as is the case with (internal) habit formation, we should

have ucX(c,X) > 0.

Typically, models apply one of two tractable specifications of the utility function. The first

specification is

u(ct,Xt) =
1

1 − γ
(ct −Xt)

1−γ
, γ > 0, (8.31)

which is defined for ct > Xt. Marginal utility is

uc(ct,Xt) = (ct −Xt)
−γ

,

and the relative risk aversion is

−ctucc(ct,Xt)

uc(ct,Xt)
= γ

ct
ct −Xt

, (8.32)

which is no longer constant and is greater than γ. This will allow us to match historical consumption

and stock market data with a lower value of the parameter γ, but it is more reasonable to study

whether we can match the data with a fairly low average value of the relative risk aversion given

by (8.32). The second tractable specification is

u(ct,Xt) =
1

1 − γ

(
ct
Xt

)1−γ

, γ > 0, (8.33)

which is defined for ct,Xt > 0. Since

uc(c,X) = c−γXγ−1, ucX(c,X) = (γ − 1)c−γXγ−2

we need γ > 1 to ensure that marginal utility is increasing in X. Despite the generalization of the

utility function relative to the standard model, the relative risk aversion is still constant:

− cucc(c,X)

uc(c,X; γ)
= γ.

8.7.1 Habit formation

In the case with (internal) habit formation the individual will appreciate a given level of con-

sumption at a given date higher if she is used to low consumption than if she is used to high

consumption. Such a representation of preferences is still consistent with the von Neumann and
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Morgenstern (1944) axioms of expected utility but violates the time-additivity of utility typically

assumed. A rational individual with an internal habit will take into account the effects of her

current decisions on the future habit levels. We saw in Chapter 6 that this will considerably

complicate the formulas for optimal consumption and for the associated state-price deflator.

Individuals with habit formation in preferences will other things equal invest more in the risk-

free asset in order to ensure that future consumption will not come very close to (or even below)

the future habit level. This extra demand for the risk-free asset will lower the equilibrium interest

rate and, hence, help resolve the risk-free rate puzzle. Moreover, we see from (8.32) that the risk

aversion is higher in “bad states” where current consumption is close to the habit level than in

“good states” of high current consumption relative to the benchmark. This will be reflected by

the risk premia of risky assets and has the potential to explain the observed cyclical behavior of

expected returns.

As we have seen in Chapter 6 the state-price deflators that can be derived from individuals with

internal habit formation are considerably more complex than with time-additive preferences or

external habit formation. A general and rather abstract continuous-time analysis for the case of

an internal habit defined by a weighted average of earlier consumption rates is given by Detemple

and Zapatero (1991).

Only very few concrete asset pricing models with internal habit have been developed with the

continuous-time model of Constantinides (1990) as the most frequently cited. The model of Con-

stantinides assumes a representative individual who can invest in a risk-free asset and a single

risky asset. A priori, the risk-free rate and the expected rate of return and the volatility of the

risky asset are assumed to be constant. The utility of the individual is given by (8.31), where the

habit level is a weighted average of consumption at all previous dates. Constantinides solves for

the optimal consumption and investment strategies of the individual and shows that the optimal

consumption rate varies much less over time in the model with habit formation than with the usual

time-additive specification of utility. A calibration of the model to historical data shows that the

model is consistent with a large equity premium and a low risk aversion but, on the other hand, the

consumption process of the model has an unrealistically high auto-correlation and the variance of

long-term consumption growth is quite high. By construction, the model cannot explain variations

in interest rates and expected returns on stocks.

8.7.2 State-dependent utility: general results

With an external habit/benchmark, e.g. given by the aggregate consumption level, the state-price

deflator is

ζt = e−δt
uc(ct,Xt)

uc(c0,X0)
,

where the only difference to the model without habit is that the marginal utilities depend on the

habit level. An external habit formalizes the idea that the marginal utility of consumption of one

individual is increasing in the consumption level of other individuals (sometimes referred to as the

“keeping up with the Jones’es” effect). In this case, there is no effect of the consumption choice

of the individual on the future benchmark levels, but of course the individual will include her

knowledge of the dynamics of the benchmark when making consumption decisions.
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In a discrete-time setting the one-period deflator is

ζt+1

ζt
= e−δ

uc(ct+1,Xt+1)

uc(ct,Xt)
.

Using the Taylor approximation

uc(ct+1,Xt+1) ≈ uc(ct,Xt) + ucc(ct,Xt)∆ct+1 + ucX(ct,Xt)∆Xt+1,

the approximate relation

Et[Ri,t+1] −Rft ≈
(

−ctucc(ct,Xt)

uc(ct,Xt)

)

Covt

[

Ri,t+1,
∆ct+1

ct

]

− ucX(ct,Xt)

uc(ct,Xt)
Covt [Ri,t+1,∆Xt+1]

(8.34)

can be derived. The covariance of return with the benchmark variable adds a term to the excess

expected return of a risky asset. Moreover, the relative risk aversion in the first term will now

generally vary with the benchmark variable.

In a continuous-time setting where the dynamics of consumption is again given by (8.19) and

the dynamics of the benchmark process X = (Xt) is of the form

dXt = µXt dt+ σ⊤

Xt dzt, (8.35)

an application of Itô’s Lemma will give the dynamics of the state-price deflator. As before, the

risk-free rate and the market price of risk can be identified from the drift and the sensitivity,

respectively, of the state-price deflator. The following theorem states the conclusion. Exercise 8.3

asks for the proof.

Theorem 8.2 In a continuous-time economy where the optimal consumption process of an indi-

vidual with state-dependent expected utility satisfies (8.19) and the dynamics of the benchmark is

given by (8.35), the continuously compounded risk-free short-term interest rate satisfies

rft = δ +
−ctucc(ct,Xt)

uc(ct,Xt)
µct −

1

2

c2tuccc(ct,Xt)

uc(ct,Xt)
‖σct‖2

− ucX(ct,Xt)

uc(ct,Xt)
µXt −

1

2

ucXX(ct,Xt)

uc(ct,Xt)
‖σXt‖2 − ctuccX(ct,Xt)

uc(ct,Xt)
σ⊤

ctσXt

(8.36)

and

λt =
−ctucc(ct,Xt)

uc(ct,Xt)
σct −

ucX(ct,Xt)

uc(ct,Xt)
σXt (8.37)

defines a market price of risk process. In particular, the excess expected rate of return on asset i is

µit + δit − rft =
−ctucc(ct,Xt)

uc(ct,Xt)
σ⊤

itσct −
ucX(ct,Xt)

uc(ct,Xt)
σ⊤

itσXt. (8.38)

Assuming uCX(c,X) > 0, we see from (8.37) that, if σXt goes in the same direction as σct,

state-dependent utility will tend to lower the market price of risk, working against a resolution of

the equity premium puzzle. On the other hand there is much more room for time variation in both

the risk-free rate and the market price of risk, which can help explain the predictability puzzle.

Again, the above results hold for aggregate consumption if a representative individual with

preferences of the given form exists. If σXt = 0, we can link asset prices to aggregate consumption
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without assuming the existence of a representative individual, as in the case of standard preferences.

We obtain

µit + δit − rft =
Ct

∑L
l=1

(
1

Al(clt,Xt)

)σ⊤

itσCt, (8.39)

where Ct is aggregate consumption and Al(clt,Xt) = −ulcc(clt,Xt)/u
l
c(clt,Xt) is the (now state-

dependent) absolute risk aversion of individual l.

8.7.3 The Campbell and Cochrane model

Campbell and Cochrane (1999) suggest a discrete-time model of an economy with identical indi-

viduals with utility functions like (8.31), where Xt is the benchmark or external habit level. The

“next-period deflator” is then

mt+1 ≡ ζt+1

ζt
= e−δ

(ct+1 −Xt+1)
−γ

(ct −Xt)−γ
.

The lognormal distributional assumption for aggregate consumption made in the simple model

seems to be empirically reasonable so the Campbell and Cochrane model keeps that assumption.

Since it is not obvious what distributional assumption on Xt that will make the model computa-

tionally tractable, Campbell and Cochrane define the “surplus consumption ratio” St = (ct−Xt)/ct

in terms of which the “next-period deflator” can be rewritten as

mt+1 = e−δ
(
ct+1

ct

)−γ (
St+1

St

)−γ

= exp

{

−δ − γ ln

(
ct+1

ct

)

− γ ln

(
St+1

St

)}

.

It is assumed that changes in both consumption growth and the surplus consumption ratio are

conditionally lognormally distributed with

ln

(
ct+1

ct

)

= ḡ + νt+1,

ln

(
St+1

St

)

= (1 − ϕ)
(
ln S̄ − lnSt

)
+ Λ(St)νt+1,

where νt+1 ∼ N(0, σ2) and the function Λ is specified below with the purpose of obtaining some

desired properties. With lognormality of ct+1 and St+1, ct+1 −Xt+1 = ct+1St+1 and therefore the

next-period deflator will also be lognormal. Note that lnSt will fluctuate around ln S̄, which may

think of as representing business cycles with low values of lnSt corresponding to bad times with

relatively low consumption. Also note that the consumption and the surplus consumption ratios

are perfectly correlated.

The distributional assumption on the surplus consumption ratio ensures that it stays positive

so that ct > Xt, as required by the utility specification. On the other hand, if you want the

benchmark Xt to stay positive, the surplus consumption ratio must be smaller than 1, which is not

ensured by the lognormal distribution. According to Campbell, Lo, and MacKinlay (1997, p. 331),

it can be shown that

lnXt+1 ≈ ln(1 − S̄) +
g

1 − ϕ
+ (1 − ϕ)

∞∑

j=0

ϕj ln ct+j

so that the benchmark is related to a weighted average of past consumption levels.
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With the above assumptions, the next-period deflator mt+1 is

mt+1 = exp

{

−δ − γ

[

ḡ − (1 − ϕ) ln
St
S̄

]

− γ (1 + Λ(St)) νt+1

}

,

which is conditionally lognormally distributed with

σt[mt+1]

Et[mt+1]
=
√

exp {γ2σ2(1 + Λ(St))2} − 1 ≈ γσ (1 + Λ(St)) .

(Again the approximation is not that accurate for the parameter values necessary to match con-

sumption and return data.) It follows from (4.24) that the expected excess gross return on a risky

asset is

Et[Ri,t+1] −Rft ≈ γσ (1 + Λ(St)) ρt [mt+1, Ri,t+1]σt[Ri,t+1]. (8.40)

The variation in risk aversion through St increases the risk premium relative to the standard model,

cf. (8.28). In order to obtain the counter-cyclical variation in risk premia observed in data, Λ has

to be a decreasing function of S.

The continuously compounded short-term risk-free rate is

lnRft = ln

(
1

Et[mt+1]

)

= δ + γḡ − 1

2
γ2σ2 − γ(1 − ϕ) ln

St
S̄

− 1

2
γ2σ2Λ(St) (Λ(St) + 2) .

In comparison with the expression (8.27) for the risk-free rate in the simple model, the last two

terms on the right-hand side are new. Note that St has opposite effects on the two new terms.

A low value of St means that the marginal utility of consumption is high so that individuals will

try to borrow money for current consumption. This added demand for short-term borrowing will

drive up the equilibrium interest rate. On the other hand, a low St will also increase the risk

aversion and, hence, precautionary savings with a lower equilibrium rate as a result. Campbell

and Cochrane fix Λ(·) and S̄ at

Λ(St) =
1

S̄

√

1 − 2 ln(St/S̄) − 1, S̄ = σ
√

γ/(1 − ϕ)

so that the equilibrium interest rate is given by the constant

lnRf = δ + γḡ − 1

2
σ2
( γ

S̄

)2

.

Note that Λ(·) is decreasing.

The authors calibrate the model to historical data for consumption growth, interest rates, and

the average Sharpe ratio, which for example requires that γ = 2 and S̄ = 0.057. The calibrated

model is consistent with the observed counter-cyclical variation in expected returns, standard

deviations of returns, and the Sharpe ratio. With the given parameter values the model can

therefore explain the predictability in those variables. The calibrated model yields empirically

reasonable levels of the expected return and standard deviation of stock returns but note that,

although the calibrated value of the utility parameter γ is small, the relative risk aversion γ/St

is still high. With St = S̄ = 0.057, the risk aversion is approximately 35, and the risk aversion

is much higher in bad states where St is low. The model can therefore not explain the equity

premium puzzle. Also observe that the value of S̄ implies an average habit level only 5.7% lower

than current consumption, which seems to be an extreme degree of habit formation. Finally, note

that the dynamics of the business cycle variable St is exogenously chosen to obtain the desired

properties of the model. It would be interesting to understand how such a process could arise

endogenously.
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8.7.4 The Chan and Kogan model

In many models for individual consumption and portfolio choice the individual is assumed to

have constant relative risk aversion both because this seems quite reasonable and because this

simplifies the analysis. If all individuals in an economy have constant relative risk aversion, you

might think that a representative individual would also have constant relative risk aversion, but

as pointed out by Chan and Kogan (2002) this is only true if they all have the same level of risk

aversion. Individuals with a low (constant) relative risk aversion will other things equal invest a

larger fraction of their wealth in risky assets, e.g. stocks, than individuals with high (constant)

relative risk aversion. Increasing stock prices will imply that the wealth of the relatively risk

tolerant individuals will grow more than the wealth of comparably more risk averse individuals.

Consequently, the aggregate risk aversion in the economy (corresponding to the risk aversion of a

representative individual) will fall. Conversely, the aggregate risk aversion will increase when stock

markets drop. This simple observation supports the assumption of Campbell and Cochrane (1999)

discussed above that the risk aversion of the representative individual varies counter-cyclically,

which helps in resolving asset pricing puzzles.

Let us take a closer look at the model of Chan and Kogan (2002). It is a continuous-time ex-

change economy in which the aggregate endowment/consumption Y = (Yt) follows the a geometric

Brownian motion

dYt = Yt[µdt+ σ dzt],

where µ > σ2/2, σ > 0, and z = (zt) is a one-dimensional standard Brownian motion. Two

assets are traded: a risky asset which is a unit net supply and pays a continuous dividend equal

to the aggregate endowment, and an instantaneously risk-free asset (a bank account) generating a

continuously compounded short-term interest rate of rft . The economy is populated with infinitely-

lived individuals maximizing time-additive state-dependent utility given by (8.33), i.e.

E

[∫ ∞

0

e−δtu(ct,Xt; γ) dt

]

, u(c,X; γ) =
1

1 − γ

( c

X

)1−γ

.

Here X is an external benchmark, e.g. an index of the standard of living in the economy. Let

xt = lnXt and yt = lnYt. The dynamics of the benchmark is modeled through

xt = e−κtx0 + κ

∫ t

0

e−κ(t−s)ys ds

so that

dxt = κ (yt − xt) dt.

The log-benchmark is a weighted average of past log-consumption. The relative log-consumption

variable ωt = yt − xt will be representative of the state of the economy. A high [low] value of ωt

represents a good [bad] state in terms of aggregate consumption relative to the benchmark. Note

that

dωt = dyt − dxt = κ (ω̄ − ωt) dt+ σ dzt,

where ω̄ = (µ− σ2/2)/κ.

Individuals are assumed to differ with respect to their relative risk aversion γ but to have

identical subjective time preference parameters δ. Since the market is complete, an equilibrium

in the economy will be Pareto-optimal and identical to the solution of the problem of a central
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planner or representative individual. Let f(γ) denote the weight of the individuals with relative

risk aversion γ in this problem, where we normalize so that
∫∞

1
f(γ) = 1. The problem of the

central planner is to solve

sup
{ct(Yt,Xt;γ);γ>1,t≥0}

E

[
∫ ∞

0

e−δt

(
∫ ∞

1

f(γ)
1

1 − γ

(
ct(Yt,Xt; γ)

Xt

)1−γ

dγ

)

dt

]

s.t.

∫ ∞

1

ct(Yt,Xt; γ) dγ ≤ Yt, t ≥ 0.

In an exchange economy no intertemporal transfer of resources are possible at the aggregate level

so the optimal value of the central planner’s objective function will be E[
∫∞

0
e−δtU(Yt,Xt) dt],

where

U(Yt,Xt) = sup
{ct(Yt,Xt;γ);γ>1}

{
∫ ∞

1

f(γ)
1

1 − γ

(
ct(Yt,Xt; γ)

Xt

)1−γ

dγ
∣
∣
∣

∫ ∞

1

ct(Yt,Xt; γ) dγ ≤ Yt

}

.

(8.41)

The solution to this problem is characterized in the following theorem, which is the key to the

asset pricing results in this model.

Theorem 8.3 The optimal consumption allocation in the problem (8.41) is

ct(Yt,Xt; γ) = αt(ωt; γ)Yt, αt(ωt; γ) = f(γ)1/γe−
1
γ h(ωt)−ωt , (8.42)

where the function h is implicitly defined by the identity
∫ ∞

1

f(γ)1/γe−
1
γ h(ωt)−ωt dγ = 1. (8.43)

The utility function of the representative individual is

U(Yt,Xt) =

∫ ∞

1

1

1 − γ
f(γ)1/γe−

1−γ
γ h(ωt) dγ. (8.44)

Proof: If we divide the constraint in (8.41) through by Xt and introduce the aggregate consump-

tion share αt(Yt,Xt; γ) = ct(Yt,Xt; γ)/Yt, the Lagrangian for the optimization problem is

Lt =

∫ ∞

1

f(γ)
1

1 − γ

(

αt(Yt,Xt; γ)
Yt
Xt

)1−γ

dγ +Ht

(
Yt
Xt

−
∫ ∞

1

αt(Yt,Xt; γ)
Yt
Xt

dγ

)

=
Yt
Xt

∫ ∞

1

[

f(γ)
1

1 − γ
αt(Yt,Xt; γ)

1−γ

(
Yt
Xt

)−γ

−Htαt(Yt,Xt; γ)

]

dγ +Ht
Yt
Xt
,

where Ht is the Lagrange multiplier. The first-order condition for αt implies that

αt(Yt,Xt; γ) = H
−1/γ
t f(γ)1/γ

(
Yt
Xt

)−1

= f(γ)1/γe−
1
γ ht−ωt ,

where ht = lnHt. The consumption allocated to all individuals must add up to the aggregate

consumption, which implies the condition (8.43). From the condition, it is clear that ht and

therefore αt depends on ωt but not separately on Yt and Xt.

The maximum of the objective function is

U(Yt,Xt) =

∫ ∞

1

f(γ)
1

1 − γ

(

αt(Yt,Xt; γ)
Yt
Xt

)1−γ

dγ

=

∫ ∞

1

f(γ)
1

1 − γ
f(γ)(1−γ)/γe−

1−γ
γ h(ωt)−(1−γ)ωte(1−γ)ωt dγ

=

∫ ∞

1

1

1 − γ
f(γ)1/γe−

1−γ
γ h(ωt) dγ,
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which ends the proof. 2

The optimal allocation of consumption to a given individual is a fraction of aggregate endowment,

a fraction depending on the state of the economy and the relative risk aversion of the individual.

The next lemma summarizes some properties of the function h which will be useful in the

following discussion.

Lemma 8.1 The function h defined in (8.43) is decreasing and convex with

h′(ω) = −
(∫ ∞

1

1

γ
f(γ)1/γe−

1
γ h(ω)−ω dγ

)−1

< −1. (8.45)

Proof: Differentiating with respect to ωt in (8.43), we get

∫ ∞

1

f(γ)1/γe−
1
γ h(ωt)−ωt

(

− 1

γ
h′(ωt) − 1

)

dγ = 0,

which implies that

h′(ωt)

∫ ∞

1

1

γ
f(γ)1/γe−

1
γ h(ωt)−ωt dγ = −

∫ ∞

1

f(γ)1/γe−
1
γ h(ωt)−ωt dγ = −1,

from which the expression for h′(ωt) follows. Since we are integrating over γ ≥ 1,

∫ ∞

1

1

γ
f(γ)1/γe−

1
γ h(ωt)−ωt dγ <

∫ ∞

1

f(γ)1/γe−
1
γ h(ωt)−ωt dγ = 1,

which gives the upper bound on h′(ωt).

Convexity means h′′(ωt) ≥ 0 and by differentiating (8.45) we see that this is true if and only if

−h′(ω)

∫ ∞

1

1

γ2
f(γ)1/γe−

1
γ h(ω)−ω dγ ≥

∫ ∞

1

1

γ
f(γ)1/γe−

1
γ h(ω)−ω dγ,

i.e. if and only if

∫ ∞

1

1

γ2
f(γ)1/γe−

1
γ h(ω)−ω dγ ≥

(∫ ∞

1

1

γ
f(γ)1/γe−

1
γ h(ω)−ω dγ

)2

.

In order to show this we apply the Cauchy-Schwartz inequality for integrals,

(
∫ b

a

F (x)G(x) dx

)2

≤
(
∫ b

a

F (x)2 dx

)(
∫ b

a

G(x)2 dx

)

,

with x = γ, a = 1, b = ∞, and

F (x) =
1

γ

(

f(γ)1/γe−
1
γ h(ω)−ω

)1/2

, G(x) =
(

f(γ)1/γe−
1
γ h(ω)−ω

)1/2

.

By the Cauchy-Schwartz inequality and (8.43), we get exactly

(∫ ∞

1

1

γ
f(γ)1/γe−

1
γ h(ω)−ω dγ

)2

≤
(∫ ∞

1

1

γ2
f(γ)1/γe−

1
γ h(ω)−ω dγ

)(∫ ∞

1

f(γ)1/γe−
1
γ h(ω)−ω dγ

)

=

∫ ∞

1

1

γ2
f(γ)1/γe−

1
γ h(ω)−ω dγ



8.7 CCAPM with alternative preferences 181

as was to be shown. 2

Using (8.43) and (8.45), straightforward differentiation of the utility function (8.44) gives that

UY (Yt,Xt) = X−1
t eh(ωt), (8.46)

UY Y (Yt,Xt) = h′(ωt)Y
−1
t UY (Yt,Xt). (8.47)

The relative risk aversion of the representative individual is therefore

−YtUY Y (Yt,Xt)

UY (Yt,Xt)
= −h′(ωt). (8.48)

It follows from Lemma 8.1 that this relative risk aversion is greater than 1 and decreasing in the

state variable ωt. The intuition is that the individuals with low relative risk aversion will other

things equal invest more in the risky asset—and their wealth will therefore fluctuate more—than

individuals with high relative risk aversion. In good states a larger fraction of the aggregate

resources will be held by individuals with low risk aversion than in bad states. The relative risk

aversion of the representative individual, which is some sort of wealth-weighted average of the

individual risk aversions, will therefore be lower in good states than in bad states. Aggregate

relative risk aversion is counter-cyclical.

We can obtain the equilibrium risk-free rate and the market price of risk from Theorem 8.2. In

the present model the dynamics of Xt = ext will be

dXt = κXt (yt − xt) dt = κXtωt dt, (8.49)

which is locally insensitive to shocks corresponding to σXt = 0. This will simplify the formulas

for the risk-free rate and the Sharpe ratio. Moreover,

UY X(Yt,Xt) = −X−1
t (1 + h′(ωt))UY (Yt,Xt), (8.50)

Y 2
t UY Y Y (Yt,Xt) =

(
h′′(ωt) + h′(ωt)

2 − h′(ωt)
)
UY (Yt,Xt). (8.51)

We arrive at the following conclusion:

Theorem 8.4 In the Chan and Kogan model the risk-free short-term interest rate is

rft = δ − h′(ωt)κ(ω̄ − ωt) + κωt −
1

2
σ2
(
h′′(ωt) + h′(ωt)

2
)
. (8.52)

and the Sharpe ratio of a risky asset is

µt + δt − rft
σt

= −h′(ωt)σ, (8.53)

which is decreasing in the state variable ωt.

In Exercise 8.4 you are asked to provide the details. In Exercise 8.5 you are asked to show how (8.53)

follows from (8.39).

The Sharpe ratio in the model varies counter-cyclically. In good states of the economy the

average relative risk aversion is relatively low and the risk premium necessary for markets clear is

therefore also low. Conversely in bad states where the average relative risk aversion is high.
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8.7.5 Durable goods

See Lustig and van Nieuwerburgh (2005), Piazzesi, Schneider, and Tuzel (2006), Yogo (2006). See

Exercise 8.10.

8.8 Consumption-based asset pricing with incomplete mar-

kets

8.8.1 Evidence of incomplete markets

Some empirical asset pricing studies indicate that markets are incomplete so that a representative

individual may be non-existing. The marginal rate of substitution of each individual defines a

state-price deflator. It follows from Theorem 4.3 that a weighted average of state-price deflators

is also a state-price deflator. Brav, Constantinides, and Geczy (2002) assume that all individuals

have time-additive CRRA utility with the same time preference rate δ and the same relative risk

aversion γ so that the state-price deflator for individual l is e−δt (clt/cl0)
−γ

. An equally-weighted

average over L individuals gives the state-price deflator

ζt = e−δt
1

L

L∑

l=1

(
clt
cl0

)−γ

.

Using data on the consumption of individual households, the authors find that this state-price

deflator is consistent with the historical excess returns on the U.S. stock market for a risk aversion

parameter as low as 3. If the market were complete, consumption growth clt/cl0 would be the

same for all individuals under these assumptions, and

ζt = e−δt

(∑L
l=1 clt

∑L
l=1 cl0

)−γ

(8.54)

would be a valid state-price deflator. Summing up over all individuals in this formula, we get

the state-price deflator for a representative individual, who will also have relative risk aversion

equal to γ, but this is inconsistent with data except for unreasonably high values of γ. This study

therefore indicates that financial markets are incomplete and do not allow individuals to align their

marginal rates of substitution.

For various reasons, a large, but declining, fraction of individuals do not invest in stock markets

at all or only to a very limited extent. Brav, Constantinides, and Geczy (2002) show that if in

Equation (8.54) you only sum up over individuals holding financial assets with a value higher

than some threshold, this state-price deflator is consistent with historical data for a relative risk

aversion which is relatively high, but much lower than the required risk aversion using aggregate

consumption. The higher the threshold, the lower the required risk aversion. This result reflects

that only the individuals active in the financial markets contribute to the setting of prices. Other

empirical studies report similar findings, and Başak and Cuoco (1998) set up a formal asset pricing

model that explicitly distinguishes between individuals owning stocks and individuals not owning

stocks.
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8.8.2 Labor income risk

The labor income of individuals is not fully insurable, neither through investments in financial

assets nor through existing insurance contracts. A number of papers investigate how non-hedgeable

income shocks may affect the pricing of financial assets. If unexpected changes in labor income are

temporary, individuals may self-insure by building up a buffer of savings in order to even out the

consumption effects of the income shocks over the entire life. The effects on equilibrium asset prices

will be insignificant, cf. Telmer (1993). If income shocks are to help resolve the equity premium

puzzle, the shocks have to affect income beyond the current period. In addition, the magnitude of

the income shocks has to be negatively related to the level of stock prices. Both the persistency of

income shocks and the counter-cyclical variation in income seem reasonable in light of the risk of

lay-offs and find empirical support, cf. Storesletten, Telmer, and Yaron (2004). Individuals facing

such an income uncertainty will demand higher risk premia on stocks than in a model without labor

income because stocks do badly exactly when individuals face the highest risk of an unexpected

decline in income.

In a model where all individuals have time-additive CRRA utility, Constantinides and Duffie

(1996) show by construction that if the income processes of different individuals are sufficiently

different in a certain sense then their model with any given risk aversion can generate basically any

pattern in aggregate consumption and financial prices, including the puzzling historical pattern.

However, Cochrane (2001, Ch. 21) argues that with a realistic degree of cross-sectional variation

in individual labor income, a relatively high value of the risk aversion parameter is still needed

to match historical data. Nevertheless, it seems to be important to incorporate the labor income

uncertainty of individuals and in particular the difference between the labor income processes of

different individuals in the development of better asset pricing models.

Constantinides, Donaldson, and Mehra (2002) emphasize that individuals choose consumption

and investment from a life-cycle perspective and face different opportunities and risks at different

ages. They divide individuals into young, middle-aged, and old individuals. Old individuals only

consume the savings they have build up earlier, do not receive further income and do not invest in

financial assets. Young individuals typically have a low financial wealth and a low current labor

income but a high human capital (the present value of their future labor income). Many young

individuals would prefer borrowing significant amounts both in order to smooth out consumption

over life and to be able to invest in the stock market to generate additional consumption oppor-

tunities and obtain the optimal risk/return trade-off. The empirically observed low correlation

between labor income and stock returns makes stock investments even more attractive for young

individuals. Unfortunately it is difficult to borrow significant amounts just because you expect to

get high future income and, therefore, the young individuals can only invest very little, if anything,

in the stock market. Middle-aged individuals face a different situation. Their future labor income is

limited and relatively certain. Their future consumption opportunities are primarily depending on

the return on their investments. For middle-aged individuals the correlation between stock returns

and future consumption is thus quite high so stocks are not as attractive for them. Nevertheless,

due to the borrowing constraints on the young individuals, the stocks have to be owned by the

middle-aged individuals and, hence, the equilibrium expected rate of return has to be quite high.

The authors set up a relatively simple model formalizing these thoughts, and the model is able
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to explain an equity premium significantly higher than in the standard model, but still below the

historically observed premium.

8.9 Concluding remarks

This chapter has developed consumption-based models of asset pricing. Under very weak assump-

tions, expected excess returns on risky asset will be closely related to the covariance of the asset

return with aggregate consumption, giving a conditional consumption-based CAPM. The simple

version of the model is unable to match a number of features of consumption and return data,

which leads to several asset pricing puzzles. However, a number of relatively recent theoretical

and empirical studies identify extensions of the simple model that are able to eliminate (or at least

reduce the magnitude of) several of these puzzles. These extensions include state-dependent pref-

erences, heterogenous risk aversion, and labor income risk. The consumption-based asset pricing

framework is alive and kicking. A potential problem of the tests and practical implementation of

such models, however, is the need for good data on individual or aggregate consumption. The next

chapter discusses asset pricing models not relying on consumption data.

8.10 Exercises

EXERCISE 8.1 Carl Smart is currently (at time t = 0) considering a couple of investment

projects that will provide him with a dividend in one year from now (time t = 1) and a dividend

in two years from now (time t = 2). He figures that the size of the dividends will depend on

the growth rate of aggregate consumption over these two years. The first project Carl considers

provides a dividend of

Dt = 60t+ 5(Ct − E[Ct])

at t = 1 and at t = 2. The second project provides a dividend of

Dt = 60t− 5(Ct − E[Ct])

at t = 1 and at t = 2. Here E[ ] is the expectation computed at time 0 and Ct denotes aggregate

consumption at time t. The current level of aggregate consumption is C0 = 1000.

As a valuable input to his investment decision Carl wants to compute the present value of the

future dividends of each of the two projects.

First, Carl computes the present values of the two projects using a “risk-ignoring approach”, i.e.

by discounting the expected dividends using the riskless returns observed in the bond markets.

Carl observes that a one-year zero-coupon bond with a face value of 1000 currently trades at a

price of 960 and a two-year zero-coupon bond with a face value of 1000 trades at a price of 929.02.

(a) What are the expected dividends of project 1 and project 2?

(b) What are the present values of project 1 and project 2 using the risk-ignoring approach?

Suddenly, Carl remembers that he once took a great course on advanced asset pricing and that the

present value of an uncertain dividend of D1 at time 1 and an uncertain dividend of D2 at time 2



8.10 Exercises 185

should be computed as

P = E

[
ζ1
ζ0
D1 +

ζ2
ζ0
D2

]

,

where the ζt’s define a state-price deflator. After some reflection and analysis, Carl decides to

value the projects using a conditional Consumption-based CAPM so that the state-price deflator

between time t and t+ 1 is of the form

ζt+1

ζt
= at + bt

Ct+1

Ct
, t = 0, 1, . . . .

Carl thinks it’s fair to assume that aggregate consumption will grow by either 1% (“low”) or 3%

(“high”) in each of the next two years. Over the first year he believes the two growth rates are

equally likely. If the growth rate of aggregate consumption is high in the first year, he believes

that there is a 30% chance that it will also be high in the second year and, thus, a 70% chance of

low growth in the second year. On the other hand, if the growth rate of aggregate consumption

is low in the first year, he estimates that there will be a 70% chance of high growth and a 30%

chance of low growth in the second year.

In order to apply the Consumption-based CAPM for valuing his investment projects, Carl has to

identify the coefficients at and bt for t = 0, 1. The values of a0 and b0 can be identified from the

prices of two traded assets that only provide dividends at time 1. In addition to the one-year

zero-coupon bond mentioned above, a one-year European call option on aggregate consumption is

traded. The option has a strike price of K = 1020 so that the payoff of the option in one year is

max(C1 − 1020, 0), where C1 is the aggregate consumption level at t = 1. The option trades at a

price of 4.7.

(c) Using the information on the two traded assets, write up two equations that can be used for

determining a0 and b0. Verify that the equations are solved for a0 = 3 and b0 = −2.

The values of a1 and b1 may depend on the consumption growth rate of the first year, i.e. Carl

has to find ah1 , b
h
1 that defines the second-year state-price deflator if the first-year growth rate was

high and al1, b
l
1 that defines the second-year state-price deflator if the first-year growth rate was

low. Using the observed market prices of other assets, Carl concludes that

ah1 = 2.5, bh1 = −1.5, al1 = 3.5198, bl1 = −2.5.

(d) Verify that the economy is path-independent in the sense that the current price of an asset

that will pay you 1 at t = 2 if the growth rate is high in the first year and low in the second

year will be identical (at least to five decimal places) to the current price of an asset that will

pay you 1 at t = 2 if the growth rate is low in the first year and high in the second year.

(e) Illustrate the possible dividends of the two projects in a two-period binomial tree.

(f) What are the correctly computed present values of the two projects?

(g) Carl notes that the expected dividends of the two projects are exactly the same but the

present value of project 2 is higher than the present value of project 1. Although Carl is

pretty smart, he cannot really figure out why this is so. Can you explain it to him?
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EXERCISE 8.2 In the simple consumption-based asset pricing model, the growth rate of aggre-

gate consumption is assumed to have a constant expectation and standard deviation (volatility).

For example, in the continuous-time version aggregate consumption is assumed to follow a geo-

metric Brownian motion. Consider the following alternative process for aggregate consumption:

dct = ct[µdt+ σcα−1
t dzt],

where µ, σ, and α are positive constants, and z = (zt) is a standard Brownian motion. As in the

simple model, assume that a representative individual exists and that this individual has time-

additive expected utility exhibiting constant relative risk aversion given by the parameter γ > 0

and a constant time preference rate δ > 0.

(a) State an equation linking the expected excess return on an arbitrary risky asset to the level

of aggregate consumption and the parameters of the aggregate consumption process. How

does the expected excess return vary with the consumption level?

(b) State an equation linking the short-term continuously compounded risk-free interest rate

rft to the level of aggregate consumption and the parameters of the aggregate consumption

process. How does the interest rate vary with the consumption level?

(c) Use Itô’s Lemma to find the dynamics of the interest rate, drft ? Can you write the drift and

the volatility of the interest rate as functions of the interest rate level only?

EXERCISE 8.3 Give a proof of Theorem 8.2.

EXERCISE 8.4 Consider the Chan and Kogan model. Show the expressions in (8.46), (8.47),

(8.49), (8.50), and (8.51). Show Theorem 8.4.

EXERCISE 8.5 In the Chan and Kogan model, show how (8.53) follows from (8.39).

EXERCISE 8.6 Consider a continuous-time economy with complete markets and a represen-

tative individual having an “external habit” or “keeping up with the Jones’es” utility function

so that, at any time t, the individual maximizes Et

[∫ T

t
e−δ(s−t)u(cs,Xs) ds

]

, where u(c,X) =
1

1−γ (c−X)1−γ for c > X ≥ 0.

Define Yt = − ln
(

1 − Xt

ct

)

.

(a) Argue that Yt is positive. Would you call a situation where Yt is high for a “good state” or

a “bad state”? Explain!

(b) Argue that the unique state-price deflator is given by

ζt = e−δt
c−γt eγYt

c−γ0 eγY0
.
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First, write the dynamics of consumption and the variable Yt in the general way:

dct = ct[µct dt+ σ⊤

ct dzt],

dYt = µY t dt+ σ⊤

Y t dzt,

where z = (zt) is a multi-dimensional standard Brownian motion.

(c) Use Itô’s Lemma to find the dynamics of the benchmark Xt. State the drift and sensitivity

in terms of ct and Xt (no Yt, please).

(d) Use Itô’s Lemma to find the dynamics of the state-price deflator and identify the continuously

compounded short-term risk-free interest rate rft and the market price of risk λt.

An asset i pays an uncertain terminal dividend but no intermediate dividends. The price dynamics

is of the form

dPit = Pit [µit dt+ σ⊤

it dzt] .

(e) Explain why

µit − rft = βictηct + βiY tηY t,

where βict = (σ⊤

itσct)/‖σct‖2 and βiY t = (σ⊤

itσY t)/‖σY t‖2. Express ηct and ηY t in terms of

previously introduced parameters and variables.

Next, consider the specific model:

dct = ct[µc dt+ σc dz1t],

dYt = κ[Ȳ − Yt] dt+ σY
√

Yt

(

ρ dz1t +
√

1 − ρ2 dz2t

)

,

where (z1, z2)
⊤ is a two-dimensional standard Brownian motion, µc, σc, κ, Ȳ , and σY are positive

constants, and ρ ∈ (−1, 1).

(f) What is the short-term risk-free interest rate and the market price of risk in the specific

model?

Assume that the price dynamics of asset i is

dPit = Pit

[

µit dt+ σit

(

ψ dz1t +
√

1 − ψ2 dz2t

)]

,

where σit > 0 and ψ ∈ (−1, 1).

(g) What is the Sharpe ratio of asset i in the specific model? Can the specific model gener-

ate counter-cyclical variation in Sharpe ratios (if necessary, provide parameter conditions

ensuring this)?

EXERCISE 8.7 Consider the set-up of Exercise 6.10 with u(c, h) = 1
1−γ (c− h)1−γ .

(a) Can optimal consumption follow a geometric Brownian motion under these assumptions?
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(b) Assume that the excess consumption rate ĉt = ct− ht follows a geometric Brownian motion.

Show that the state-price deflator will be of the form ζt = f(t)e−δtĉ−γt for some deterministic

function f(t) (and find that function). Find an expression for the equilibrium interest rate

and the market price of risk. Compare with the “simple model” with no habit, CRRA utility,

and consumption following a geometric Brownian motion.

EXERCISE 8.8 (This problem is based on the working paper Menzly, Santos, and Veronesi

(2002).) Consider an economy with a representative agent with life-time utility given by

U(C) = E

[∫ ∞

0

e−ϕt ln(Ct −Xt) dt

]

,

where Xt is an external habit level and ϕ is a subjective discount rate. As in Campbell and

Cochrane (1999) define the surplus ratio as St = (Ct − Xt)/Ct. Define Yt = 1/St. Aggregate

consumption Ct is assumed to follow a geometric Brownian motion

dCt = Ct [µC dt+ σC dzt] ,

where µC and σC are constants and z is a one-dimensional standard Brownian motion. The

dynamics of the habit level is modeled through

dYt = k[Ȳ − Yt] dt− α(Yt − κ)σC dzt,

where k, Ȳ , α, and κ are constants.

(a) Show that Et[Yτ ] = Ȳ + (Yt − Ȳ )e−k(τ−t).

(b) For any given dividend process D = (Dt) in this economy, argue that the price is given by

PDt = (Ct −Xt) Et

[∫ ∞

t

e−ϕ(τ−t) Dτ

Cτ −Xτ
dτ

]

.

Let sDτ = Dτ/Cτ denote the dividend’s share of aggregate consumption. Show that the price

PDt satisfies

PDt
Ct

=
1

Yt
Et

[∫ ∞

t

e−ϕ(τ−t)sDτ Yτ dτ

]

.

(c) Show that the price PCt of a claim to the aggregate consumption stream Dτ = Cτ is given

by

PCt
Ct

=
1

ϕ+ k

(

1 +
kȲ

ϕ
St

)

.

(d) Find the dynamics of the state-price deflator. Find and interpret expressions for the risk-free

interest rate and the market price of risk in this economy.
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EXERCISE 8.9 Consider a continuous-time model of an economy with a representative agent

and a single non-durable good. The objective of the agent at any time t is to maximize the expected

time-additive CRRA utility,

Et

[∫ ∞

t

e−δ(s−t)
C1−γ
s

1 − γ
ds

]

,

where γ > 0 and Cs denotes the consumption rate at time s. The agent can invest in a bank

account, i.e. borrow and lend at a short-term interest rate of rt. The bank account is in zero net

supply. A single stock with a net supply of one share is available for trade. The agent is initially

endowed with this share. The stock pays a continuous dividend at the rate Dt. The agent receives

an exogenously given labor income at the rate It.

(a) Explain why the equilibrium consumption rate must equal the sum of the dividend rate and

the labor income rate, i.e. Ct = It +Dt.

Let Ft denote the dividend-consumption ratio, i.e. Ft = Dt/Ct. Assume that Ft = exp{−Xt},
where X = (Xt) is the diffusion process

dXt = (µ− κXt) dt− η
√

Xt dz1t.

Here µ, κ, and η are positive constants and z1 = (z1t) is a standard Brownian motion.

(b) Explain why Ft is always between zero and one.

Assume that the aggregate consumption process is given by the dynamics

dCt = Ct

[

αdt+ σ
√

Xtρ dz1t + σ
√

Xt

√

1 − ρ2 dz2t

]

,

where α, σ, and ρ are constants and z2 = (z2t) is another standard Brownian motion, independent

of z1.

(c) What is the equilibrium short-term interest rate in this economy?

(d) Use Itô’s Lemma to derive the dynamics of Ft and of Dt.

(e) Show that the volatility of the dividend rate is greater than the volatility of the consumption

rate if ηρ > 0.

Let Pt denote the price of the stock, i.e. the present value of all the future dividends.

(f) Show that the stock price can be written as

Pt = Cγt Et

[∫ ∞

t

e−δ(s−t)C1−γ
s Fs ds

]

.

It can be shown that Pt can be written as a function of t, Ct, and Ft:

Pt = Ct

∫ ∞

t

e−δ(s−t)A(t, s)F
−B(t,s)
t ds.

Here A(t, s) and B(t, s) are some deterministic functions of time that we will leave unspecified.
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(g) Use Itô’s Lemma to show that

dPt = Pt

[

. . . dt+ (ρσ + ηHt)
√

Xt dz1t + σ
√

1 − ρ2
√

Xt dz2t

]

,

where the drift term is left out (you do not have to compute the drift term!) and where

Ht =
−
∫∞

t
e−δ(s−t)A(t, s)B(t, s)F

−B(t,s)
t ds

∫∞

t
e−δ(s−t)A(t, s)F

−B(t,s)
t ds

.

(h) Show that the expected excess rate of return on the stock at time t can be written as

ψt = γXt

(
σ2 + σρηHt

)

and as

ψt = γσ2
Ct + γρHtσCtσFt,

where σCt and σFt denote the percentage volatility of Ct and Ft, respectively.

(i) What would the expected excess rate of return on the stock be if the dividend-consumption

ratio was deterministic? Explain why the model with stochastic dividend-consumption ratio

has the potential to resolve (at least partially) the equity premium puzzle.

EXERCISE 8.10 Consider a discrete-time representative individual economy with preferences

E[
∑∞
t=0 β

tu(Ct,D
∗
t )], where Ct is the consumption of perishable goods and D∗

t is the consumption

of services from durable goods. Assume a Cobb-Douglas type utility function,

u(C,D∗) =
1

1 − γ

(
Cα(D∗)1−α

)1−γ

where γ > 0 and α ∈ [0, 1].

(a) Write up the one-period state-price deflator discount factor Mt+1 ≡ ζt+1

ζt
= β

uC(Ct+1,D
∗

t+1)

uC(Ct,D∗

t )

in this economy.

Assume that the services from the the durable goods are given by D∗
t = θ(Kt−1 +Dt), where Kt−1

is the stock of the durable entering period t and Dt is the additional purchases of the durable good

in period t. We can interpret θ as a depreciation rate or as the intensity of usage of the durable.

We must have Kt = (1 − θ)(Kt−1 +Dt).

(b) Argue that if one additional unit of the durable is purchased in period t, then the additional

services from the durable in period t+ j will be θ(1 − θ)j .

(c) What is the marginal (life-time expected) utility, MUD
t , from purchasing an extra unit of the

durable in period t?

(d) If pt is the unit price of the durable good, argue that MUD
t = ptαC

α(1−γ)−1
t (D∗

t )
(1−α)(1−γ)

in equilibrium.
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Now we allow for a stochastic intensity of usage, i.e. θ = (θt) is a stochastic process. Define

Xt = (Kt−1 +Dt)/Kt−1, xt = lnXt, ct = lnCt, and mt = lnMt.

(e) Show that mt+1 = lnβ+(α(1−γ)−1)∆ct+1 +(1−α)(1−γ) [∆(ln θt+1) + xt+1 + ln(1 − θt)].

Assume now that

∆ct+1 = g + εt+1, εt+1 ∼ N(0, σ2
ε),

ln θt+1 = h+ ϕ ln θt + νt+1, νt+1 ∼ N(0, σ2
ν),

xt+1 = (1 − w − ϕ) ln θt − ln(1 − θt) − h+ aνt+1,

and that the two exogenous shocks εt+1 and νt+1 have correlation ρ.

(f) Derive the continuously compounded equilibrium short interest rate rft = lnRft . You should

find that the interest rate is constant if w = 0.

EXERCISE 8.11 Consider a continuous-time economy with a representative agent with time-

additive subsistence HARA utility, i.e. the objective of the agent is to maximize

E

[
∫ T

0

e−δt
1

1 − γ
(ct − c̄)

1−γ
dt

]

,

where c̄ ≥ 0 is the subsistence consumption level. Assume that aggregate consumption c = (ct)

evolves as

dct = µct dt+ σ
√

ct(ct − c̄) dzt,

where z = (zt) is a (one-dimensional) standard Brownian motion. Find the equilibrium short-

term interest rate rft and the market price of risk λt, expressed in terms of ct and the parameters

introduced above. How do rft and λt depend on the consumption level? Are rft and λt higher or

lower or unchanged relative to the standard case in which c̄ = 0?
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Factor models

9.1 Introduction

The lack of reliable consumption data discussed in Section 8.6 complicates tests and applications

of the consumption-based models. As mentioned above, most tests that have been carried out

find it problematic to match the (simple) consumption-based model and historical return and

consumption data (of poor quality). This motivates a search for models linking returns to other

factors than consumption.

The classical CAPM is the Mother of all factor models. It links expected excess returns (on

stocks) to the return on the market portfolio (of stocks). It was originally developed in a one-

period framework but can be generalized to multi-period settings. The model is based on rather

unrealistic assumptions and the empirical success of the CAPM is modest.

Many, many papers have tried to identify factor models that perform better, mostly by adding

extra factors. However, this should only be done with extreme care. In a given data set of historical

returns it is always possible to find a return that works as a pricing factor, as already indicated in

Chapter 4. In fact, any ex-post mean-variance efficient return will work. On the other hand, there

is generally no reason to believe that the same return will work as a pricing factor in the future.

Factors should be justified by economic arguments or even a theoretical asset pricing model.

It is worth emphasizing that the general theoretical results of the consumption-based asset

pricing framework are not challenged by factor models. The problem with the consumption-based

models is the implementation. Factor models do not invalidate the consumption-based asset pricing

framework but are special cases that may be easier to apply and test. Therefore factors should

generally help explain typical individuals’ marginal utilities of consumption.

Section 9.2 reviews the classical one-period CAPM and how it fits into the modern consumption-

based asset pricing framework. Section 9.3 defines and studies pricing factors in the one-period

setting. In particular, pricing factors are linked to state-price deflators. The relation between

mean-variance efficient returns and pricing factors is the topic of Section 9.4. Multi-period pricing

factors are introduced in Section 9.5 with a discussion of the distinction between conditional and

unconditional pricing factors. Section 9.6 offers a brief introduction to empirical studies of factor

models. Finally, Section 9.7 discusses how pricing factors can be derived theoretically. It also

derives an intertemporal version of the CAPM.

193
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9.2 The classical one-period CAPM

The classical CAPM developed by Sharpe (1964), Lintner (1965), and Mossin (1966) says that

return on the market portfolio is a pricing factor so that

E[Ri] = α+ β[Ri, RM ] (E[RM ] − α) , i = 1, 2, . . . , I, (9.1)

for some zero-beta return α, which is identical to the risk-free rate if such exists. Here the market-

beta is defined as β[Ri, RM ] = Cov[Ri, RM ]/Var[RM ].

The classical CAPM is usually derived from mean-variance analysis. If all individuals have

quadratic utility or returns are normally distributed, any individual will optimally pick a mean-

variance efficient portfolio. If Rl denotes the return on the portfolio chosen by individual l

and wl denotes individual l’s share of total wealth, the return on the market portfolio will be

RM =
∑L
l=1 wlRl and the market portfolio will be mean-variance efficient. As was already stated

in Theorem 4.6 (demonstrated later in this chapter), the return on any mean-variance efficient

portfolio will satisfy an equation like (9.1). In particular, this is true for the market portfolio when

it is efficient.

To see how the classical CAPM fits into the consumption-based asset pricing framework, consider

a model in which all individuals have time-additive expected utility and are endowed with some

time 0 wealth but receive no time 1 income from non-financial sources. Let us consider an arbitrary

individual with initial wealth endowment e0. If the individual consumes c0 at time 0 she will invest

e0 − c0 in the financial assets. Representing the investment by the portfolio weight vector π, the

gross return on the portfolio will be Rπ = π ·R =
∑I
i=1 πiRi. The time 1 consumption will equal

the total dividend of the portfolio, which is the gross return multiplied by the initial investment,

i.e.

c = Rπ(e0 − c0).

We can substitute this into the marginal rate of substitution of the individual so that the associated

state-price deflator becomes

ζ = e−δ
u′(c)

u′(c0)
= e−δ

u′ (Rπ(e0 − c0))

u′(c0)
. (9.2)

If the economy has a representative individual, she has to own all the assets, i.e. she has to invest

in the market portfolio. We can then replace Rπ by RM , the gross return on the market portfolio.

We can obtain the classical CAPM from this relation if we either assume that the utility function

is quadratic or that the return on the market portfolio is normally distributed.

Quadratic utility. The quadratic utility function u(c) = −(c̄ − c)2 is a special case of the

satiation HARA utility functions. Marginal utility u′(c) = 2(c̄ − c) is positive for c < c̄ so that

consumption in excess of c̄ will decrease utility. Another problem is that the absolute risk aversion

ARA(c) = 1/(c̄ − c) is increasing in the level of consumption. For quadratic utility, Eq. (9.2)

becomes

ζ = e−δ
c̄−Rπ(e0 − c0)

c̄− c0
= e−δ

c̄

c̄− c0
− e−δ

e0 − c0
c̄− c0

Rπ, (9.3)

which is affine in the portfolio return. It now follows from the discussion in Section 4.5.2 (also see

later section in the present chapter) that the portfolio return is a pricing factor so that

E[Ri] = α+ β[Ri, R
π] (E[Rπ] − α) .
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Again, if this applies to a representative individual, we can replace Rπ by the market portfolio

return RM and we have the classical CAPM.

For the quadratic utility function the absolute risk tolerance is ART(c) = −c+c̄. If all individuals

have quadratic utility functions (possibly with different c̄’s) and we assume that a risk-free asset

is traded and all time 1 endowments are spanned by traded assets, Theorem 7.6 implies that the

optimal consumption of any individual is affine in the aggregate endowment and therefore it can be

implemented by investing in a portfolio of the risk-free asset and the market portfolio of all assets.

The return on the portfolio will be a weighted average of the risk-free return and the market return,

Rπ = wfR
f + (1 − wf )RM , and substituting this into (9.3) we see that the state-price deflator

associated with any given individual will be affine in RM . Again, Theorem 9.3 will then give us

the classical CAPM.

Normally distributed returns. We will show that for almost any utility function we can derive

the classical CAPM relation if returns are jointly normally distributed. We need the following result

called Stein’s Lemma:

Lemma 9.1 (Stein’s Lemma) If x and y are jointly normally distributed random variables and

g : R → R is a differentiable function with E[|g′(y)|] <∞, then

Cov[x, g(y)] = E[g′(y)] Cov[x, y].

Proof: Define the random variable ε by ε = x − α − βy, where β = Cov[x, y]/Var[y], α =

E[x]− β E[y], and Cov[ε, y] = 0. Since ε and y are jointly normally distributed, the fact that they

are uncorrelated implies that they will be independent. It follows that Cov[ε, g(y)] = 0 for any

function g. Therefore,

Cov[x, g(y)] = β Cov[y, g(y)] + Cov[ε, g(y)] = β Cov[y, g(y)].

Let us write the mean and variance of y as µy and σ2
y, respectively. Then

Cov[y, g(y)] = E[yg(y)] − E[y] E[g(y)] = E[(y − µy)g(y)] =

∫ ∞

−∞

(y − µy)g(y)f(y) dy,

where

f(y) =
1

σy
√

2π
exp

{

− 1

2σ2
y

(y − µy)
2

}

is the probability density function of y. Noting that f ′(y) = −f(y)(y − µy)/σ
2
y, integration by

parts gives
∫ ∞

−∞

(y − µy)g(y)f(y) dy = −σ2
y

∫ ∞

−∞

g(y)f ′(y) dy

= σ2
y

∫ ∞

−∞

g′(y)f(y) dy − σ2
y

[

g(y)f(y)
]∞

y=−∞

= σ2
y E[g′(y)]

provided that g(y) does not approach plus or minus infinity faster than f(y) approaches zero as

y → ±∞. Hence,

Cov[x, g(y)] = β Cov[y, g(y)] = βσ2
y E[g′(y)] = Cov[x, y] E[g′(y)]
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as claimed. 2

For any state-price deflator of the form ζ = g(x) where x and Ri are jointly normally distributed,

we thus have

1 = E[g(x)Ri] = E[g(x)] E[Ri] + Cov[g(x), Ri]

= E[g(x)] E[Ri] + E[g′(x)] Cov[x,Ri]

= E[g(x)] E[Ri] + E[g′(x)] E[(x− E[x])Ri]

= E [{E[g(x)] − E[x]E[g′(x)] + E[g′(x)]x}Ri]
= E[(a+ bx)Ri],

for some constants a and b. Therefore, we can safely assume that g(x) is affine in x.

In (9.2) we have

ζ = e−δ
u′ (Rπ(e0 − c0))

u′(c0)
= g(Rπ),

and if the individual asset returns are jointly normally distributed, the return on any portfolio and

the return on any individual asset will also be jointly normally distributed. According to Stein’s

Lemma we can then safely assume that ζ is affine in Rπ. Again, this implies that Rπ is a pricing

factor. Note, however, that to apply Stein’s Lemma, we have to check that E[|g′(Rπ)|] is finite. In

our case,

g′(Rπ) = e−δ(e0 − c0)
u′′ (Rπ(e0 − c0))

u′(c0)
.

With log-utility, u′′(c) = −1/c2, and since E[1/(Rπ)2] is infinite (or undefined if you like) when Rπ

is normally distributed, we cannot apply Stein’s Lemma. In fact, when Rπ is normally distributed,

we really need the utility function to be defined on the entire real line, which is not the case for

the most reasonable utility functions. For negative exponential utility, there is no such problem.

The assumptions leading to the classical CAPM are clearly problematic. Preferences are poorly

represented by quadratic utility functions or other mean-variance utility functions. Returns are not

normally distributed. A more fundamental problem is the static nature of the one-period CAPM.

Later in this chapter we will discuss how the CAPM can be extended to an dynamic setting. It

turns out that we can derive an intertemporal CAPM under much more appropriate assumptions

about utility functions and return distributions. We will need CRRA utility and lognormally

distributed returns. In addition, we will need the return distribution to be stationary, i.e. the same

for all future periods of the same length.

9.3 Pricing factors in a one-period framework

In Section 4.5.2 we defined a one-dimensional pricing factor in a one-period framework and dis-

cussed the relation between pricing factors and state-price deflators. Below we generalize this to

the case of multi-dimensional factors and give a more rigorous treatment.
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9.3.1 Definition and basic properties

We will say that a K-dimensional random variable x = (x1, . . . , xK)⊤ is a pricing factor for the

market if there exists some α ∈ R and some η ∈ RK so that

E[Ri] = α+ β[Ri,x]⊤η, i = 1, . . . , I, (9.4)

where the factor-beta of asset i is the K-dimensional vector β[Ri,x] given by

β[Ri,x] = (Var[x])
−1

Cov[x, Ri]. (9.5)

Here Var[x] is the K × K variance-covariance matrix of x and Cov[x, Ri] is the K-vector with

elements Cov[xk, Ri]. Saying that x is a pricing factor we implicitly require that Var[x] is non-

singular. The vector η is called a factor risk premium and α is called the zero-beta return.

We can write (9.4) more compactly as

E[R] = α1 + β[R,x]η,

where R = (R1, . . . , RI)
⊤

is the return vector, 1 = (1, . . . , 1)
⊤

, and β[R,x] is the I ×K matrix

with β[Ri,x] as the i’th row. Due to the linearity of expectations and covariance, (9.4) will also

hold for all portfolios of the I assets. Note that if a risk-free asset is traded in the market, it will

have a zero factor-beta and, consequently, α = Rf .

The equation (9.4) involves the gross return Ri on asset i. What about the rate of return

ri = Ri − 1? Clearly, E[Ri] = 1 + E[ri], and the properties of covariance give

Cov[x, Ri] = Cov[x, 1 + ri] = Cov[x, ri] ⇒ β[Ri,x] = β[ri,x].

Consequently, (9.4) implies that

E[ri] = (α− 1) + β[ri,x]⊤η. (9.6)

If a risk-free asset exists, α− 1 = Rf − 1 = rf , the risk-free net rate of return.

The relation (9.4) does not directly involve prices. But since the expected gross return is E[Ri] =

E[Di]/Pi, we have Pi = E[Di]/E[Ri] and hence the equivalent relation

Pi =
E[Di]

α+ β[Ri,x]⊤η
. (9.7)

The price is equal to the expected dividend discounted by a risk-adjusted rate. You may find this

relation unsatisfactory since the price implicitly enters the right-hand side through the “return-

beta” β[Ri,x]. However, we can define a “dividend-beta” by

β[Di,x] = (Var[x])
−1

Cov[x,Di]

and inserting Di = RiPi we see that β[Di,x] = Piβ[Ri,x]. Equation (9.4) now implies that

E[Di]

Pi
= α+

1

Pi
β[Di,x]⊤η

so that

Pi =
E[Di] − β[Di,x]⊤η

α
. (9.8)

Think of the numerator as a certainty equivalent of the risky dividend. The current price is the

certainty equivalent discounted by the zero-beta return, which is the risk-free return if this exists.

The following result shows that pricing factors are not unique.
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Theorem 9.1 If the K-dimensional random variable x is a pricing factor, then any x̂ of the form

x̂ = a+Ax where a ∈ RK and A is a non-singular K ×K matrix is also a pricing factor.

Proof: According to (A.1), (A.2), and (1.1), we have

Cov[x̂, Ri] = Cov[a+Ax, Ri] = ACov[x, Ri],

(Var[x̂])
−1

=
(
Var[a+Ax]

)−1
=
(
Var[Ax]

)−1
=
(
AVar[x]A⊤

)−1
=
(
A⊤
)−1

(Var[x])
−1
A−1,

and thus

β[Ri, x̂] = (Var[x̂])
−1

Cov[x̂, Ri] =
(
A⊤
)−1

(Var[x])
−1
A−1ACov[x, Ri] =

(
A⊤
)−1

β[Ri,x].

If we define η̂ = Aη, we obtain

β[Ri, x̂]⊤η̂ =
((
A⊤
)−1

β[Ri,x]
)

⊤

Aη = β[Ri,x]⊤η

and, hence,

E[Ri] = α+ β[Ri, x̂]⊤η̂, i = 1, . . . , I, (9.9)

which confirms that x̂ is a pricing factor. 2

Let us look at some important consequences of this theorem.

In general the k’th element of the factor beta β[Ri,x] is not equal to Cov[xk, Ri]/Var[xk].

This will be the case, however, if the elements in the pricing factor are mutually uncorrelated,

i.e. Cov[xj , xk] = 0 for j 6= k. In fact, we can orthogonalize the pricing factor so that this will

be satisfied. Given any pricing factor x, we can find a non-singular K × K matrix V so that

V V ⊤ = Var[x]. Defining x̂ = V −1x, we know from above that x̂ is also a pricing factor and the

variance-covariance matrix is

Var[x̂] = V −1 Var[x]
(
V −1

)⊤

= V −1V V ⊤
(
V ⊤
)−1

= I,

i.e. the K ×K identity matrix. It is therefore no restriction to look only for uncorrelated pricing

factors.

We can also obtain a pricing factor with mean zero. If x is any pricing factor, just define

x̂ = x − E[x]. Clearly, x̂ has mean zero and, due to the previous theorem, it is also a pricing

factor. It is therefore no restriction to look only for zero-mean pricing factors.

Finally, note that we can replace the constant vector a in the above theorem with a K-

dimensional random variable ε with the property that Cov[Ri, ε] = 0 for all i. In particular

we have that if x is a pricing factor and ε is such a random variable, then x+ ε is also a pricing

factor.

9.3.2 Returns as pricing factors

Suppose now that the pricing factor is a vector of returns on portfolios of the I assets. Then (9.4)

holds with each fk replacing Ri. We have Cov[x,x] = Var[x] and hence β[x,x] = I, the K ×K

identity matrix. Consequently,

E[x] = α1 + η ⇒ η = E[x] − α1,
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where 1 is a K-dimensional vector of ones. In this case we can therefore rewrite (9.4) as

E[Ri] = α+ β[Ri,x]⊤ (E[x] − α1) , i = 1, . . . , I. (9.10)

It is now clear that the classical CAPM has the return on the market portfolio as the single

pricing factor. More generally, we will demonstrate in Section 9.4.3 that a return works as a single

pricing factor if and only if it is the return on a mean-variance efficient portfolio (different from

the minimum-variance portfolio).

For the case of a one-dimensional pricing factor x, Section 4.5.2 explained that the return Rx

on the factor-mimicking portfolio also works as a pricing factor. We can generalize this to a

multi-dimensional pricing factor in the following way. Given a pricing factor x = (x1, . . . , xK)
⊤

,

orthogonalize to obtain x̂ = (x̂1, . . . , x̂K)⊤. For each x̂k construct a factor-mimicking portfolio

with corresponding return Rx̂k . Then the return vector Rx̂ =
(
Rx̂1 , . . . , Rx̂K

)
⊤

will work as a

pricing factor and we have an equation like

E[Ri] = α+ β[Ri,R
x̂] ·
(

E[Rx̂] − α1
)

, i = 1, . . . , I. (9.11)

It is therefore no restriction to assume that pricing factors are returns.

9.3.3 From a state-price deflator to a pricing factor

From the definition of a covariance we have that Cov[Ri, ζ] = E[Riζ] − E[ζ] E[Ri]. From (4.3), we

now get that

E[Ri] =
1

E[ζ]
− Cov[Ri, ζ]

E[ζ]
. (9.12)

With β[Ri, ζ] = Cov[Ri, ζ]/Var[ζ] and η = −Var[ζ]/E[ζ], we can rewrite the above equation as

E[Ri] =
1

E[ζ]
+ β[Ri, ζ]η, (9.13)

which shows that the state-price deflator is a pricing factor. Although the proof is simple, the

results is important enough to deserve its own theorem:

Theorem 9.2 Any state-price deflator ζ is a pricing factor.

In the above argument we did not use positivity of the state-price deflator, only the pricing

equation (4.1) or, rather, the return version (4.3). Any random variable x that satisfies Pi = E[xDi]

for all assets works as a pricing factor. In particular, this is true for the random variable ζ∗ defined

in (4.41) whether it is positive or not. We therefore have that

E[Ri] = α∗ + β[Ri, ζ
∗]η∗, i = 1, . . . , I, (9.14)

where α∗ = 1/E[ζ∗] and η∗ = −Var[ζ∗]/E[ζ∗]. Alternatively, we can scale by the price of ζ∗ and

use the return R∗ defined in (4.49) as the factor so that

E[Ri] = α∗ + β[Ri, R
∗]η∗, i = 1, . . . , I, (9.15)

where α∗ = 1/E[ζ∗] as before but now η∗ = −Var[ζ∗]/
(
E[ζ∗] E[(ζ∗)2]

)
.

More generally, we have the following result:
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Theorem 9.3 If the K-dimensional random variable x satisfies

(i) Var[x] is non-singular;

(ii) a ∈ R and b ∈ RK exist so that ζ = a+ b⊤x has the properties E[ζ] 6= 0 and Pi = E[ζDi] for

i = 1, . . . , I,

then x is a pricing factor.

Proof: Substituting ζ = a+ b⊤x into (9.12), we get

E[Ri] =
1

a+ b⊤ E[x]
− b⊤ Cov[Ri,x]

a+ b⊤ E[x]

=
1

a+ b⊤ E[x]
− (Var[x]b)

⊤

(Var[x])
−1

Cov[Ri,x]

a+ b⊤ E[x]

= α+ β[Ri,x]⊤η,

where α = 1/ (a+ b⊤ E[x]) and η = −αVar[x]b. 2

Whenever we have a state-price deflator of the form ζ = a+b⊤x, we can use x as a pricing factor.

9.3.4 From a pricing factor to a (candidate) state-price deflator

Conversely:

Theorem 9.4 Assume the K-dimensional random variable x is a pricing factor with an associated

zero-beta return α different from zero. Then we can find a ∈ R and b ∈ RK so that ζ = a + b⊤x

satisfies Pi = E[ζDi] for i = 1, . . . , I.

Proof: Let η denote the factor risk premium associated with the pricing factor x. Define

b = − 1

α
(Var[x])

−1
η, a =

1

α
− b⊤ E[x].

Then ζ = a+ b⊤x works since

E[ζRi] = aE[Ri] + b⊤ E[Rix]

= aE[Ri] + b⊤ (Cov[Ri,x] + E[Ri] E[x])

= (a+ b⊤ E[x]) E[Ri] + Cov[Ri,x]⊤b

=
1

α

(

E[Ri] − Cov[Ri,x]⊤ (Var[x])
−1
η
)

=
1

α
(E[Ri] − β[Ri,x]⊤η)

= 1

for any i = 1, . . . , I. 2

Inserting a and b from the proof, we get

ζ = a+ b⊤x =
1

α

(

1 − η⊤ (Var[x])
−1

(x− E[x])
)

.

Any pricing factor x gives us a candidate a + b⊤x for a state-price deflator but it will only be a

true state-price deflator if it is strictly positive. The fact that we can find a pricing factor for a

given market does not imply that the market is arbitrage-free.
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9.3.5 The Arbitrage Pricing Theory

Ross (1976) introduced the Arbitrage Pricing Theory as an alternative to the classical CAPM. The

basic assumption is that a K-dimensional random variable x = (x1, . . . , xK)⊤ exists so that the

return on any asset i = 1, . . . , I can be decomposed as

Ri = E[Ri] + β[Ri,x]x+ εi = E[Ri] +

K∑

k=1

βikxk + εi,

where E[xk] = 0, E[εi] = 0, Cov[εi, xk] = 0, and Cov[εi, εj ] = 0 for all i, j 6= i, and k. Due

to the constraints on means and covariances, we have β[Ri,x] = (Var[x])−1 Cov[Ri,x] as before.

Note that one can always make a decomposition as in the equation above. Just think of regressing

returns on the vector x. The real content of the assumption lies in the restriction that the residuals

are uncorrelated, i.e. Cov[εi, εj ] = 0 whenever i 6= j. The vector x is the source of all the common

variations in returns across assets.

Suppose you have invested a given wealth in a portfolio. We can represent a zero net investment

deviation from this portfolio by a vector w = (w1, . . . , wI)
⊤ satisfying w · 1 = 0, where wi is the

fraction of wealth additionally invested in asset i. In other words, we increase the investment in

some assets and decrease the investment in other assets. The additional portfolio return is

Rw = w⊤R =

I∑

i=1

wiRi =

I∑

i=1

wi E[Ri] +

I∑

i=1

wiβi1x1 + · · · +
I∑

i=1

wiβiKxK +

I∑

i=1

wiεi.

Suppose we can find w1, . . . , wI so that

(i)
∑I
i=1 wiβik = 0 for k = 1, . . . ,K,

(ii)
∑I
i=1 wiεi = 0,

then

Rw =

I∑

i=1

wi E[Ri],

i.e. the added return is risk-free. To rule out arbitrage, a risk-free zero net investment should give

a zero return so we can conclude that

Rw =

I∑

i=1

wi E[Ri] = 0.

In linear algebra terms, we have thus seen that if a vector w is orthogonal to 1 and to each of the

vectors (β1k, . . . , βIk)
⊤, k = 1, . . . ,K, then it must also be orthogonal to the vector of expected

returns E[R]. It follows that E[R] must be spanned by the vectors 1, (β1k, . . . , βIk)
⊤, k = 1, . . . ,K,

i.e. that constants α, η1, . . . , ηK exist so that

E[Ri] = α+ βi1η1 + · · · + βiKηK = α+ β[Ri,x]η, i = 1, 2, . . . , I,

i.e. x is a pricing factor.

With at least K sufficiently different assets, we can satisfy condition (i) above. We just need

the I ×K matrix β[R,x] to have rank K. What about condition (ii)? The usual argument given

is that if we pick wi to be of the order 1/I and I is a very large number, then
∑

i=1 wiεi will
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be close to zero and we can ignore it. But close to zero does not mean equal to zero and if the

residual portfolio return is non-zero, the portfolio is not risk-free and the argument breaks down.

Even a very small dividend or return in a particular state can have a large influence on the current

price and, hence, the expected return. With finitely many assets, we can only safely ignore the

residual portfolio return if the residual returns of all the individual assets are zero, i.e. εi = 0 for

all i = 1, . . . , I.

Theorem 9.5 If individual asset returns are of the form

Ri = E[Ri] + β[Ri,x]x, i = 1, 2, . . . , I,

and the I ×K matrix β[R,x] has rank K, then x is a pricing factor, i.e. α ∈ R and η ∈ RK exist

so that

E[Ri] = α+ β[Ri,x]⊤η, i = 1, 2, . . . , I.

It is, however, fairly restrictive to assume that all the variation in the returns on a large number

of assets can be captured by a low number of factors.

9.4 Mean-variance efficient returns and pricing factors

We have introduced the mean-variance frontier earlier in Sections 4.5.3 and 6.2.5. Here we provide

an alternative characterization of the mean-variance efficient returns and study the link between

mean-variance efficiency and asset pricing theory.

As before let R = (R1, . . . , RI)
⊤

denote the vector of gross returns on the I traded assets and

define µ = E[R] and Σ = Var[R]. A portfolio π is mean-variance efficient if there is an m ∈ R so

that π solves

min
π
π⊤Σπ s.t. π⊤µ = m, π⊤1 = 1, (6.21)

i.e. π has the lowest return variance among all portfolios with expected return m.

9.4.1 Orthogonal characterization

Following Hansen and Richard (1987) we will show that a return R is mean-variance efficient if

and only if it can be written on the form R = R∗ + wRe∗ for some number w. Here R∗ is the

return on the portfolio corresponding to the dividend ζ∗ defined in (4.41) and Re∗ is a particular

excess return to be defined shortly. This characterization of the mean-variance portfolios turn out

to be preferable for discussing the link between mean-variance analysis and asset pricing models.

R∗ and mean-variance analysis

How does R∗ fit into the mean-variance framework? The following lemma shows that it is a mean-

variance efficient return on the downward-sloping part of the mean-variance frontier. Furthermore,

it is the return with minimum second moment. (Recall that the second moment of a random

variable x is E[x2].)

Lemma 9.2 R∗ has the following properties:
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(a) R∗ is the return that has minimum second moment,

(b) R∗ is a mean-variance efficient return located on the downward-sloping part of the efficient

frontier.

Proof: The return on a portfolio π is the random variable Rπ = π⊤R. The second moment of

this return is E[(Rπ)2] = π⊤ E[RR⊤]π. Consider the minimization problem

min
π
π⊤ E[RR⊤]π s.t. π⊤1 = 1.

The Lagrangian is L = π⊤ E[RR⊤]π + λ (1 − π⊤1), where λ is the Lagrange multiplier. The

first-order condition for π is

2 E[RR⊤]π − λ1 = 0 ⇒ π =
λ

2
(E[RR⊤])

−1
1.

Imposing the constraint π⊤1 = 1, we get λ/2 = 1/(1⊤ E[RR⊤]1), and substituting this into the

above expression for π, we see that π is indeed identical to π∗ in (4.48).

Since π∗ is the portfolio minimizing the second moment of gross returns among all portfolios, it

is also the portfolio minimizing the second moment of gross returns among the portfolios with the

same mean return as π∗, i.e. portfolios with E[Rπ] = E[R∗]. For these portfolios the variance of

return is

Var [Rπ] = E[(Rπ)2] − (E[Rπ])
2

= E[(Rπ)2] − (E[R∗])
2
.

It then follows that π∗ is the portfolio minimizing the variance of return among all the portfolios

having the same mean return as π∗. Hence, π∗ is indeed a mean-variance efficient portfolio. In a

(standard deviation, mean)-diagram returns with same second moment K = E[(Rπ)2] yield points

on a circle with radius
√
K centered in (0,0), since (σ(Rπ))

2
+ (E[Rπ])

2
= E[(Rπ)2]. The return

R∗ therefore corresponds to a point on the downward-sloping part of the efficient frontier. 2

The constant-mimicking return

In a market without a risk-free asset you may wonder how close you can get to a risk-free dividend.

Of course this will depend on what you mean by “close.” If you apply a mean-square measure, the

distance between the dividend Dθ = θ⊤D of a portfolio θ and a risk-free dividend of 1 is

E
[
(Dθ − 1)2

]
= E

[

(θ⊤D − 1)
2
]

= E [θ⊤DD⊤θ + 1 − 2θ⊤D]

= θ⊤ E [DD⊤]θ + 1 − 2θ⊤ E [D] .

Minimizing with respect to θ, we get θcm = (E [DD⊤])
−1

E [D] where the subscript “cm” is short

for “constant-mimicking.” Let us transform this to a vector πcm of portfolio weights by using (3.6).

Applying (3.2) and (4.47), we get

diag(P )θcm = diag(P ) (E [DD⊤])
−1

E [D]

= diag(P )[diag(P )]−1 (E [RR⊤])
−1

[diag(P )]−1 E [D]

= (E [RR⊤])
−1

E [R]



204 Chapter 9. Factor models

so that

πcm =
1

1⊤ (E [RR⊤])
−1

E [R]
(E [RR⊤])

−1
E [R] =

E[(R∗)2]

E[R∗]
(E [RR⊤])

−1
E [R] , (9.16)

where the last equality comes from (4.53). The constant-mimicking return is thus

Rcm = (πcm)
⊤

R =
E[(R∗)2]

E[R∗]
E [R]

⊤

(E [RR⊤])
−1
R. (9.17)

Excess returns and Re∗

An excess return is simply the difference between two returns. Since any return corresponds to a

dividend for a unit initial payment, an excess return can be seen as a dividend for a zero initial

payment. Of course, in absence of arbitrage, a non-zero excess return will turn out positive in

some states and negative in other states.

Typically, excess returns on different portfolios relative to the same “reference” return are con-

sidered. For a reference return Ř = π̌⊤R, the set of all possible excess returns are given by

Re[Ř] =
{
π⊤R− Ř | π⊤1 = 1

}
,

where as before R is the I-dimensional vector of returns on the basis assets, and π denotes a

portfolio weight vector of these I assets.

It is useful to observe that the set of excess returns is the same for all reference returns. An excess

return relative to a reference return Ř is given by π⊤R− Ř = (π− π̌)⊤R for some portfolio weight

vector π. We can obtain the same excess return relative to another reference return Ṙ = π̇⊤R

using the portfolio π + π̇ − π̌. (Check for yourself!) Hence, we can simply talk about the set of

excess returns, Re, without specifying any reference return, and we can write it as

Re = {(πe)⊤R | (πe)⊤1 = 0}.

The set of excess returns is a linear subspace of the set of all random variables (in our case with

S possible outcomes this is equivalent to RS) in the sense that

1. if w is a number and Re is an excess return, then wRe is an excess return;

Check: Re = (πe)⊤R with (πe)⊤1 = 0 implies that wRe = (wπe)⊤R with (wπe)⊤1 =

w(πe)⊤1 = 0

2. if Re1 and Re2 are two excess returns, then Re1 +Re2 is also an excess return.

Check: Rei = (πei)⊤R with (πei)⊤1 = 0 implies that Re1 + Re2 = (πe1 + πe2)⊤R, where

(πe1 + πe2)⊤1 = 0

Define

Re∗ =
E[R∗]

E[(R∗)2]
(Rcm −R∗) = E[R]⊤ (E[RR⊤])

−1
R− E[R∗]

E[(R∗)2]
R∗. (9.18)

Of course, Rcm − R∗ is an excess return, and since Re∗ is a multiplum of that, we can conclude

that Re∗ is an excess return. Here are some important properties of Re∗:

Lemma 9.3 (a) For any excess return Re, we have

E[ReR∗] = 0. (9.19)
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In particular,

E[Re∗R∗] = 0. (9.20)

(b) For any excess return Re we have

E[Re] = E[Re∗Re]. (9.21)

(c) E[Re∗] = E[(Re∗)2] and Var[Re∗] = E[Re∗](1 − E[Re∗]).

Proof: (a) For any return Ri, we have E[R∗Ri] = E[(R∗)2], and hence for any excess return

Re = Ri −Rj , we have

E[R∗Re] = E[R∗(Ri −Rj)] = E[R∗Ri] − E[R∗Rj ] = E[(R∗)2] − E[(R∗)2] = 0.

In particular, this is true for the excess return Re∗.

(b) Write the excess return Re as the difference between the return on some portfolio π and R∗,

i.e. Re = π⊤R−R∗. Then

E[Re∗Re] = E[Re∗ (π⊤R−R∗)] = π⊤ E[Re∗R] − E[Re∗R∗] = π⊤ E[Re∗R]. (9.22)

Using (9.18), we get

E[Re∗R] = E
[(

E[R]⊤ (E[RR⊤])
−1
R
)

R
]

− E[R∗]

E[(R∗)2]
E[R∗R]. (9.23)

Let us first consider the last part. From Lemma 4.1, we have E[R∗Ri] = E[(R∗)2] for each i so

that E[R∗R] = E[(R∗)2]1. Now look at the first part of (9.23). It can be shown in general that,

for any vector x, E[x⊤RR] = E[RR⊤]x. Applying this with x = (E[RR⊤])
−1

E[R] we obtain

E
[(

E[R]⊤ (E[RR⊤])
−1
R
)

R
]

= E[RR⊤] (E[RR⊤])
−1

E[R] = E[R].

We can now rewrite (9.23):

E[Re∗R] = E[R] − E[R∗]1.

Going back to (9.22), we have

E[Re∗Re] = π⊤ E[Re∗R] = π⊤ (E[R] − E[R∗]1) = π⊤ E[R] − E[R∗] = E[Re],

as had to be shown.

(c) The first part follows immediately from (b). The second part comes from

Var[Re∗] = E[(Re∗)2] − (E[Re∗])2 = E[Re∗] − (E[Re∗])2 = E[Re∗] (1 − E[Re∗])

where we have used the first part. 2

A characterization of the mean-variance frontier in terms of R∗ and Re∗

First we show that any return can be decomposed using R∗, Re∗, and some “residual” excess

return.
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Theorem 9.6 For any return Ri, we can find a number wi and an excess return ηi ∈ Re so that

Ri = R∗ + wiR
e∗ + ηi (9.24)

and

E[ηi] = E[R∗ηi] = E[Re∗ηi] = 0. (9.25)

Proof: Define wi = (E[Ri] − E[R∗]) /E[Re∗] and ηi = Ri−R∗−wiRe∗. Then (9.24) and E[ηi] = 0

hold by construction. ηi is the difference between the two excess returns Ri − R∗ and wiR
e∗ and

therefore itself an excess return. Now E[R∗ηi] = 0 follows from (9.19) and from (9.21) we have

E[ηiR
e∗] = E[ηi], which we know is zero. 2

Due to the relations E[R∗Re∗] = E[R∗ηi] = E[Re∗ηi] = 0, the decomposition is said to be orthogo-

nal.

Note that the same wi applies for all returns with the same expected value. The return variance

is

Var[Ri] = Var [R∗ + wiR
e∗] + Var[ηi] + 2Cov [R∗ + wiR

e∗, ηi]

= Var [R∗ + wiR
e∗] + Var[ηi] + 2 {E [(R∗ + wiR

e∗) ηi] − E[R∗ + wiR
e∗] E[ηi]}

= Var [R∗ + wiR
e∗] + Var[ηi].

Clearly the minimum variance for a given mean, i.e. a given wi is obtained for ηi = 0. We therefore

have the following result:

Theorem 9.7 A return Ri is mean-variance efficient if and only if it can be written as

Ri = R∗ + wiR
e∗

for some number wi.

Varying wi from −∞ to +∞, Ri = R∗ + wiR
e∗ runs through the entire mean-variance frontier

in the direction of higher and higher expected returns (since E[Re∗] = E[(Re∗)2] > 0).

Note that from (9.18) that the constant-mimicking return can be written as

Rcm = R∗ +
E
[
(R∗)2

]

E[R∗]
Re∗ (9.26)

so the constant-mimicking return is mean-variance efficient.

Allowing for a risk-free asset

Now let us assume that a risk-free asset with return Rf exists (or can be constructed as a portfolio

of the basic assets). Then from Lemma 4.1 we have that Rf E[R∗] = E[R∗Rf ] = E[(R∗)2], and

hence

Rf =
E[(R∗)2]

E[R∗]
=

1

1⊤ (E[RR⊤])
−1

E[R]
. (9.27)

In addition we have

E[R]⊤ (E[RR⊤])
−1
R = 1. (9.28)
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Let us just show this for the case with two assets, a risk-free and a risky so that R = (R̃, Rf )⊤,

where R̃ is the return on the risky asset. Then

E[R]⊤ (E[RR⊤])
−1
R =

(

E[R̃], Rf
)

⊤

(

E[R̃2] Rf E[R̃]

Rf E[R̃] (Rf )2

)−1(

R̃

Rf

)

=
1

(Rf )2
(

E[R̃2] − (E[R̃])2
)

(

E[R̃], Rf
)

⊤

(

(Rf )2 −Rf E[R̃]

−Rf E[R̃] E[R̃2]

)(

R̃

Rf

)

=
1

(Rf )2
(

E[R̃2] − (E[R̃])2
)

(

E[R̃], Rf
)

⊤




(Rf )2

(

R̃− E[R̃]
)

Rf
(

E[R̃2] − E[R̃]R̃
)





= 1.

Substituting (9.27) and (9.28) into the general definition of Re∗ in (9.18), we get

Re∗ = 1 − 1

Rf
R∗. (9.29)

Consequently,

Rf = R∗ +RfRe∗ (9.30)

so the wi corresponding to the risk-free return is Rf itself. With Rf > 1, we see that R∗ + Re∗

corresponds to a point on the frontier below the risk-free rate. (Again we use the fact that

E[Re∗] > 0.)

The minimum-variance return

With the decomposition in Theorem 9.7, it is easy to find the minimum-variance return. The

variance of any mean-variance efficient return is

Var [R∗ + wRe∗] = E
[
(R∗ + wRe∗)2

]
− (E [R∗ + wRe∗])

2

= E
[
(R∗)2

]
+ w2 E

[
(Re∗)2

]
+ 2wE [R∗Re∗]

− (E[R∗])
2 − w2 (E[Re∗])

2 − 2wE[R∗] E[Re∗]

= E
[
(R∗)2

]
+ w2 E [Re∗] (1 − E [Re∗]) − (E[R∗])

2 − 2wE[R∗] E[Re∗],

where the simplifications leading to the last expression are due to Lemma 9.3. The first-order

condition with respect to w implies that

w =
E[R∗]

1 − E[Re∗]
.

The minimum-variance return is thus

Rmin = R∗ +
E[R∗]

1 − E[Re∗]
Re∗ = R∗ +

E[R∗] E[Re∗]

Var[Re∗]
Re∗. (9.31)

When a risk-free asset exists, this simplifies to Rmin = Rf , because E[R∗]/(1 − E[Re∗]) = Rf

using (9.29).
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9.4.2 Link between mean-variance efficient returns and state-price de-

flators

Theorem 9.8 Let R denote a gross return. Then there exists a, b ∈ R so that ζ = a+ bR satisfies

Pi = E[ζDi] for i = 1, . . . , I if and only if R is a mean-variance efficient return different from the

constant-mimicking return.

Proof: According to Theorem 9.6 we can decompose the return R as

R = R∗ + wRe∗ + η

for some w ∈ R and some excess return η with E[ηi] = E[R∗ηi] = E[Re∗ηi] = 0. R is mean-variance

efficient if and only if η = 0. We need to show that, for suitable a, b ∈ R,

ζ = a+ bR = a+ b (R∗ + wRe∗ + η)

will satisfy Pi = E[ζDi] for all i if and only if η = 0 and w 6= E[(R∗)2]/E[R∗].

Recall that Pi = E[ζDi] for all i implies that E[ζRi] = 1 for all returns Ri and E[ζRe] = 0 for

all excess returns Re. In particular,

1 = E[ζR∗] = E [(a+ b (R∗ + wRe∗ + η))R∗] = aE[R∗] + bE
[
(R∗)2

]

0 = E[ζRe∗] = E [(a+ b (R∗ + wRe∗ + η))Re∗] = aE[Re∗] + bwE
[
(Re∗)2

]
= (a+ bw) E[Re∗].

Solving for a and b, we get

a =
w

wE[R∗] − E [(R∗)2]
, b = − 1

wE[R∗] − E [(R∗)2]

so that

ζ =
w − (R∗ + wRe∗ + η)

wE[R∗] − E [(R∗)2]
.

Obviously, we have to assume that wE[R∗] 6= E
[
(R∗)2

]
, which rules out the constant-mimicking

return, cf. (9.26).

Now consider any other return Ri and decompose to Ri = R∗ + wiR
e∗ + ηi. Then

E[ζRi] =
1

wE[R∗] − E [(R∗)2]
E [(w − (R∗ + wRe∗ + η)) (R∗ + wiR

e∗ + ηi)]

=
1

wE[R∗] − E [(R∗)2]

(
wE[R∗] − E

[
(R∗)2

]
− E[ηηi]

)
,

where we have applied various results from earlier. We can now see that we will have E[ζRi] = 1

for all returns Ri if and only if E[ηηi] = 0 for all excess returns ηi. In particular E[η2] = 0, which

implies that η = 0. 2

9.4.3 Link between mean-variance efficient returns and pricing factors

Theorem 9.9 A return Rmv is a pricing factor, i.e. an α ∈ R exists so that

E[Ri] = α+ β[Ri, R
mv] (E[Rmv] − α) , i = 1, . . . , I, (9.32)

if and only if Rmv is a mean-variance efficient return different from the minimum-variance return.
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The constant α must then be equal to the zero-beta return corresponding to Rmv, which is equal

to the risk-free return if a risk-free asset exists.

Proof: (“If” part.) First, let us show that if Rmv is mean-variance efficient and different from

the minimum-variance return, it will work as a pricing factor. This result is originally due to Roll

(1977). For some w, we have Rmv = R∗ + wRe∗. Consider a general return Ri and decompose as

Ri = R∗ + wiR
e∗ + ηi

as in Theorem 9.6. Then

E[Ri] = E[R∗] + wi E[Re∗]

and

Cov[Ri, R
mv] = Var[R∗] + wwi Var[Re∗] + (w + wi)Cov[R∗, Re∗]

= Var[R∗] + wwi Var[Re∗] − (w + wi) E[R∗] E[Re∗]

which implies that

Cov[Ri, R
mv] − Var[R∗] + wE[R∗] E[Re∗] = wi (wVar[Re∗] − E[R∗] E[Re∗]) .

If w 6= E[R∗] E[Re∗]/Var[Re∗], which according to (9.31) means that Rmv is different from the

minimum-variance return, then we can solve the above equation for wi with the solution

wi =
Cov[Ri, R

mv] − Var[R∗] + wE[R∗] E[Re∗]

wVar[Re∗] − E[R∗] E[Re∗]
.

Hence

E[Ri] = E[R∗] + wi E[Re∗]

= E[R∗] +
Cov[Ri, R

mv] − Var[R∗] + wE[R∗] E[Re∗]

wVar[Re∗] − E[R∗] E[Re∗]
E[Re∗]

= α+
Cov[Ri, R

mv]

wVar[Re∗] − E[R∗] E[Re∗]
E[Re∗]

where we have defined the constant α as

α = E[R∗] +
wE[R∗] E[Re∗] − Var[R∗]

wVar[Re∗] − E[R∗] E[Re∗]
E[Re∗].

This applies to any return Ri and in particular to Rmv itself, which implies that

E[Rmv] = α+
Var[Rmv]

wVar[Re∗] − E[R∗] E[Re∗]
E[Re∗]

and hence
E[Re∗]

wVar[Re∗] − E[R∗] E[Re∗]
=

E[Rmv] − α

Var[Rmv]
.

Substituting this back in, we get

E[Ri] = α+
Cov[Ri, R

mv]

Var[Rmv]
(E[Rmv] − α) = α+ β[Ri, R

mv] (E[Rmv] − α) ,

which verifies that Rmv is a valid pricing factor.
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(“Only if” part.) Next, let us show that if a return works as a pricing factor, it must be mean-

variance efficient and different from the minimum-variance return. This proof is due to Hansen

and Richard (1987). Assume that Rmv is a pricing factor. Decomposing as in Theorem 9.6

Rmv = R∗ + wRe∗ + η,

we need to show that η = 0 (so Rmv is mean-variance efficient) and that w 6= E[R∗] E[Re∗]/Var[Re∗]

(so Rmv is different from the minimum-variance return).

Define a new return R as the “efficient part” of Rmv, i.e.

R = R∗ + wRe∗.

Since

Cov[η,Rmv] = E[ηRmv] − E[η] E[Rmv] = E[ηRmv] = E[η2],

we get

Cov[R,Rmv] = Cov[Rmv − η,Rmv] = Cov[Rmv, Rmv] − Cov[η,Rmv] = Var[Rmv] − E[η2].

On the other hand, E[R] = E[Rmv] so applying (9.32) for Ri = Rmv, we obtain

E[Rmv] − α =
Cov[R,Rmv]

Var[Rmv]
(E[Rmv] − α)

and hence Cov[R,Rmv] = Var[Rmv]. We conclude that E[η2] = 0, which implies η = 0.

Suppose that w = E[R∗] E[Re∗]/Var[Re∗] and define a new gross return

R = Rmv +
1

E[Re∗]
Re∗.

Clearly, E[R] = E[Rmv] + 1, and furthermore

Cov[R,Rmv] = Var[Rmv] +
1

E[Re∗]
Cov[Re∗, Rmv] = Var[Rmv]

since

Cov[Re∗, Rmv] = Cov[Re∗, R∗ + wRe∗] = Cov[Re∗, R∗] + wVar[Re∗]

= Cov[Re∗, R∗] + E[R∗] E[Re∗] = E[Re∗R∗] = 0.

Applying (9.32) to the return R, we get

E[R] = α+
Cov[R,Rmv]

Var[Rmv]
(E[Rmv] − α) = α+ (E[Rmv] − α) = E[Rmv],

which contradicts our early conclusion that E[R] = E[Rmv] + 1. Hence our assumption about w

cannot hold. 2

One implication of this theorem is that we can always find some returns that work as a pricing

factor, namely the mean-variance efficient returns. Another implication is that the conclusion of

the classical CAPM can be restated as “the market portfolio is mean-variance efficient.”
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9.5 Pricing factors in a multi-period framework

In the one-period framework we defined a pricing factor to be a K-dimensional random variable x

such that there exists some α ∈ R and some η ∈ RK so that

E[Ri] = α+ β[Ri,x]⊤η, i = 1, . . . , I,

where β[Ri,x] = (Var[x])
−1

Cov[x, Ri]. We saw that any state-price deflator works as a pricing

factor and, more generally, if ζ = a + b⊤x is a state-price deflator for constants a, b then x is a

pricing factor. On the other hand, given any pricing factor x, we can find constants a, b such that

ζ = a+ b⊤x is a candidate state-price deflator (not necessarily strictly positive, alas).

In a multi-period discrete-time framework we will say that a K-dimensional adapted stochastic

process x = (xt) is a conditional pricing factor, if there exist adapted stochastic processes

α = (αt) and η = (ηt) so that

Et[Ri,t+1] = αt + βt[Ri,t+1,xt+1]
⊤ηt, i = 1, . . . , I, (9.33)

for any t = 0, 1, 2, . . . , T − 1. Here, the conditional factor beta is defined as

βt[Ri,t+1,xt+1] = (Vart[xt+1])
−1 Covt[xt+1, Ri,t+1]. (9.34)

If a conditionally risk-free asset exists, then αt = Rft implying that

Et[Ri,t+1] = Rft + βt[Ri,t+1,xt+1]
⊤ηt, i = 1, . . . , I. (9.35)

Suppose x is a conditional pricing factor, and let a = (at) be an adapted one-dimensional process

and A = (A
t
) be an adapted process whose values A

t
are non-singular K ×K matrices. Then x̂

defined by

x̂t+1 = at +A
t
xt+1 (9.36)

will also be a conditional pricing factor.

If ζ = (ζt) is a state-price deflator process, the one-period analysis implies that the ratios

ζt+1/ζt define a conditional pricing factor. Since ζt+1 = 0 + ζt(ζt+1/ζt) is a transformation of the

form (9.36), we see that any state-price deflator is a conditional pricing factor. As in the one-period

case, we will have that if ζt+1 = at + b⊤

t xt+1 is a state-price deflator for some adapted process

x, then x is a conditional pricing factor. And for any conditional pricing factor x, we can find

adapted process a = (at) and b = (bt) so that ζt+1 = at + b⊤

t xt+1 defines a candidate state-price

deflator (not necessarily positive, however).

We will say that a K-dimensional adapted stochastic process x = (xt) is an unconditional

pricing factor, if there exist constants α and η so that

E[Ri,t+1] = α+ β[Ri,t+1,xt+1]
⊤η, i = 1, . . . , I, (9.37)

for any t = 0, 1, 2, . . . , T − 1. Here, the unconditional factor beta is defined as

β[Ri,t+1,xt+1] = (Var[xt+1])
−1 Cov[xt+1, Ri,t+1]. (9.38)

This is true if the state-price deflator can be written as ζt+1

ζt
= a + b⊤xt+1 for constants a and

b. Hence, an unconditional pricing factor is also a conditional pricing factor. The converse is not

true.
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Testing factor models on actual data really requires an unconditional model since we need to

replace expected returns by average returns, etc. To go from a conditional pricing factor model

to an unconditional, we need to link the variation in the coefficients over time to some observable

variables. Suppose for example that ζt+1

ζt
= at + btxt+1 is a state-price deflator so that x = (xt)

is a conditional pricing factor, assumed to be one-dimensional for notational simplicity. If we can

write

at = A0 +A1yt, bt = B0 +B1yt

for some observable adapted process y = (yt), then

ζt+1

ζt
= A0 +A1yt +B0xt+1 +B1ytxt+1

which defines a 3-dimensional unconditional pricing factor given by the vector (yt, xt+1, ytxt+1)
⊤.

Now let us turn to the continuous-time setting. By a K-dimensional conditional pricing factor in

a continuous-time model we mean an adapted K-dimensional process x = (xt) with the property

that there exist some one-dimensional adapted process α = (αt) and some K-dimensional adapted

process η = (ηt) such that for any asset i (or trading strategy), the expected rate of return per

time period satisfies

µit + δit = αt + (βixt )⊤ηt, (9.39)

where again βixt is the factor-beta of asset i at time t. To understand the factor-beta write the

price dynamics of risky assets in the usual form

dPit = Pit [µit dt+ σ⊤

it dzt] .

and the dynamics of x as

dxt = µxt dt+ σxt dzt,

where µx is an adapted process valued in RK and σx is an adapted process with values being

K × d matrices. Then the factor-beta is defined as

βixt =
(
σxtσ

⊤

xt

)−1
σxtσit. (9.40)

If a “bank account” is traded, it then follows that αt = rft . In the following we will assume that

this is the case.

Factors are closely linked to market prices of risk and hence to risk-neutral measures and state-

price deflators. If x = (xt) is a factor in an expected return-beta relation, then we can define a

market price of risk as (note that it is d-dimensional)

λt = σ⊤

xt

(
σxtσ

⊤

xt

)−1
ηt,

since we then have

σ⊤

itλt = σ⊤

itσ
⊤

xt

(
σxtσ

⊤

xt

)−1
ηt =

(
βixt
)⊤

ηt = µit + δit − rft .

Conversely, let λ = (λt) be any market price of risk and let ζ = (ζt) be the associated state-price

deflator so that

dζt = −ζt
(

rft dt+ λ⊤

t dzt

)

.
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Then we can use ζ as a one-dimensional factor in an expected return-beta relation. Since this

corresponds to a factor “sensitivity” vector −ζtλt replacing the matrix σxt, the relevant “beta” is

βiζt =
−ζtσ⊤

itλt

ζ2
t λ

⊤

t λt
= − 1

ζt

σ⊤

itλt

λ⊤

t λt
.

We can use ηt = −ζtλ⊤

t λt, since then

βiζt ηt = − 1

ζt

σ⊤

itλt

λ⊤

t λt
(−ζtλ⊤

t λt) = σ⊤

itλt = µit + δit − rft

for any asset i. We can even use at + btζt as a factor for any sufficiently well-behaved adapted

processes a = (at) and b = (bt).

If we use ζ∗ as the factor, the relevant η is ηt = −ζ∗t (λ∗
t )

⊤

λ∗
t = −ζ∗t ‖λ∗

t ‖2. From (4.46), we see

that ‖λ∗
t ‖2 is exactly the excess expected rate of return of the growth-optimal strategy, we which

can also write as µ∗
t − rft . Hence, we can write the excess expected rate of return on any asset (or

trading strategy) as

µit + δit − rft = βiζ
∗

t

(

−ζ∗t [µ∗
t − rft ]

)

=
σ⊤

itλ
∗
t

(λ∗
t )

⊤

λ∗
t

[µ∗
t − rft ] ≡ βiλ

∗

t [µ∗
t − rft ]. (9.41)

Whether we want to use a discrete-time or a continuous-time model, the key question is what

factors to include in order to get prices or returns that are consistent with the data. Due to the

link between state-price deflators and (marginal utility of) consumption, we should look for factors

among variables that may affect (marginal utility of) consumption.

9.6 Empirical factors

A large part of the literature on factor models is based on empirical studies which for a given

data set identifies a number of priced factors so that most of the differences between the returns

on different financial assets—typically only various portfolios of stocks—can be explained by their

different factor betas. The best known studies of this kind were carried out by Fama and French,

who find support for a model with three factors:

1. the return on a broad stock market index;

2. the return on a portfolio of stocks in small companies (according to the market value of all

stocks issued by the firm) minus the return on a portfolio of stocks in large companies;

3. the return on a portfolio of stocks issued by firms with a high book-to-market value (the

ratio between the book value of the assets of the firm to the market value of all the assets)

minus the return on a portfolio of stocks in firms with a low book-to-market value.

According to Fama and French (1996) such a model gives a good fit of U.S. stock market data over

the period 1963–1993. However, the empirical analysis does not explain why this three-factor model

does well and what the underlying pricing mechanisms might be. Also note that while a given

factor model does well in a given market over a given period it may perform very badly in other

markets and/or other periods (and risk premia may be different for other data sets). Some recent

studies indicate that the second of the three factors (the “size effect”) seems to have disappeared.

Another critique is that over the last 30 years empirical researchers have tried so many factors that
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it is hardly surprising that they have found some statistically significant factors. In fact, we know

that in any given sample of historical returns it is possible to find a portfolio so that a factor model

with the return on this portfolio as the only factor will perfectly explain all returns in the sample!

Also note that the Fama-French model is a partial pricing model since the factors themselves are

derived from prices of financial assets. For these reasons the purely empirically based “models” do

not contribute much to the understanding of the pricing mechanisms of financial markets. However,

some interesting recent studies explore whether the Fama-French factors can be seen as proxies for

macro-economic variables that can logically be linked to asset prices.

Linking Fama-French factors to risk and variations in investment opportunities: Liew and Vas-

salou (2000), Lettau and Ludvigson (2001), Vassalou (2003), Petkova (2006).

Data snooping/biases explanations of the success of FF: Lo and MacKinlay (1990), Kothari,

Shanken, and Sloan (1995).

Problems in measurement of beta: Berk, Green, and Naik (1999), Gomes, Kogan, and Zhang

(2003).

9.7 Theoretical factors

Factor models can be obtained through the general consumption-based asset pricing model by

relating optimal consumption to various factors. As discussed in Section 6.5 the optimal consump-

tion plan of an individual with time-additive expected utility must satisfy the so-called envelope

condition

u′(ct) = JW (Wt, xt, t). (6.47)

Here J is the indirect utility function of the individual, i.e. the maximum obtainable expected

utility of future consumption. Wt is the financial wealth of the investor at time t. xt is the time t

value of a variable that captures the variations in investment opportunities (captured by the risk-

free interest rate, expected returns and volatilities on risky assets, and correlations between risky

assets) and investor-specific variables (e.g. labor income). For notational simplicity, x is assumed

to be one-dimensional, but this could be generalized.

In a continuous-time framework write the dynamics of wealth compactly as

dWt = Wt [µWt dt+ σ⊤

Wt dzt]

and assume that the state variable x follows a diffusion process

dxt = µxt dt+ σ⊤

xt dzt, µxt = µx(xt, t), σxt = σx(xt, t).

From (8.14) it follows that the state-price deflator derived from this individual can be written as

ζt = e−δt
JW (Wt, xt, t)

JW (W0, x0, 0)
.

An application of Itô’s Lemma yields a new expression for the dynamics of ζ, which again can be

compared with (4.37). It follows from this comparison that

λt =

(−WtJWW (Wt, xt, t)

JW (Wt, xt, t)

)

σWt +

(−JWx(Wt, xt, t)

JW (Wt, xt, t)

)

σxt,



9.8 Exercises 215

is a market price of risk. Consequently, the expected excess rate of return on asset i can be written

as

µit + δit − rft =

(−WtJWW (Wt, xt, t)

JW (Wt, xt, t)

)

σ⊤

itσWt +

(−JWx(Wt, xt, t)

JW (Wt, xt, t)

)

σ⊤

itσxt, (9.42)

which can be rewritten as

µit + δit − rft = βiWtηWt + βixtηxt, (9.43)

where

βiWt =
σ⊤

itσWt

‖σWt‖2
, βixt =

σ⊤

itσxt

‖σxt‖2
,

ηWt = ‖σWt‖2

(−WtJWW (Wt, xt, t)

JW (Wt, xt, t)

)

, ηxt = ‖σxt‖2

(−JWx(Wt, xt, t)

JW (Wt, xt, t)

)

.

We now have a continuous-time version of (9.35) with the wealth of the individual and the state

variable as the factors. If it takes m state variables to describe the variations in investment

opportunities, labor income, etc., we get an (m+ 1)-factor model.

If the individual is taken to be a representative individual, her wealth will be identical to the

aggregate value of all assets in the economy, including all traded financial assets and non-traded

asset such as human capital. This is like the market portfolio in the traditional static CAPM. The

first term on the right-hand side of (9.42) is then the product of the relative risk aversion of the

representative individual (derived from her indirect utility) and the covariance between the rate

of return on asset i and the rate of return on the market portfolio. In the special case where the

indirect utility is a function of wealth and time only, the last term on the right-hand side will be

zero, and we get the well-known relation

µit + δit − rft = βiWt

(

µWt + δWt − rft

)

,

where βiWt is the “market-beta” of asset i. This is a continuous-time version of the traditional

static CAPM. This is only true under the strong assumption that individuals do not care about

variations in investment opportunities, income, etc. In general we have to add factors describing

the future investment opportunities, future labor income, etc. This extension of the CAPM is

called the Intertemporal CAPM and was first derived by Merton (1973b).

Only few empirical studies of factor models refer to Merton’s Intertemporal CAPM when mo-

tivating the choice of factors. Brennan, Wang, and Xia (2004) set up a simple model with the

short-term real interest rate and the slope of the capital market line as the factors since these

variables capture the investment opportunities. In an empirical test, this model performs as well

as the Fama-French model, which is encouraging for the development of theoretically well-founded

and empirically viable factor models.

9.8 Exercises

EXERCISE 9.1 Consider a discrete-time economy with a one-dimensional conditional pricing

factor x = (xt) so that, for some adapted processes α = (αt) and some η = (ηt),

Et[Ri,t+1] = αt + βt[Ri,t+1, xt+1] ηt,

for all assets i and all t = 0, 1, . . . , T − 1.
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(a) Show that
ζt+1

ζt
=

1

αt

(

1 − xt+1 − Et[xt+1]

Vart[xt+1]
ηt

)

satisfies the pricing condition for a state-price deflator, i.e.

Et

[
ζt+1

ζt
Ri,t+1

]

= 1

for all assets i.

(b) Show that ζt+1/ζt is only a true one-period state-price deflator for the period between time t

and time t + 1 if you to impose some condition on parameters and/or distributions and

provide that condition. If this condition is not satisfied, what can you conclude about the

asset prices in this economy?

(c) Now suppose that the factor is the return on some particular portfolio, i.e. xt+1 = R̃t+1.

Answer question (b) again.

(d) Consider the good (?) old (!) CAPM where xt+1 = RM,t+1, the return on the market portfolio.

Suppose that Et[RM,t+1] = 1.05, σt[RM,t+1] = 0.2, and Rft = 1.02. What do you need to

assume about the distribution of the market return to ensure that the model is free of

arbitrage? Is an assumption like this satisfied in typical derivations of the CAPM?

EXERCISE 9.2 Using the orthogonal characterization of the mean-variance frontier, show that

for any mean-variance efficient return Rπ different from the minimum-variance portfolio there is a

unique mean-variance efficient return Rz(π) with Cov[Rπ, Rz(π)] = 0. Show that

E[Rz(π)] = E[R∗] − E[Re∗]
E[(R∗)2] − E[Rπ] E[R∗]

E[Rπ] − E[R∗] − E[Rπ] E[Re∗]
.

EXERCISE 9.3 Consider a discrete-time economy in which asset prices are described by an

unconditional linear factor model

ζt+1

ζt
= a+ b · xt+1, t = 0, 1, . . . , T − 1,

where the conditional mean and second moments of the factor are constant, i.e. Et[xt+1] = µ and

Et[xt+1x
⊤

t+1] = Σ for all t.

(a) What is the one-period risk-free rate of return rft ? What is the time t annualized yield ŷt+st

on a zero-coupon bond maturing at time t+ s? (If Bt+st denotes the price of the bond, the

annualized gross yield is defined by the equation Bt+st = (1 + ŷt+st )−s.)

(b) What can you say about the expected excess one-period returns on risky assets?

You want to value an uncertain stream of dividends D = (Dt). You are told that dividends evolve

as
Dt+1

Dt
= m+ψ · xt+1 + εt+1, t = 0, 1, . . . , T − 1,

where Et[εt+1] = 0 and Et[εt+1xt+1] = 0 for all t.
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(c) Show that, for any t = 0, 1, . . . , T − 1,

Et

[
Dt+1

Dt

ζt+1

ζt

]

= ma+ (mb+ aψ) · µ+ψ⊤Σb ≡ A

(d) Show that

Et

[
Dt+s

Dt

ζt+s
ζt

]

= As.

(e) Show that the value at time t of the future dividends is

Pt = Dt
A

1 −A

(
1 −AT−t

)
.

From (4.27) we know that we can also value the dividends by the formula

Pt =

T−t∑

s=1

Et[Dt+s] − βt

[

Dt+s,
ζt+s

ζt

]

ηt,t+s

(1 + ŷt+st )s
, (*)

where

βt

[

Dt+s,
ζt+s
ζt

]

= Covt

[

Dt+s,
ζt+s
ζt

]

/Vart

[
ζt+s
ζt

]

, ηt,t+s = −Vart

[
ζt+s
ζt

]

/Et

[
ζt+s
ζt

]

.

In the next questions you have to compute the ingredients to this valuation formula.

(f) Show that Et[Dt+s] = Dt (m+ψ · µ)
s
.

(g) Compute Covt

[

Dt+s,
ζt+s

ζt

]

.

(h) Compute βt

[

Dt+s,
ζt+s

ζt

]

.

(i) Compute ηt,t+s

(j) Verify that the time t value of the future dividends satisfies (*).

EXERCISE 9.4 In a continuous-time framework an individual with time-additive expected

power utility induces the state-price deflator

ζt = e−δt
(
ct
c0

)−γ

,

where γ is the constant relative risk aversion, δ is the subjective time preference rate, and c =

(ct)t∈[0,T ] is the optimal consumption process of the individual. If the dynamics of the optimal

consumption process is of the form

dct = ct [µct dt+ σ⊤

ct dzt]

then the dynamics of the state-price deflator is

dζt = −ζt
[(

δ + γµct −
1

2
γ(1 + γ)‖σct‖2

)

dt+ γσ⊤

ct dzt

]

.
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(a) State the market price of risk λt in terms of the preference parameters and the expected

growth rate and sensitivity of the consumption process.

In many concrete models of the individual consumption and portfolio decisions, the optimal con-

sumption process will be of the form

ct = Wte
f(Xt,t),

where Wt is the wealth of the individual at time t, Xt is the time t value of some state variable,

and f is some smooth function. Here X can potentially be multi-dimensional.

(b) Give some examples of variables other than wealth that may affect the optimal consumption

of an individual and which may therefore play the role of Xt.

Suppose the state variable X is one-dimensional and write the dynamics of the wealth of the

individual and the state variable as

dWt = Wt

[(

µWt − ef(Xt,t)
)

dt+ σ⊤

Wt dzt

]

,

dXt = µXt dt+ σ⊤

Xt dzt

(c) Characterize the market price of risk in terms of the preference parameters and the drift and

sensitivity terms of Wt and Xt.

Hint: Apply Itô’s Lemma to ct = Wte
f(Xt,t) to express the required parts of the consumption

process in terms of W and X.

(d) Show that the instantaneous excess expected rate of return on risky asset i can be written

as

µit + δit − rft = βiW,tηWt + βiX,tηXt,

where βiW,t and βiX, t are the instantaneous beta’s of the asset with respect to wealth and

the state variable, respectively. Relate ηWt and ηXt to preference parameters and the drift

and sensitivity terms of W and X.



Chapter 10

The economics of the term

structure of interest rates

10.1 Introduction

The previous two chapters focused on the implications of asset pricing models for the level of

stock market excess returns and the cross-section of stock returns. In this chapter focuses on the

consequences of asset pricing theory for the pricing of bonds and the term structure of interest

rates implied by bond prices.

A bond is nothing but a standardized and transferable loan agreement between two parties. The

issuer of the bond is borrowing money from the holder of the bond and promises to pay back the

loan according to a predefined payment scheme. The presence of the bond market allows individuals

to trade consumption opportunities at different points in time among each other. An individual

who has a clear preference for current capital to finance investments or current consumption can

borrow by issuing a bond to an individual who has a clear preference for future consumption

opportunities. The price of a bond of a given maturity is, of course, set to align the demand and

supply of that bond, and will consequently depend on the attractiveness of the real investment

opportunities and on the individuals’ preferences for consumption over the maturity of the bond.

The term structure of interest rates will reflect these dependencies.

After a short introduction to notation and bond market terminology in Section 10.2, we derive

in Sections 10.3 and 10.4 relations between equilibrium interest rates and aggregate consumption

and production in settings with a representative individual. In Section 10.5 we give some examples

of equilibrium term structure models that are derived from the basic relations between interest

rates, consumption, and production. The famous Vasicek model and Cox-Ingersoll-Ross model are

presented.

Since individuals are concerned with the number of units of goods they consume and not the

dollar value of these goods, the relations found in those sections apply to real interest rates.

However, most traded bonds are nominal, i.e. they promise the delivery of certain dollar amounts,

not the delivery of a certain number of consumption goods. The real value of a nominal bond

depends on the evolution of the price of the consumption good. In Section 10.6 we explore the

relations between real rates, nominal rates, and inflation. We consider both the case where money

219
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has no real effects on the economy and the case where money does affect the real economy.

The development of arbitrage-free dynamic models of the term structure was initiated in the

1970s. Until then, the discussions among economists about the shape of the term structure were

based on some relatively loose hypotheses. The most well-known of these is the expectation

hypothesis, which postulates a close relation between current interest rates or bond yields and

expected future interest rates or bond returns. Many economists still seem to rely on the validity

of this hypothesis, and a lot of man power has been spend on testing the hypothesis empirically. In

Section 10.7, we review several versions of the expectation hypothesis and discuss the consistency

of these versions. We argue that neither of these versions will hold for any reasonable dynamic

term structure model. Some alternative traditional hypotheses are briefly reviewed in Section 10.8.

10.2 Basic interest rate concepts and relations

As in earlier chapters we will denote by BTt the price at time t of a zero-coupon bond paying

a dividend of one at time T and no other dividends. If many zero-coupon bonds with different

maturities are traded, we can form the function T 7→ BTt , which we refer to as the discount

function prevailing at time t. Of course, we must have Btt = 1, and we expect the discount

function to be decreasing since all individuals will presumably prefer getting the dividend sooner

than later.

Next, consider a coupon bond with payment dates t1, t2, . . . , tn, where we assume without loss

of generality that t1 < t2 < · · · < tn. The payment at date ti is denoted by Yi. Such a coupon

bond can be seen as a portfolio of zero-coupon bonds, namely a portfolio of Y1 zero-coupon bonds

maturing at t1, Y2 zero-coupon bonds maturing at t2, etc. If all these zero-coupon bonds are traded

in the market, the unique no-arbitrage price of the coupon bond at any time t is

Bt =
∑

ti>t

YiB
ti
t . (10.1)

where the sum is over all future payment dates of the coupon bond. If not all the relevant zero-

coupon bonds are traded, we cannot justify the relation (10.1) as a result of the no-arbitrage

principle. Still, it is a valuable relation. Suppose that an investor has determined (from private

or macro economic information) a discount function showing the value she attributes to payments

at different future points in time. Then she can value all sure cash flows in a consistent way by

substituting that discount function into (10.1).

The information incorporated in prices of the many different bonds is usually better understood

when transforming the bond prices into interest rates. Interest rates are always quoted on an annual

basis, i.e. as some percentage per year. However, to apply and assess the magnitude of an interest

rate, we also need to know the compounding frequency of that rate. More frequent compounding

of a given interest rate per year results in higher “effective” interest rates. Furthermore, we need

to know at which time the interest rate is set or observed and for which period of time the interest

rate applies. Spot rates applies to a period beginning at the time the rate is set, whereas forward

rates applies to a future period of time. The precise definitions follow below.
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Annual compounding

Given the price BTt at time t on a zero-coupon bond maturing at time T , the relevant discount

rate between time t and time T is the yield on the zero-coupon bond, the so-called zero-coupon

rate or spot rate for date T . That ŷTt is the annually compounded zero-coupon rate means that

BTt = (1 + ŷTt )−(T−t) ⇔ ŷTt =
(
BTt
)−1/(T−t) − 1. (10.2)

The zero-coupon rates as a function of maturity is called the zero-coupon yield curve or simply

the yield curve. It is one way to express the term structure of interest rates.

While a zero-coupon or spot rate reflects the price on a loan between today and a given future

date, a forward rate reflects the price on a loan between two future dates. The annually com-

pounded relevant forward rate at time t for the period between time T and time S is denoted by

f̂T,St . Here, we have t ≤ T < S. This is the rate, which is appropriate at time t for discounting

between time T and S. We can think of discounting from time S back to time t by first discounting

from time S to time T and then discounting from time T to time t. We must therefore have that

(
1 + ŷSt

)−(S−t)
=
(
1 + ŷTt

)−(T−t)
(

1 + f̂T,St

)−(S−T )

, (10.3)

from which we find that

f̂T,St =
(1 + ŷTt )−(T−t)/(S−T )

(1 + ŷSt )−(S−t)/(S−T )
− 1.

We can also link forward rates to bond prices:

BSt = BTt

(

1 + f̂T,St

)−(S−T )

⇔ f̂T,St =

(
BTt
BSt

)1/(S−T )

− 1. (10.4)

Note that since Btt = 1, we have

f̂ t,St =

(
Btt
BSt

)1/(S−t)

− 1 =
(
BSt
)−1/(S−t) − 1 = ŷSt ,

i.e. the forward rate for a period starting today equals the zero-coupon rate or spot rate for the

same period.

Compounding over other discrete periods – LIBOR rates

In practice, many interest rates are quoted using semi-annually, quarterly, or monthly compound-

ing. An interest rate or R per year compounded m times a year, corresponds to a discount factor of

(1 +R/m)−m over a year. The annually compounded interest rate that corresponds to an interest

rate of R compounded m times a year is (1 +R/m)m− 1. This is sometimes called the “effective”

interest rate corresponding to the nominal interest rate R. Interest rates are set for loans with

various maturities and currencies at the international money markets, the most commonly used

being the LIBOR rates that are fixed in London. Traditionally, these rates are quoted using a

compounding period equal to the maturity of the interest rate. If, for example, the three-month

interest rate is lt+0.25
t per year, it means that

Bt+0.25
t =

1

1 + 0.25 lt+0.25
t

⇔ lt+0.25
t =

1

0.25

(
1

Bt+0.25
t

− 1

)

.
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More generally, the relations are

BTt =
1

1 + lTt (T − t)
⇔ lTt =

1

T − t

(
1

BTt
− 1

)

. (10.5)

Similarly, discretely compounded forward rates can be computed as

LT,St =
1

S − T

(
BTt
BSt

− 1

)

. (10.6)

Continuous compounding

Increasing the compounding frequency m, the effective annual return of one dollar invested at the

interest rate R per year increases to eR, due to the mathematical result saying that

lim
m→∞

(

1 +
R

m

)m

= eR.

A continuously compounded interest rate R is equivalent to an annually compounded interest rate

of eR − 1 (which is bigger than R). Similarly, the zero-coupon bond price BTt is related to the

continuously compounded zero-coupon rate yTt by

BTt = e−y
T
t (T−t) ⇔ yTt = − 1

T − t
lnBTt . (10.7)

The function T 7→ yTt is also a zero-coupon yield curve that contains exactly the same information

as the discount function T 7→ BTt and also the same information as the annually compounded yield

curve T 7→ ŷTt . The relation is yTt = ln(1 + ŷTt ).

If fT,St denotes the continuously compounded forward rate prevailing at time t for the period

between T and S, we must have that BSt = BTt e
−fT,S

t (S−T ), in analogy with (10.4). Consequently,

fT,St = − lnBSt − lnBTt
S − T

(10.8)

and hence

fT,St =
ySt (S − t) − yTt (T − t)

S − T
. (10.9)

Analytical studies of the term structure of interest rates often focus on forward rates for future

periods of infinitesimal length. The forward rate for an infinitesimal period starting at time T

is simply referred to as the forward rate for time T and is defined as fTt = limS→T f
T,S
t . The

function T 7→ fTt is called the term structure of forward rates. Assuming differentiability of

the discount function, we get

fTt = −∂ lnBTt
∂T

= −∂B
T
t /∂T

BTt
⇔ BTt = e−

R T
t
fu

t du. (10.10)

Applying (10.9), the relation between the infinitesimal forward rate and the spot rates can be

written as

fTt =
∂ [yTt (T − t)]

∂T
= yTt +

∂yTt
∂T

(T − t) (10.11)

under the assumption of a differentiable term structure of spot rates T 7→ yTt . The forward rate

reflects the slope of the zero-coupon yield curve. In particular, the forward rate fTt and the zero-

coupon rate yTt will coincide if and only if the zero-coupon yield curve has a horizontal tangent

at T . Conversely,

yTt =
1

T − t

∫ T

t

fut du, (10.12)
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i.e. the zero-coupon rate is an average of the forward rates.

It is important to realize that discount factors, spot rates, and forward rates (with any compound-

ing frequency) are perfectly equivalent ways of expressing the same information. If a complete yield

curve of, say, quarterly compounded spot rates is given, we can compute the discount function and

spot rates and forward rates for any given period and with any given compounding frequency. If

a complete term structure of forward rates is known, we can compute discount functions and spot

rates, etc. Academics frequently apply continuous compounding since the mathematics involved

in many relevant computations is more elegant when exponentials are used.

There are even more ways of representing the term structure of interest rates. Since most bonds

are bullet bonds, many traders and analysts are used to thinking in terms of yields of bullet bonds

rather than in terms of discount factors or zero-coupon rates. The par yield for a given maturity

is the coupon rate that causes a bullet bond of the given maturity to have a price equal to its face

value. Again we have to fix the coupon period of the bond. U.S. treasury bonds typically have

semi-annual coupons which are therefore often used when computing par yields. Given a discount

function T 7→ BTt , the n-year par yield is the value of c satisfying

2n∑

i=1

( c

2

)

Bt+0.5i
t +Bt+nt = 1 ⇒ c =

2
(
1 −Bt+nt

)

∑2n
i=1B

t+0.5i
t

.

It reflects the current market interest rate for an n-year bullet bond. The par yield is closely

related to the so-called swap rate, which is a key concept in the swap markets.

10.3 Real interest rates and aggregate consumption

In order to study the link between interest rates and aggregate consumption, we assume the exis-

tence of a representative individual maximizing the expected time-additive utility E[
∫ T

0
e−δtu(ct) dt].

As discussed in Chapter 7, a representative individual will exist in a complete market. The param-

eter δ is the subjective time preference rate with higher δ representing a more impatient individual.

ct is the consumption rate of the individual, which is then also the aggregate consumption level

in the economy. In terms of the utility and time preference of the representative individual the

state-price deflator is therefore characterized by

ζt = e−δt
u′(ct)

u′(c0)
.

Let us take a continuous-time framework and assume that c = (ct) follows a stochastic process

of the form

dct = ct [µct dt+ σ⊤

ct dzt] ,

where z = (zt) is a (possibly multi-dimensional) standard Brownian motion. Then we have shown

in Chapter 8 that the equilibrium continuously compounded short-term interest rate is given by

rt = δ + γ(ct)µct −
1

2
η(ct)‖σct‖2, (10.13)

and that

λt = γ(ct)σct (10.14)
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defines a market price of risk process. Here γ(ct) ≡ −ctu′′(ct)/u′(ct) is the relative risk aversion

and η(ct) ≡ c2tu
′′′(ct)/u

′(ct), which is positive under the very plausible assumption of decreasing

absolute risk aversion. For notational simplicity we leave out the f superscript on the short-term

interest rate in this chapter.

Equation (10.13) gives the interest rate at which the market for short-term borrowing and lending

will clear. The equation relates the equilibrium short-term interest rate to the time preference rate

and the expected growth rate µct and the variance rate ‖σct‖2 of aggregate consumption growth

over the next instant. We can observe the following relations:

• There is a positive relation between the time preference rate and the equilibrium interest

rate. The intuition behind this is that when the individuals of the economy are impatient

and has a high demand for current consumption, the equilibrium interest rate must be high

in order to encourage the individuals to save now and postpone consumption.

• The multiplier of µct in (10.13) is the relative risk aversion of the representative individual,

which is positive. Hence, there is a positive relation between the expected growth in aggregate

consumption and the equilibrium interest rate. This can be explained as follows: We expect

higher future consumption and hence lower future marginal utility, so postponed payments

due to saving have lower value. Consequently, a higher return on saving is needed to maintain

market clearing.

• If u′′′ is positive, there will be a negative relation between the variance of aggregate con-

sumption and the equilibrium interest rate. If the representative individual has decreasing

absolute risk aversion, which is certainly a reasonable assumption, u′′′ has to be positive.

The intuition is that the greater the uncertainty about future consumption, the more will

the individuals appreciate the sure payments from the risk-free asset and hence the lower a

return is necessary to clear the market for borrowing and lending.

In the special case of constant relative risk aversion, u(c) = c1−γ/(1 − γ), Equation (10.13)

simplifies to

rt = δ + γµct −
1

2
γ(1 + γ)‖σct‖2. (10.15)

In particular, we see that if the drift and variance rates of aggregate consumption are constant,

i.e. aggregate consumption follows a geometric Brownian motion, then the short-term interest rate

will be constant over time. In that case the time t price of the zero-coupon bond maturing at

time s is

Bst = Et

[
ζs
ζt

]

= Et

[

exp

{

−r(s− t) − 1

2
‖λ‖2(s− t) − λ⊤(zs − zt)

}]

= e−r(s−t)

and the corresponding continuous compounded yield is yst = r. Consequently, the yield curve will

be flat and constant over time. This is clearly an unrealistic case. To obtain interesting models

we must either allow for variations in the expectation and the variance of aggregate consumption

growth or allow for non-constant relative risk aversion (or both).

What can we say in general about the relation between the equilibrium yield curve and the

expectations and uncertainty about future aggregate consumption?.1 The equilibrium time t price

1The presentation is adapted from Breeden (1986).
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of a zero-coupon bond paying one consumption unit at time T ≥ t is given by

BTt = Et

[
ζT
ζt

]

= e−δ(T−t) Et [u
′(cT )]

u′(ct)
, (10.16)

where cT is the uncertain future aggregate consumption level. We can write the left-hand side of

the equation above in terms of the yield yTt of the bond as

BTt = e−y
T
t (T−t) ≈ 1 − yTt (T − t),

using a first order Taylor expansion. Turning to the right-hand side of the equation, we will use a

second-order Taylor expansion of u′(cT ) around ct:

u′(cT ) ≈ u′(ct) + u′′(ct)(cT − ct) +
1

2
u′′′(ct)(cT − ct)

2.

This approximation is reasonable when cT stays relatively close to ct, which is the case for fairly

low and smooth consumption growth and fairly short time horizons. Applying the approximation,

the right-hand side of (10.16) becomes

e−δ(T−t) Et [u
′(cT )]

u′(ct)
≈ e−δ(T−t)

(

1 +
u′′(ct)

u′(ct)
Et[cT − ct] +

1

2

u′′′(ct)

u′(ct)
Vart[cT − ct]

)

≈ 1 − δ(T − t) + e−δ(T−t) ctu
′′(ct)

u′(ct)
Et

[
cT
ct

− 1

]

+
1

2
e−δ(T−t)c2t

u′′′(ct)

u′(ct)
Vart

[
cT
ct

]

,

where we have used the approximations e−δ(T−t) ≈ 1−δ(T−t) and (Et[cT − ct])
2 ≈ 0. Substituting

the approximations of both sides into (10.16) and rearranging, we find the following approximate

expression for the zero-coupon yield:

yTt ≈ δ + e−δ(T−t)

(−ctu′′(ct)
u′(ct)

)
Et [cT /ct − 1]

T − t
− 1

2
e−δ(T−t)c2t

u′′′(ct)

u′(ct)

Vart [cT /ct]

T − t
. (10.17)

Again assuming u′ > 0, u′′ < 0, and u′′′ > 0, we can state the following conclusions. The

equilibrium yield is increasing in the subjective rate of time preference. The equilibrium yield for

the period [t, T ] is positively related to the expected growth rate of aggregate consumption over

the period and negatively related to the uncertainty about the growth rate of consumption over

the period. The intuition for these results is the same as for short-term interest rate discussed

above. We see that the shape of the equilibrium time t yield curve T 7→ yTt is determined by

how expectations and variances of consumption growth rates depend on the length of the forecast

period. For example, if the economy is expected to enter a short period of high growth rates, real

short-term interest rates tend to be high and the yield curve downward-sloping.

10.4 Real interest rates and aggregate production

In order to study the relation between interest rates and production, we will look at a slightly

simplified version of the general equilibrium model of Cox, Ingersoll, and Ross (1985a).

Consider an economy with a single physical good that can be used either for consumption or

investment. All values are expressed in units of this good. The instantaneous rate of return on an

investment in the production of the good is

dηt
ηt

= g(Xt) dt+ ξ(Xt) dz1t, (10.18)
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where z1 is a standard one-dimensional Brownian motion and g and ξ are well-behaved real-valued

functions (given by Mother Nature) of some state variable Xt. We assume that ξ(x) is non-negative

for all values of X. The above dynamics means that η0 goods invested in the production process

at time 0 will grow to ηt goods at time t if the output of the production process is continuously

reinvested in this period. We can interpret g as the expected real growth rate of production in

the economy and the volatility ξ (assumed positive for all X) as a measure of the uncertainty

about the growth rate of production in the economy. The production process has constant returns

to scale in the sense that the distribution of the rate of return is independent of the scale of the

investment. There is free entry to the production process. We can think of individuals investing

in production directly by forming their own firm or indirectly by investing in stocks of production

firms. For simplicity we take the first interpretation. All producers, individuals and firms, act

competitively so that firms have zero profits and just passes production returns on to their owners.

All individuals and firms act as price takers.

We assume that the state variable is a one-dimensional diffusion with dynamics

dXt = m(Xt) dt+ v1(Xt) dz1t + v2(Xt) dz2t, (10.19)

where z2 is another standard one-dimensional Brownian motion independent of z1, and m, v1, and

v2 are well-behaved real-valued functions. The instantaneous variance rate of the state variable

is v1(x)
2 + v2(x)

2, the covariance rate of the state variable and the real growth rate is ξ(x)v1(x)

so that the correlation between the state and the growth rate is v1(x)/
√

v1(x)2 + v2(x)2. Unless

v2 ≡ 0, the state variable is imperfectly correlated with the real production returns. If v1 is

positive [negative], then the state variable is positively [negatively] correlated with the growth rate

of production in the economy. Since the state determines the expected returns and the variance of

returns on real investments, we may think of Xt as a productivity or technology variable.

In addition to the investment in the production process, we assume that the individuals have

access to a financial asset with a price Pt with dynamics of the form

dPt
Pt

= µt dt+ σ1t dz1t + σ2t dz2t. (10.20)

As a part of the equilibrium we will determine the relation between the expected return µt and

the sensitivity coefficients σ1t and σ2t. Finally, the individuals can borrow and lend funds at an

instantaneously risk-free interest rate rt, which is also determined in equilibrium. The market is

therefore complete. Other financial assets affected by z1 and z2 may be traded, but they will be

redundant. We will get the same equilibrium relation between expected returns and sensitivity

coefficients for these other assets as for the one modeled explicitly. For simplicity we stick to the

case with a single financial asset.

If an individual at each time t consumes at a rate of ct ≥ 0, invests a fraction αt of his wealth

in the production process, invests a fraction πt of wealth in the financial asset, and invests the

remaining fraction 1 − αt − πt of wealth in the risk-free asset, his wealth Wt will evolve as

dWt = {rtWt +Wtαt (g(Xt) − rt) +Wtπt (µt − rt) − ct} dt
+Wtαtξ(Xt) dz1t +Wtπtσ1t dz1t +Wtπtσ2t dz2t.

(10.21)

Since a negative real investment is physically impossible, we should restrict αt to the non-negative

numbers. However, we will assume that this constraint is not binding.
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Let us look at an individual maximizing expected utility of future consumption. The indirect

utility function is defined as

J(W,x, t) = sup
(αs,πs,cs)s∈[t,T ]

Et

[
∫ T

t

e−δ(s−t)u(cs) ds

]

,

i.e. the maximal expected utility the individual can obtain given his current wealth and the current

value of the state variable. The dynamic programming technique of Section 6.5.2 lead to the

Hamilton-Jacobi-Bellman equation

δJ = sup
α,π,c

{

u(c) +
∂J

∂t
+ JW (rW + αW (g − r) + πW (µ− r) − c)

+
1

2
JWWW

2
(
[αξ + πσ1]

2 + π2σ2
2

)
+ Jxm

+
1

2
Jxx(v

2
1 + v2

2) + JWxWv1(αξ + πσ1)
}

The first-order conditions for α and π imply that

α∗ =
−JW
WJWW

[

(g − r)
σ2

1 + σ2
2

ξ2σ2
2

− (µ− r)
σ1

ξσ2
2

]

+
−JWx

WJWW

σ2v1 − σ1v2
ξσ2

, (10.22)

π∗ =
−JW
WJWW

[

− σ1

ξσ2
2

(g − r) +
1

σ2
2

(µ− r)

]

+
−JWx

WJWW

v2
σ2
. (10.23)

In equilibrium, prices and interest rates are such that (a) all individuals act optimally and (b)

all markets clear. In particular, summing up the positions of all individuals in the financial asset

we should get zero, and the total amount borrowed by individuals on a short-term basis should

equal the total amount lend by individuals. Since the available production apparatus is to be held

by some investors, summing the optimal α’s over investors we should get 1. Since we have assumed

a complete market, we can construct a representative individual, i.e. an individual with a given

utility function so that the equilibrium interest rates and price processes are the same in the single

individual economy as in the larger multi-individual economy. (Alternatively, we may think of the

case where all individuals in the economy are identical so that they will have the same indirect

utility function and always make the same consumption and investment choice.)

In an equilibrium, we have π∗ = 0 for a representative individual, and hence (10.23) implies that

µ− r =
σ1

ξ
(g − r) −

(
−JW x

WJW W

)

(
−JW

WJW W

)σ2v2. (10.24)

Substituting this into the expression for α∗ and using the fact that α∗ = 1 in equilibrium, we get

that

1 =

( −JW
WJWW

)


(g − r)
σ2

1 + σ2
2

ξ2σ2
2

− σ1

ξ

σ1

ξσ2
2

(g − r) +

(
−JW x

WJW W

)

(
−JW

WJW W

)σ2v2
σ1

ξσ2
2





+

( −JWx

WJWW

)
σ2v1 − σ1v2

ξσ2

=

( −JW
WJWW

)
g − r

ξ2
+

( −JWx

WJWW

)
v1
ξ
.

Consequently, the equilibrium short-term interest rate can be written as

r = g −
(−WJWW

JW

)

ξ2 +
JWx

JW
ξv1. (10.25)
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This equation ties the equilibrium real short-term interest rate to the production side of the

economy. Let us address each of the three right-hand side terms:

• The equilibrium real interest rate r is positively related to the expected real growth rate

g of the economy. The intuition is that for higher expected growth rates, the productive

investments are more attractive relative to the risk-free investment, so to maintain market

clearing the interest rate has to be higher as well.

• The term −WJWW /JW is the relative risk aversion of the representative individual’s indirect

utility. This is assumed to be positive. Hence, we see that the equilibrium real interest rate

r is negatively related to the uncertainty about the growth rate of the economy, represented

by the instantaneous variance ξ2. For a higher uncertainty, the safe returns of a risk-free

investment is relatively more attractive, so to establish market clearing the interest rate has

to decrease.

• The last term in (10.25) is due to the presence of the state variable. The covariance rate

of the state variable and the real growth rate of the economy is equal to ξv1. Suppose that

high values of the state variable represent good states of the economy, where the wealth of

the individual is high. Then the marginal utility JW will be decreasing in X, i.e. JWx <

0. If instantaneous changes in the state variable and the growth rate of the economy are

positively correlated, we see from (10.22) that the hedge demand of the productive investment

is decreasing, and hence the demand for depositing money at the short rate increasing, in

the magnitude of the correlation (both JWx and JWW are negative). To maintain market

clearing, the interest rate must be decreasing in the magnitude of the correlation as reflected

by (10.25).

We see from (10.24) that the market prices of risk are given by

λ1 =
g − r

ξ
, λ2 = −

(
−JW x

WJW W

)

(
−JW

WJW W

)v2 = −JWx

JW
v2. (10.26)

Applying the relation

g − r =

(−WJWW

JW

)

ξ2 − JWx

JW
ξv1,

we can rewrite λ1 as

λ1 =

(−WJWW

JW

)

ξ − JWx

JW
v1. (10.27)

10.5 Equilibrium interest rate models

10.5.1 The Vasicek model

A classic but still widely used model of interest rate dynamics and the pricing of bonds and interest

rate derivatives is the model proposed by Vasicek (1977). The basic assumptions of the model is

that the continuously compounded short-term interest rate rt has dynamics

drt = κ (r̄ − rt) dt+ σr dzt, (10.28)
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where κ, r̄, and σr are positive constants, and that the market price of risk associated with the

shock z is a constant λ.

Before we study the consequences of these assumptions, let us see how they can be supported

by a consumption-based equilibrium model. Following Goldstein and Zapatero (1996) assume that

aggregate consumption evolves as

dct = ct [µct dt+ σc dzt] ,

where z is a one-dimensional standard Brownian motion, σC is a constant, and the expected

consumption growth rate µct follows the process

dµct = κ (µ̄c − µct) dt+ θ dzt.

The representative individual is assumed to have a constant relative risk aversion of γ. It follows

from (10.15) that the equilibrium real short-term interest rate is

rt = δ + γµct −
1

2
γ(1 + γ)σ2

C

with dynamics drt = γdµct, which gives (10.28) with σr = γθ and r̄ = γµ̄c + δ− 1
2γ(1 + γ)σ2

c . The

market price of risk is λ = γσc, a constant.

The process (10.28) is a so-called Ornstein-Uhlenbeck process. An Ornstein-Uhlenbeck process

exhibits mean reversion in the sense that the drift is positive when rt < r̄ and negative when

xt > r̄. The process is therefore always pulled towards a long-term level of r̄. However, the

random shock to the process through the term σr dzt may cause the process to move further away

from r̄. The parameter κ controls the size of the expected adjustment towards the long-term level

and is often referred to as the mean reversion parameter or the speed of adjustment.

To determine the distribution of the future value of the short-term interest rate define a new

process yt as some function of rt such that y = (yt)t≥0 is a generalized Brownian motion. It turns

out that this is satisfied for yt = g(rt, t), where g(r, t) = eκtr. From Itô’s Lemma we get

dyt =

[
∂g

∂t
(rt, t) +

∂g

∂r
(rt, t)κ (r̄ − rt) +

1

2

∂2g

∂r2
(rt, t)σ

2
r

]

dt+
∂g

∂r
(rt, t)σr dzt

=
[
κeκtrt + κeκt (r̄ − rt)

]
dt+ eκtσr dzt

= κr̄eκt dt+ σre
κt dzt.

This implies that

yt′ = yt + κr̄

∫ t′

t

eκu du+

∫ t′

t

σre
κu dzu.

After substitution of the definition of yt and yt′ and a multiplication by e−κt
′

, we arrive at the

expression

rt′ = e−κ(t
′−t)rt + κr̄

∫ t′

t

e−κ(t
′−u) du+

∫ t′

t

σre
−κ(t′−u) dzu

= e−κ(t
′−t)rt + r̄

(

1 − e−κ(t
′−t)
)

+

∫ t′

t

σre
−κ(t′−u) dzu.

(10.29)

This holds for all t′ > t ≥ 0. In particular, we get that the solution to the stochastic differential

equation (10.28) can be written as

rt = e−κtr0 + r̄
(
1 − e−κt

)
+

∫ t

0

σre
−κ(t−u) dzu. (10.30)
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According to Theorem 2.3, the integral
∫ t′

t
σre

−κ(t′−u) dzu is normally distributed with mean

zero and variance
∫ t′

t
σ2
re

−2κ(t′−u) du =
σ2

r

2κ

(

1 − e−2κ(t′−t)
)

. We can thus conclude that rt′ (given

rt) is normally distributed, with mean and variance given by

Et[rt′ ] = e−κ(t
′−t)rt + r̄

(

1 − e−κ(t
′−t)
)

, (10.31)

Vart[rt′ ] =
σ2
r

2κ

(

1 − e−2κ(t′−t)
)

. (10.32)

The value space of an Ornstein-Uhlenbeck process is R. For t′ → ∞, the mean approaches r̄,

and the variance approaches σ2
r/(2κ). For κ → ∞, the mean approaches r̄, and the variance

approaches 0. For κ → 0, the mean approaches the current value rt, and the variance approaches

σ2
r(t

′ − t). The distance between the level of the process and the long-term level is expected to be

halved over a period of t′ − t = (ln 2)/κ, since Et[rt′ ] − r̄ = 1
2 (rt − r̄) implies that e−κ(t

′−t) = 1
2

and, hence, t′ − t = (ln 2)/κ.

The effect of the different parameters can also be evaluated by looking at the paths of the process,

which can be simulated by

rti = rti−1
+ κ[r̄ − rti−1

](ti − ti−1) + σrεi
√

ti − ti−1,

where εi ∼ N(0, 1). Figure 10.1 shows a single path for different combinations of r0, κ, r̄, and σr.

In each sub-figure one of the parameters is varied and the others fixed. The base values of the

parameters are r0 = 0.08, r̄ = 0.08, κ = ln 2 ≈ 0.69, and σr = 0.03. All paths are computed using

the same sequence of random numbers ε1, . . . , εn and are therefore directly comparable. None of

the paths shown involve negative values of the process, but other paths will, see e.g. Figure 10.2.

As a matter of fact, it can be shown that an Ornstein-Uhlenbeck process with probability one will

sooner or later become negative.

What are the implications of the Vasicek assumptions for bond prices and the yield curve? The

time t price of a zero-coupon bond maturing at time s is given by

Bst = Et

[
ζs
ζt

]

= Et

[

exp

{

−
∫ s

t

ru du− 1

2

∫ s

t

λ2 du−
∫ s

t

λ dzu

}]

.

In order to compute this expectation, first use (10.29) to find that

∫ s

t

ru du =

∫ s

t

e−κ(u−t)rt du+

∫ s

t

r̄
(

1 − e−κ(u−t)
)

du+

∫ s

t

∫ u

t

σre
−κ(u−v) dzv du.

Interchange the order of integration in the double integral (this follows from the so-called Fubini

Theorem of stochastic calculus)

∫ s

t

[∫ u

t

σre
−κ(u−v) dzv

]

du =

∫ s

t

[∫ s

v

σre
−κ(u−v) du

]

dzv.

Further note that
∫ s

t
e−κ(u−t) du = b(s− t), where we have introduced the function

b(τ) =
1

κ

(
1 − e−κτ

)
, (10.33)

Also note that
∫ s

t

b(s− u) du =
1

κ
(s− t− b(s− t)),

∫ s

t

b(s− u)2 du =
1

κ2
(s− t− b(s− t)) − 1

2κ
b(s− t)2.
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Figure 10.1: Simulated paths for an Ornstein-Uhlenbeck process. The basic parameter values are

r0 = r̄ = 0.08, κ = ln 2 ≈ 0.69, and σr = 0.03.

It now follows that
∫ s

t

ru du = rtb(s− t) + r̄ (s− t− b(s− t)) +

∫ s

t

σrb(s− u) dzu,

and using Theorem 2.3 and results in Appendix B we obtain

Bst = e−rtb(s−t)−r̄(s−t−b(s−t))−
1
2λ

2(s−t) Et

[

e−
R s

t
(λ+σrb(s−u)) dzu

]

= e−rtb(s−t)−r̄(s−t−b(s−t))−
1
2λ

2(s−t)e
1
2

R s
t
(λ+σrb(s−u))2 du

= e−rtb(s−t)−r̄(s−t−b(s−t))−
1
2λ

2(s−t)e
1
2λ

2(s−t)+λσr

R s
t
b(s−u) du+ 1

2σ
2
r

R s
t
b(s−u)2 du

= e−a(s−t)−b(s−t)rt ,

(10.34)

where

a(τ) = y∞(τ − b(τ)) +
σ2
r

4κ
b(τ)2 (10.35)

and

y∞ = r̄ − λσr
κ

− σ2
r

2κ2
.
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The continuously compounded yield of the zero-coupon bond maturing at time s is

yst = − lnBst
s− t

=
a(s− t)

s− t
+
b(s− t)

s− t
rt, (10.36)

which is affine in the current short rate rt. A model with this property is called an affine term

structure model. It can be shown that yst → y∞ for s → ∞, which explains the notation. The

asymptotic long yield is a constant in the Vasicek model. Concerning the shape of the yield curve

s→ yst it can be shown that

(i) if rt < y∞ − σ2
r

4κ2 , the yield curve is increasing;

(ii) if rt > y∞ +
σ2

r

2κ2 , the yield curve is decreasing;

(iii) for intermediate values of rt, the yield curve is humped, i.e. increasing in s up to some

maturity s∗ and then decreasing for longer maturities.

Within the Vasicek model it is possible to find closed-form expressions for the prices of many

other interesting assets, such as forwards and futures on bonds, Eurodollar futures, and European

options on bonds; see Chapter 12.

There are many other affine term structure models and they can basically all be supported by

a consumption-based asset pricing model in the same way as the Vasicek model. Assume that

the expected growth rate and the variance rate of aggregate consumption are affine in some state

variables, i.e.

µct = a0 +

n∑

i=1

aiXit, ‖σct‖2 = b0 +

n∑

i=1

biXit,

then the equilibrium short rate will be

rt =

(

δ + γa0 −
1

2
γ(1 + γ)b0

)

+ γ

n∑

i=1

(

ai −
1

2
(1 + γ)bi

)

Xit.

Of course, we should have b0 +
∑n
i=1 biXit ≥ 0 for all values of the state variables. The market

price of risk is λt = γσct. If the state variables Xi follow processes of the affine type, we have an

affine term structure model.

For other term structure models developed with the consumption-based approach, see e.g. Bakshi

and Chen (1997).

10.5.2 The Cox-Ingersoll-Ross model

Another widely used model of interest rate dynamics was suggested by Cox, Ingersoll, and Ross

(1985b). They assume that the short-term interest rate rt follows a so-called square-root process

drt = κ (r̄ − rt) dt+ σr
√
rt dz̄t, (10.37)

where κ, r̄, and σr are positive constants. Further they assume that the associated market price

of risk is λt = λ
√
rt/σr, where the λ on the right-hand side is a constant.

They derive their model as a special case of their general equilibrium model with production

which we have reviewed in Section 10.4. The representative individual is assumed to have a

logarithmic utility so that the relative risk aversion of the direct utility function is 1. In addition,
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the individual is assumed to have an infinite time horizon, which implies that the indirect utility

function will be independent of time. It can be shown that under these assumptions the indirect

utility function of the individual is of the form J(W,x) = A lnW + B(x). In particular, JWx = 0

and the relative risk aversion of the indirect utility function is also 1. It follows from (10.25) that

the equilibrium real short-term interest rate is equal to

r(xt) = g(xt) − ξ(xt)
2.

The authors further assume that the expected rate of return and the variance rate of the return

on the productive investment are both proportional to the state, i.e.

g(x) = k1x, ξ(x)2 = k2x,

where k1 > k2. Then the equilibrium short-rate becomes r(x) = (k1 − k2)x ≡ kx. Assume now

that the state variable follows a square-root process

dxt = κ (x̄− xt) dt+ ρσx
√
xt dz1t +

√

1 − ρ2σx
√
xt dz2t

= κ (x̄− xt) dt+ σx
√
xt dz̄t,

where z̄ is a standard Brownian motion with correlation ρ with the standard Brownian motion z1

and correlation
√

1 − ρ2 with z2. Then the dynamics of the real short rate is drt = k dxt, which

yields

drt = κ (r̄ − rt) dt+ σr
√
rt dz̄t, (10.38)

where r̄ = kx̄ and σr =
√
kσx. The market prices of risk given in (10.26) and (10.27) simplify to

λ1 = ξ(x) =
√

k2x =
√

k2/k
√
r, λ2 = 0.

The market price of risk associated with the combined shock z̄ is ρλ1 +
√

1 − ρ2λ2, which is

proportional to
√
r. These conclusions support (10.37) and the associated form of the market price

of risk.

Before we discuss the implications for bond prices and the yield curve, let us look at the properties

of the square-root process. The only difference to the Ornstein-Uhlenbeck process is the square-

root term in the volatility. The variance rate is now σ2
rrt which is proportional to the level of

the process. A square root process also exhibits mean reversion. A square root process can only

take on non-negative values. To see this, note that if the value should become zero, then the

drift is positive and the volatility zero, and therefore the value of the process will with certainty

become positive immediately after (zero is a so-called reflecting barrier). It can be shown that if

2κr̄ ≥ σ2
r , the positive drift at low values of the process is so big relative to the volatility that the

process cannot even reach zero, but stays strictly positive.2 Hence, the value space for a square

root process is either S = [0,∞) or S = (0,∞).

Paths for the square root process can be simulated by successively calculating

rti = rti−1
+ κ[r̄ − rti−1

](ti − ti−1) + σr
√
rti−1

εi
√

ti − ti−1.

Variations in the different parameters will have similar effects as for the Ornstein-Uhlenbeck pro-

cess, which is illustrated in Figure 10.1. Instead, let us compare the paths for a square root process

2To show this, the results of Karlin and Taylor (1981, p. 226ff) can be applied.
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Figure 10.2: A comparison of simulated paths for an Ornstein-Uhlenbeck process and a square root

process. For both processes, the parameters r̄ = 0.08 and κ = ln 2 ≈ 0.69 are used, while σr is set to

0.03 for the Ornstein-Uhlenbeck process and to 0.03/
√

0.08 ≈ 0.1061 for the square root process.

and an Ornstein-Uhlenbeck process using the same drift parameters κ and r̄, but where the σr-

parameter for the Ornstein-Uhlenbeck process is set equal to the σr-parameter for the square root

process multiplied by the square root of r̄, which ensures that the processes will have the same

variance rate at the long-term level. Figure 10.2 compares two pairs of paths of the processes. In

part (a), the initial value is set equal to the long-term level, and the two paths continue to be

very close to each other. In part (b), the initial value is lower than the long-term level, so that

the variance rates of the two processes differ from the beginning. For the given sequence of ran-

dom numbers, the Ornstein-Uhlenbeck process becomes negative, while the square root process of

course stays positive. In this case there is a clear difference between the paths of the two processes.

Since a square root process cannot become negative, the future values of the process cannot be

normally distributed. In order to find the actual distribution, let us try the same trick as for the

Ornstein-Uhlenbeck process, that is we look at yt = eκtrt. By Itô’s Lemma,

dyt = κeκtrt dt+ κeκt(r̄ − κrt) dt+ eκtσr
√
rt dzt

= κr̄eκt dt+ σre
κt√rt dzt,

so that

yt′ = yt + κr̄

∫ t′

t

eκu du+

∫ t′

t

σre
κu√ru dzu.

Computing the ordinary integral and substituting the definition of y, we get

rt′ = rte
−κ(t′−t) + r̄

(

1 − e−κ(t
′−t)
)

+ σr

∫ t′

t

e−κ(t
′−u)√ru dzu. (10.39)

Since r enters the stochastic integral we cannot immediately determine the distribution of rt′ given

rt from this equation. We can, however, use it to obtain the mean and variance of rt′ . Due to the

fact that the stochastic integral has mean zero, cf. Theorem 2.2, we easily get

Et[rt′ ] = e−κ(t
′−t)rt + r̄

(

1 − e−κ(t
′−t)
)

= r̄ + (rt − r̄) e−κ(t
′−t). (10.40)
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To compute the variance the second equation of Theorem 2.2 can be applied, which will eventually

lead to

Vart[rt′ ] =
σ2
rrt
κ

(

e−κ(t
′−t) − e−2κ(t′−t)

)

+
σ2
r r̄

2κ

(

1 − e−κ(t
′−t)
)2

. (10.41)

Note that the mean is identical to the mean for an Ornstein-Uhlenbeck process, whereas the

variance is more complicated for the square root process.

It can be shown that, given the value rt, the value rt′ with t′ > t is non-centrally χ2-distributed.

More precisely, the probability density function for rt′ is

frt′ |rt
(x) = fχ2

a,b
(2cx),

where

c =
2κ

σ2
r

(
1 − e−κ(t′−t)

) ,

b = crte
−κ(t′−t),

a =
4κr̄

σ2
r

,

and where fχ2
a,b

(·) denotes the probability density function for a non-centrally χ2-distributed ran-

dom variable with a degrees of freedom and non-centrality parameter b.

It can be shown that the price of a zero-coupon bond maturing at time s is given by

Bst = e−a(s−t)−b(s−t)rt , (10.42)

where

b(τ) =
2(eντ − 1)

(ν + κ̂)(eντ − 1) + 2ν
, (10.43)

a(τ) = −2κr̄

σ2
r

(

ln(2ν) +
1

2
(κ̂+ ν)τ − ln [(ν + κ̂)(eντ − 1) + 2ν]

)

, (10.44)

and κ̂ = κ + λ and ν =
√

κ̂2 + 2σ2
r . As in the Vasicek model, the yields are affine in the current

short rate,

yst =
a(s− t)

s− t
+
b(s− t)

s− t
rt.

It can be shown that the asymptotic long yield is

y∞ ≡ lim
s→∞

yst =
2κr̄

κ̂+ ν
,

and [see Kan (1992)] that the yield curve can have the following shapes:

(i) if κ+λ > 0, the yield curve is decreasing for rt ≥ κr̄/(κ+λ) and increasing for 0 ≤ rt ≤ κr̄/ν.

For κr̄/ν < rt < κr̄/(κ+ λ), the yield curve is humped, i.e. first increasing, then decreasing.

(ii) if κ+ λ ≤ 0, the yield curve is increasing for 0 ≤ rt ≤ κr̄/ν and humped for rt > κr̄/ν.

Also in this model closed-form expressions can be derived for many popular interest rate related

assets; see Chapter 12.

Longstaff and Schwartz (1992) study a two-factor version of the model. They assume that the

production returns are given by

dηt
ηt

= g(X1t,X2t) dt+ ξ(X2t) dz1t,
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where

g(X1,X2) = k1X1 + k2X2, ξ(X2)
2 = k3X2,

so that the state variable X2 affects both expected returns and uncertainty of production, while

the state variable X1 only affects the expected return. With log utility the short rate is again equal

to the expected return minus the variance,

r(X1,X2) = g(X1,X2) − ξ(X2)
2 = k1X1 + (k2 − k3)X2.

The state variables are assumed to follow independent square-root processes,

dX1t = (ϕ1 − κ1X1t) dt+ β1

√

X1t dz2t,

dX2t = (ϕ2 − κ2X2t) dt+ β2

√

X2t dz3t,

where z2 are independent of z1 and z3, but z1 and z3 may be correlated. The market prices of risk

associated with the Brownian motions are

λ1(X2) = ξ(X2) =
√

k2

√

X2, λ2 = λ3 = 0.

10.6 Real and nominal interest rates and term structures

In the following we shall first derive some generally valid relations between real rates, nominal

rates, and inflation and investigate the differences between real and nominal bonds. Then we will

discuss two different types of models in which we can say more about real and nominal rates. The

first setting follows the neoclassical tradition in assuming that monetary holdings do not affect the

preferences of the individuals so that the presence of money has no effects on real rates and real

asset returns. Hence, the relations derived earlier in this chapter still applies. However, several

empirical findings indicate that the existence of money does have real effects. For example, real

stock returns are negatively correlated with inflation and positively correlated with money growth.

Also, assets that are positively correlated with inflation have a lower expected return.3 In the

second setting we consider below, money is allowed to have real effects. Economies with this

property are called monetary economies.

10.6.1 Real and nominal asset pricing

The relations between interest rates or yields and aggregate consumption and production obtained

above apply to real interest rates or yields. The real short-term interest rate is the rate of return

over the next instant of an asset that is risk-free in real terms, i.e. provides a certain purchasing

power. A real yield of maturity s is derived from the real price of a real zero-coupon bond maturing

at time s, i.e. a bond paying one consumption unit at time s. In reality most deposit arrangements

and traded bonds are nominal in the sense that the dividends they promise are pre-specified units

of some currency, not some units of consumption goods. In this section we search for the link

between real and nominal interest rates and yields.

3Such results are reported by, e.g., Fama (1981), Fama and Gibbons (1982), Chen, Roll, and Ross (1986), and

Marshall (1992).



10.6 Real and nominal interest rates and term structures 237

Recall the results we derived on real and nominal pricing in Section 4.4. Let us stick to the

continuous-time framework. Let Ft denote the price of the good in currency units at time t (or

think of Ft as the value of the Consumer Price Index at time t.) A nominal dividend of D̃t

corresponds to a real dividend of Dt = D̃t/Ft and a nominal price of P̃t corresponds to a real

price of Pt = P̃t/Ft. We have seen that a nominal state-price deflator ζ̃ = (ζ̃t) is related to a real

state-price deflator ζ = (ζt) via the equation

ζ̃t =
ζt
Ft
, all t ∈ [0, T ]. (10.45)

The nominal state-price deflator links nominal dividends to nominal prices in the same way that

a real state-price deflator links real dividends to real prices.

The real return on a nominally risk-free asset is generally stochastic (and conversely). The

dynamics of the real state-price deflator is

dζt = −ζt [rt dt+ λ⊤

t dzt] ,

where r = (rt) is the short-term real interest rate and λ = (λt) is the market price of risk. The

dynamics of the price of the consumption good is written as

dFt = Ft
[
µϕt dt+ σ⊤

ϕt dzt
]
. (10.46)

We interpret ϕt+dt = dFt/Ft as the realized inflation rate over the next instant, µϕt = Et[ϕt+dt]

as the expected inflation rate, and σϕt as the sensitivity vector of the inflation rate. Then we have

shown that the nominal and the real short-term interest rates are related as follows

r̃t = rt + µϕt − ‖σϕt‖2 − σ⊤

ϕtλt, (10.47)

i.e. the nominal short rate is equal to the real short rate plus the expected inflation rate minus the

variance of the inflation rate minus a risk premium. The presence of the last two terms invalidates

the Fisher relation, which says that the nominal interest rate is equal to the sum of the real interest

rate and the expected inflation rate.

An application of Itô’s Lemma (Exercise 10.2) shows that the dynamics of the nominal state-price

deflator is

dζ̃t = −ζ̃t
[

r̃t dt+ λ̃
⊤

t dzt

]

, (10.48)

where λ̃t = λt + σϕt is the nominal market price of risk.

The time t real price of a real zero-coupon bond maturing at time s is

Bst = Et

[
ζs
ζt

]

= Et

[

exp

{

−
∫ s

t

ru du− 1

2

∫ s

t

‖λu‖2 du−
∫ s

t

λ⊤

u dzu

}]

.

The time t nominal price of a nominal zero-coupon bond maturing at T is

B̃Tt = Et

[

ζ̃T

ζ̃t

]

= Et

[

exp

{

−
∫ s

t

r̃u du− 1

2

∫ s

t

‖λ̃u‖2 du−
∫ s

t

λ̃
⊤

u dzu

}]

.

Clearly the prices of nominal bonds are related to the nominal short rate and the nominal market

price of risk in exactly the same way as the prices of real bonds are related to the real short rate and

the real market price of risk. Models that are based on specific exogenous assumptions about the
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short rate dynamics and the market price of risk can be applied both to real term structures and to

nominal term structures—but not simultaneously for both real and nominal term structures. This

is indeed the case for most popular term structure models. However the equilibrium arguments

that some authors offer in support of a particular term structure model, cf. Section 10.5, typically

apply to real interest rates and real market prices of risk. The same arguments cannot generally

support similar assumptions on nominal rates and market price of risk. Nevertheless, these models

are often applied on nominal bonds and term structures.

Above we derived an equilibrium relation between real and nominal short-term interest rates.

What can we say about the relation between longer-term real and nominal interest rates? Applying

the well-known relation Cov[x, y] = E[xy] − E[x] E[y], we can write

B̃Tt = Et

[
ζT
ζt

Ft
FT

]

= Et

[
ζT
ζt

]

Et

[
Ft
FT

]

+ Covt

[
ζT
ζt
,
Ft
FT

]

= BTt Et

[
Ft
FT

]

+ Covt

[
ζT
ζt
,
Ft
FT

]

.

(10.49)

From the dynamics of the state-price deflator and the price index, we get

ζT
ζt

= exp

{

−
∫ T

t

(

rs +
1

2
‖λs‖2

)

ds−
∫ T

t

λ⊤

s dzs

}

,

Ft
FT

= exp

{

−
∫ T

t

(

µϕs −
1

2
‖σϕs‖2

)

ds−
∫ T

t

σ⊤

ϕs dzs

}

,

which can be substituted into the above relation between prices on real and nominal bonds. How-

ever, the covariance-term on the right-hand side can only be explicitly computed under very special

assumptions about the variations over time in r, λ, µϕ, and σϕ.

10.6.2 No real effects of inflation

In this subsection we will take as given some process for the consumer price index and assume that

monetary holdings do not affect the utility of the individuals directly. As before the aggregate

consumption level is assumed to follow the process

dct = ct [µct dt+ σ⊤

ct dzt]

so that the dynamics of the real state-price density is

dζt = −ζt [rt dt+ λ⊤

t dzt] .

The short-term real rate is given by

rt = δ +
−ctu′′(ct)
u′(ct)

µct −
1

2
c2t
u′′′(ct)

u′(ct)
‖σct‖2 (10.50)

and the market price of risk vector is given by

λt =

(

−ctu
′′(ct)

u′(ct)

)

σct. (10.51)
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By substituting the expression (10.51) for λt into (4.61), we can write the short-term nominal

rate as

r̃t = rt + µϕt − ‖σϕt‖2 −
(

−ctu
′′(ct)

u′(ct)

)

σ⊤

ϕtσct.

In the special case where the representative individual has constant relative risk aversion, i.e.

u(c) = c1−γ/(1 − γ), and both the aggregate consumption and the price index follow geometric

Brownian motions, we get constant rates

r = δ + γµc −
1

2
γ(1 + γ)‖σc‖2, (10.52)

r̃ = r + µϕ − ‖σϕ‖2 − γσ⊤

ϕσc. (10.53)

Breeden (1986) considers the relations between interest rates, inflation, and aggregate consump-

tion and production in an economy with multiple consumption goods. In general the presence of

several consumption goods complicates the analysis considerably. Breeden shows that the equilib-

rium nominal short rate will depend on both an inflation rate computed using the average weights

of the different consumption goods and an inflation rate computed using the marginal weights of the

different goods, which are determined by the optimal allocation to the different goods of an extra

dollar of total consumption expenditure. The average and the marginal consumption weights will

generally be different since the representative individual may shift to other consumption goods as

his wealth increases. However, in the special (probably unrealistic) case of Cobb-Douglas type util-

ity function, the relative expenditure weights of the different consumption goods will be constant.

For that case Breeden obtains results similar to our one-good conclusions.

10.6.3 A model with real effects of money

In the next model we consider, cash holdings enter the direct utility function of the individual(s).

This may be rationalized by the fact that cash holdings facilitate frequent consumption transac-

tions. In such a model the price of the consumption good is determined as a part of the equilibrium

of the economy, in contrast to the models studied above where we took an exogenous process for

the consumer price index. We follow the set-up of Bakshi and Chen (1996) closely.

The general model

We assume the existence of a representative individual who chooses a consumption process c = (ct)

and a cash process M̃ = (M̃t), where M̃t is the dollar amount held at time t. As before, let Ft be the

unit dollar price of the consumption good. Assume that the representative individual has an infinite

time horizon, no endowment stream, and an additively time-separable utility of consumption and

the real value of the monetary holdings, i.e. Mt = M̃t/Ft. At time t the individual has the

opportunity to invest in a nominally risk-free bank account with a nominal rate of return of r̃t.

When the individual chooses to hold M̃t dollars in cash over the period [t, t + dt], she therefore

gives up a dollar return of M̃tr̃t dt, which is equivalent to a consumption of M̃tr̃t dt/Ft units of

the good. Given a (real) state-price deflator ζ = (ζt), the total cost of choosing c and M is thus

E
[∫∞

0
ζt(ct + M̃tr̃t/Ft) dt

]

. In sum, the optimization problem of the individual can be written as
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follows:

sup
(ct,M̃t)

E

[∫ ∞

0

e−δtu
(

ct, M̃t/Ft

)

dt

]

s.t. E

[
∫ ∞

0

ζt

(

ct +
M̃t

Ft
r̃t

)

dt

]

≤W0,

where W0 is the initial (real) wealth of the individual.

The Lagrangian associated with the optimization problem is

L = E

[∫ ∞

0

e−δtu
(

ct, M̃t/Ft

)

dt

]

+ ψ

(

W0 − E

[
∫ ∞

0

ζt

(

ct +
M̃t

Ft
r̃t

)

dt

])

= ψW0 + E

[
∫ ∞

0

(

e−δtu
(

ct, M̃t/Ft

)

− ψζt

(

ct +
M̃t

Ft
r̃t

))

dt

]

.

If we maximize the integrand “state-by-state”, we will also maximize the expectation. The first

order conditions are

e−δtuc(ct, M̃t/Ft) = ψζt, (10.54)

e−δtuM (ct, M̃t/Ft) = ψζtr̃t, (10.55)

where uc and uM are the first-order derivatives of u with respect to the first and second argument,

respectively. The Lagrange multiplier ψ is set so that the budget condition holds as an equality.

Again, we see that the state-price deflator is given in terms of the marginal utility with respect to

consumption. Imposing the initial value ζ0 = 1 and recalling the definition of Mt, we have

ζt = e−δt
uc(ct,Mt)

uc(c0,M0)
. (10.56)

We can apply the state-price deflator to value all payment streams. For example, an investment

of one dollar at time t in the nominal bank account generates a continuous payment stream at the

rate of r̃s dollars to the end of all time. The corresponding real investment at time t is 1/Ft and

the real dividend at time s is r̃s/Fs. Hence, we have the relation

1

Ft
= Et

[∫ ∞

t

ζs
ζt

r̃s
Fs

ds

]

,

or, equivalently,
1

Ft
= Et

[∫ ∞

t

e−δ(s−t)
uc(cs,Ms)

uc(ct,Mt)

r̃s
Fs

ds

]

. (10.57)

Substituting the first optimality condition (10.54) into the second (10.55), we see that the nom-

inal short rate is given by

r̃t =
uM (ct, M̃t/Ft)

uc(ct, M̃t/Ft)
. (10.58)

The intuition behind this relation can be explained in the following way. If you have an extra dollar

now you can either keep it in cash or invest it in the nominally risk-free bank account. If you keep

it in cash your utility grows by uM (ct, M̃t/Ft)/Ft. If you invest it in the bank account you will

earn a dollar interest of r̃t that can be used for consuming r̃t/Ft extra units of consumption, which

will increase your utility by uc(ct, M̃t/Ft)r̃t/Ft. At the optimum, these utility increments must be
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identical. Combining (10.57) and (10.58), we get that the price index must satisfy the recursive

relation
1

Ft
= Et

[∫ ∞

t

e−δ(s−t)
uM (cs,Ms)

uc(ct,Mt)

1

Fs
ds

]

. (10.59)

Let us find expressions for the equilibrium real short rate and the market price of risk in this

setting. As always, the real short rate equals minus the percentage drift of the state-price deflator,

while the market price of risk equals minus the percentage sensitivity vector of the state-price

deflator. In an equilibrium, the representative individual must consume the aggregate consumption

and hold the total money supply in the economy. Suppose that the aggregate consumption and

the money supply follow exogenous processes of the form

dct = ct [µct dt+ σ⊤

ct dzt] ,

dM̃t = M̃t [µ̃Mt dt+ σ̃⊤

Mt dzt] .

Assuming that the endogenously determined price index will follow a similar process,

dFt = Ft
[
µϕt dt+ σ⊤

ϕt dzt
]
,

the dynamics of Mt = M̃t/Ft will be

dMt = Mt [µMt dt+ σ⊤

Mt dzt] ,

where

µMt = µ̃Mt − µϕt + ‖σϕt‖2 − σ̃⊤

Mtσϕt, σMt = σ̃Mt − σϕt.

Given these equations and the relation (10.56), we can find the drift and the sensitivity vector

of the state-price deflator by an application of Itô’s Lemma (Exercise 10.5). We find that the

equilibrium real short-term interest rate can be written as

rt = δ +

(−ctucc(ct,Mt)

uc(ct,Mt)

)

µct +

(−MtucM (ct,Mt)

uc(ct,Mt)

)

µMt

− 1

2

c2tuccc(ct,Mt)

uc(ct,Mt)
‖σct‖2 − 1

2

M2
t ucMM (ct,Mt)

uc(ct,Mt)
‖σMt‖2 − ctMtuccM (ct,Mt)

uc(ct,Mt)
σ⊤

ctσMt,

(10.60)

while the market price of risk vector is

λt =

(

−ctucc(ct,Mt)

uc(ct,Mt)

)

σct +

(−MtucM (ct,Mt)

uc(ct,Mt)

)

σMt

=

(

−ctucc(ct,Mt)

uc(ct,Mt)

)

σct +

(−MtucM (ct,Mt)

uc(ct,Mt)

)

(σ̃Mt − σϕt) .
(10.61)

With ucM < 0, we see that assets that are positively correlated with the inflation rate will have

a lower expected real return, other things equal. Intuitively such assets are useful for hedging

inflation risk so that they do not have to offer as high an expected return.

The relation (4.61) is also valid in the present setting. Substituting the expression (10.61) for

the market price of risk into (4.61), we obtain

r̃t − rt − µϕt + ‖σϕt‖2 = −
(

−ctu
′′(ct)

u′(ct)

)

σ⊤

ϕtσct −
(−MtucM (ct,Mt)

uc(ct,Mt)

)

σ⊤

ϕtσMt. (10.62)
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An example

To obtain more concrete results, we must specify the utility function and the exogenous processes

c and M̃ . Assume a utility function of the Cobb-Douglas type,

u(c,M) =

(
cϕM1−ϕ

)1−γ

1 − γ
,

where ϕ is a constant between zero and one, and γ is a positive constant. The limiting case for

γ = 1 is log utility,

u(c,M) = ϕ ln c+ (1 − ϕ) lnM.

By inserting the relevant derivatives into (10.60), we see that the real short rate becomes

rt = δ + [1 − ϕ(1 − γ)]µct − (1 − ϕ)(1 − γ)µMt −
1

2
[1 − ϕ(1 − γ)][2 − ϕ(1 − γ)]‖σct‖2

+
1

2
(1 − ϕ)(1 − γ)[1 − (1 − ϕ)(1 − γ)]‖σMt‖2 + (1 − ϕ)(1 − γ)[1 − ϕ(1 − γ)]σ⊤

ctσMt,

(10.63)

which for γ = 1 simplifies to

rt = δ + µct − ‖σct‖2. (10.64)

We see that with log utility, the real short rate will be constant if aggregate consumption c = (ct)

follows a geometric Brownian motion. From (10.58), the nominal short rate is

r̃t =
1 − ϕ

ϕ

ct
Mt

. (10.65)

The ratio ct/Mt is called the velocity of money. If the velocity of money is constant, the nominal

short rate will be constant. Since Mt = M̃t/Ft and Ft is endogenously determined, the velocity of

money will also be endogenously determined.

We have to determine the price level in the economy, which is given only recursively in (10.59).

This is possible under the assumption that both C and M̃ follow geometric Brownian motions. We

conjecture that Ft = kM̃t/ct for some constant k. From (10.59), we get

1

k
=

1 − ϕ

ϕ

∫ ∞

t

e−δ(s−t) Et





(
cs
ct

)1−γ
(

M̃s

M̃t

)−1


 ds.

Inserting the relations

cs
ct

= exp

{(

µc −
1

2
‖σc‖2

)

(s− t) + σ⊤

c (zs − zt)
}

,

M̃s

M̃t

= exp

{(

µ̃M − 1

2
‖σ̃M‖2

)

(s− t) + σ̃⊤

M (zs − zt)
}

,

and applying a standard rule for expectations of lognormal variables, we get

1

k
=

1 − ϕ

ϕ

∫ ∞

t

exp
{(

− δ + (1 − γ)(µc −
1

2
‖σc‖2) − µ̃M + ‖σ̃M‖2

+
1

2
(1 − γ)2‖σ̃c‖2 − (1 − γ)σ⊤

c σ̃M

)

(s− t)
}

ds,

which implies that the conjecture is true with

k =
ϕ

1 − ϕ

(

δ − (1 − γ)(µc −
1

2
‖σc‖2) + µ̃M − ‖σ̃M‖2 − 1

2
(1 − γ)2‖σc‖2 + (1 − γ)σ⊤

c σ̃M

)

.
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From an application of Itô’s Lemma, it follows that the price index also follows a geometric Brow-

nian motion

dFt = Ft
[
µϕ dt+ σ⊤

ϕ dzt
]
, (10.66)

where

µϕ = µ̃M − µc + ‖σc‖2 − σ̃⊤

Mσc, σϕ = σ̃M − σc.

With Ft = kM̃t/ct, we have Mt = ct/k, so that the velocity of money ct/Mt = k is constant, and

the nominal short rate becomes

r̃t =
1 − ϕ

ϕ
k = δ− (1−γ)(µc−

1

2
‖σc‖2)+ µ̃M −‖σ̃M‖2− 1

2
(1−γ)2‖σc‖2 +(1−γ)σ⊤

c σ̃M , (10.67)

which is also a constant. With log utility, the nominal rate simplifies to δ+ µ̃M −‖σ̃M‖2. In order

to obtain the real short rate in the non-log case, we have to determine µMt and σMt and plug

into (10.63). We get µMt = µc + 1
2‖σc‖2 + σ̃⊤

Mσc and σMt = σc and hence

rt = δ + γµc − γ‖σc‖2

[
1

2
(1 + γ) + ϕ(1 − γ)

]

, (10.68)

which is also a constant. In comparison with (10.52) for the case where money has no real effects,

the last term in the equation above is new.

Another example

Bakshi and Chen (1996) also study another model specification in which both nominal and real

short rates are time-varying, but evolve independently of each other. To obtain stochastic interest

rates we have to specify more general processes for aggregate consumption and money supply than

the geometric Brownian motions used above. They assume log-utility (γ = 1) in which case we

have already seen that

rt = δ + µct − ‖σct‖2, r̃t =
1 − ϕ

ϕ

ct
Mt

=
1 − ϕ

ϕ

ctFt

M̃t

.

The dynamics of aggregate consumption is assumed to be

dct = ct

[

(αc + κcXt) dt+ σc
√

Xt dz1t

]

,

where X can be interpreted as a technology variable and is assumed to follow the process

dXt = κx(θx −Xt) dt+ σx
√

Xt dz1t.

The money supply is assumed to be M̃t = M̃0e
µ∗

M tgt/g0, where

dgt = gt

[

κg(θg − gt) dt+ σg
√
gt

(

ρCM dz1t +
√

1 − ρ2
CM dz2t

)]

,

and where z1 and z2 are independent one-dimensional Brownian motions. Following the same basic

procedure as in the previous model specification, the authors show that the real short rate is

rt = δ + αc + (κc − σ2
c )Xt, (10.69)

while the nominal short rate is

r̃t =
(δ + µ∗

M )(δ + µ∗
M + κgθg)

δ + µ∗
M + (κg + σ2

g)gt
. (10.70)
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Both rates are time-varying. The real rate is driven by the technology variable X, while the

nominal rate is driven by the monetary shock process g. In this set-up, shocks to the real economy

have opposite effects of the same magnitude on real rates and inflation so that nominal rates are

unaffected.

The real price of a real zero-coupon bond maturing at time T is of the form

BTt = e−a(T−t)−b(T−t)x,

while the nominal price of a nominal zero-coupon bond maturing at T is

B̃Tt =
ã(T − t) + b̃(T − t)gt
δ + µ∗

M + (κg + σ2
g)gt

,

where a, b, ã, and b̃ are deterministic functions of time for which Bakshi and Chen provide closed-

form expressions.

In the very special case where these processes are uncorrelated, i.e. ρCM = 0, the real and

nominal term structures of interest rates are independent of each other! Although this is an

extreme result, it does point out that real and nominal term structures in general may have quite

different properties.

10.7 The expectation hypothesis

The expectation hypothesis relates the current interest rates and yields to expected future inter-

est rates or returns. This basic issue was discussed already by Fisher (1896) and further developed

and concretized by Hicks (1939) and Lutz (1940). The original motivation of the hypothesis is that

when lenders (bond investors) and borrowers (bond issuers) decide between long-term or short-

term bonds, they will compare the price or yield of a long-term bond to the expected price or

return on a roll-over strategy in short-term bonds. Hence, long-term rates and expected future

short-term rates will be linked. Of course, a cornerstone of modern finance theory is that, when

comparing different strategies, investors will also take the risks into account. So even before going

into the specifics of the hypothesis you should really be quite skeptical, at least when it comes to

very strict interpretations of the expectation hypothesis.

The vague idea that current yields and interest rates are linked to expected future rates and

returns can be concretized in a number of ways. Below we will present and evaluate a number

of versions. This analysis follows Cox, Ingersoll, and Ross (1981a) quite closely. We find that

some versions are equivalent, some versions inconsistent. We end up concluding that none of the

variants of the expectations hypothesis are consistent with any realistic behavior of interest rates.

Hence, the analysis of the shape of the yield curve and models of term structure dynamics should

not be based on this hypothesis. Hence, it is surprising, maybe even disappointing, that empirical

tests of the expectation hypothesis have generated such a huge literature in the past and that the

hypothesis still seems to be widely accepted among economists.

10.7.1 Versions of the pure expectation hypothesis

The first version of the pure expectation hypothesis that we will discuss says that prices in the

bond markets are set so that the expected gross returns on all self-financing trading strategies
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over a given period are identical. In particular, the expected gross return from buying at time t a

zero-coupon bond maturing at time T and reselling it at time t′ ≤ T , which is given by Et[B
T
t′ /B

T
t ],

will be independent of the maturity date T of the bond (but generally not independent of t′). Let

us refer to this as the gross return pure expectation hypothesis.

This version of the hypothesis is consistent with pricing in a world of risk-neutral investors. If

we have a representative individual with time-additive expected utility, we know that zero-coupon

bond prices satisfy

BTt = Et

[

e−δ(t
′−t)u

′(ct′)

u′(ct)
BTt′

]

,

where u is the instantaneous utility function, δ is the time preference rate, and C denotes aggregate

consumption. If the representative individual is risk-neutral, his marginal utility is constant, which

implies that

Et

[
BTt′

BTt

]

= eδ(t
′−t), (10.71)

which is clearly independent of T . Clearly, the assumption of risk-neutrality is not very attractive.

There is also another serious problem with this hypothesis. As is to be shown in Exercise 10.4, it

cannot hold when interest rates are uncertain.

A slight variation of the above is to align all expected continuously compounded returns, i.e.
1

t′−t Et[ln
(
BTt′ /B

T
t

)
] for all T . In particular with T = t′, the expected continuously compounded

rate of return is known to be equal to the zero-coupon yield for maturity t′, which we denote by

yt
′

t = − 1
t′−t lnBt

′

t . We can therefore formulate the hypothesis as

1

t′ − t
Et

[

ln

(
BTt′

BTt

)]

= yt
′

t , all T ≥ t′.

Let us refer to this as the rate of return pure expectation hypothesis. For t′ → t, the right-hand

side approaches the current short rate rt, while the left-hand side approaches the absolute drift

rate of lnBTt .

An alternative specification of the pure expectation hypothesis claims that the expected return

over the next time period is the same for all investments in bonds and deposits. In other words

there is no difference between expected returns on long-maturity and short-maturity bonds. In the

continuous-time limit we consider returns over the next instant. The risk-free return over [t, t+dt]

is rt dt, so for any zero-coupon bond, the hypothesis claims that

Et

[
dBTt
BTt

]

= rt dt, for all T > t, (10.72)

or, equivalently,4 that

BTt = Et

[

e−
R T

t
rs ds

]

, for all T > t.

This is the local pure expectations hypothesis.

4Here and later we use that, under suitable regularity conditions, the relative drift rate of an Itô process X = (Xt)

is given by the process µ = (µt) if and only if Xt = Et[XT exp{−
R T

t
µs ds}]. Suppose first that the relative

drift rate is given by µ so that dXt = Xt[µt dt + σ⊤

t dzt]. Then an application of Itô’s Lemma reveals that

the process Xt exp{−
R t

0
µs ds} is a martingale so that Xt exp{−

R t

0
µs ds} = Et[XT exp{−

R T

0
µs ds}] and hence

Xt = Et[XT exp{−
R T

t
µs ds}].

The absolute drift of X is the limit of 1

∆t
Et[Xt+∆t − Xt] as ∆t → 0. If Xt = Et[XT exp{−

R T

t
µs ds}] for all t,
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Another interpretation says that the return from holding a zero-coupon bond to maturity should

equal the expected return from rolling over short-term bonds over the same time period, i.e.

1

BTt
= Et

[

e
R T

t
rs ds

]

, for all T > t (10.73)

or, equivalently,

BTt =
(

Et

[

e
R T

t
rs ds

])−1

, for all T > t.

This is the return-to-maturity pure expectation hypothesis.

A related claim is that the yield on any zero-coupon bond should equal the “expected yield” on a

roll-over strategy in short bonds. Since an investment of one at time t in the bank account generates

e
R T

t
rs ds at time T , the ex-post realized yield is 1

T−t

∫ T

t
rs ds. Hence, this yield-to-maturity pure

expectation hypothesis says that

yTt = − 1

T − t
lnBTt = Et

[

1

T − t

∫ T

t

rs ds

]

, (10.74)

or, equivalently,

BTt = e−Et[
R T

t
rs ds], for all T > t.

Finally, the unbiased pure expectation hypothesis states that the forward rate for time T pre-

vailing at time t < T is equal to the time t expectation of the short rate at time T , i.e. that forward

rates are unbiased estimates of future spot rates. In symbols,

fTt = Et[rT ], for all T > t.

This implies that

− lnBTt =

∫ T

t

fst ds =

∫ T

t

Et[rs] ds = Et

[
∫ T

t

rs ds

]

,

from which we see that the unbiased version of the pure expectation hypothesis is indistinguishable

from the yield-to-maturity version.

We will first show that the different versions are inconsistent when future rates are uncertain.

This follows from an application of Jensen’s inequality which states that if X is a random variable

and f is a convex function, i.e. f ′′ > 0, then E[f(X)] > f(E[X]). Since f(x) = ex is a convex

function, we have E[eX ] > eE[X] for any random variable X. In particular for X =
∫ T

t
rs ds, we

get

Et

[

e
R T

t
rs ds

]

> eEt[
R T

t
rs ds] ⇒ e−Et[

R T
t
rs ds] >

(

Et

[

e
R T

t
rs ds

])−1

.

then

1

∆t
Et[Xt+∆t − Xt] =

1

∆t
Et

h�
Et+∆t

h
XT e

−
R T
t+∆t µs ds

i�
−
�
Et

h
XT e−

R T
t µs ds

i�i
=

1

∆t
Et

h
XT e

−
R T
t+∆t µs ds

− XT e−
R T
t µs ds

i
= Et

"
XT e−

R T
t µs ds e

R t+∆t
t µs ds − 1

∆t

#
→ µt Et

h
XT e−

R T
t µs ds

i
= µtXt,

i.e. the relative drift rate equals µt.
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This shows that the bond price according to the yield-to-maturity version is strictly greater than

the bond price according to the return-to-maturity version. For X = −
∫ T

t
rs ds, we get

Et

[

e−
R T

t
rs ds

]

> eEt[−
R T

t
rs ds] = e−Et[

R T
t
rs ds],

hence the bond price according to the local version of the hypothesis is strictly greater than the

bond price according to the yield-to-maturity version. We can conclude that at most one of the

versions of the local, return-to-maturity, and yield-to-maturity pure expectations hypothesis can

hold.

10.7.2 The pure expectation hypothesis and equilibrium

Next, let us see whether the different versions can be consistent with any equilibrium. Assume that

interest rates and bond prices are generated by a d-dimensional standard Brownian motion z. As-

suming absence of arbitrage there exists a market price of risk process λ so that for any maturity T ,

the zero-coupon bond price dynamics is of the form

dBTt = BTt

[(

rt +
(
σTt
)⊤

λt

)

dt+
(
σTt
)⊤

dzt

]

, (10.75)

where σTt denotes the d-dimensional sensitivity vector of the bond price. Recall that the same λt

applies to all zero-coupon bonds so that λt is independent of the maturity of the bond. Comparing

with (10.72), we see that the local expectation hypothesis will hold if and only if
(
σTt
)

⊤

λt = 0

for all T . This is true if either investors are risk-neutral or interest rate risk is uncorrelated with

aggregate consumption. Neither of these conditions hold in real life.

To evaluate the return-to-maturity version, first note that an application of Itô’s Lemma on (10.75)

show that

d

(
1

BTt

)

=
1

BTt

[(

−rt −
(
σTt
)⊤

λt + ‖σTt ‖2
)

dt−
(
σTt
)⊤

dzt

]

.

On the other hand, according to the hypothesis (10.73) the relative drift of 1/BTt equals −rt; cf.

a previous footnote. To match the two expressions for the drift, we must have

(
σTt
)⊤

λt = ‖σTt ‖2, for all T . (10.76)

Is this possible? Cox, Ingersoll, and Ross (1981a) conclude that it is impossible. If the exogenous

shock z and therefore σTt and λt are one-dimensional, they are right, since λt must then equal σTt ,

and this must hold for all T . Since λt is independent of T and the volatility σTt approaches zero

for T → t, this can only hold if λt ≡ 0 (risk-neutral investors) or σTt ≡ 0 (deterministic interest

rates). However, as pointed out by McCulloch (1993) and Fisher and Gilles (1998), in multi-

dimensional cases the key condition (10.76) may indeed hold, at least in very special cases. Let ϕ

be a d-dimensional function with the property that ‖ϕ(τ)‖2 is independent of τ . Define λt = 2ϕ(0)

and σTt = ϕ(0) − ϕ(T − t). Then (10.76) is indeed satisfied. However, all such functions ϕ seem

to generate very strange bond price dynamics. The examples given in the two papers mentioned

above are

ϕ(τ) = k

(√
2e−τ − e−2τ

1 − e−τ

)

, ϕ(τ) = k1

(

cos(k2τ)

sin(k2τ)

)

,

where k, k1, k2 are constants.
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As discussed above, the rate or return version implies that the absolute drift rate of the log-bond

price equals the short rate. We can see from (10.74) that the same is true for the yield-to-maturity

version and hence the unbiased version.5 On the other hand Itô’s Lemma and (10.75) imply that

d
(
lnBTt

)
=

(

rt + (σTt )⊤λt −
1

2
‖σTt ‖2

)

dt+
(
σTt
)⊤

dzt. (10.77)

Hence, these versions of the hypothesis will hold if and only if

(σTt )⊤λt =
1

2
‖σTt ‖2, for all T .

Again, it is possible that the condition holds. Just let ϕ and σTt be as for the return-to-maturity

hypothesis and let λt = ϕ(0). But such specifications are not likely to represent real life term

structures.

The conclusion to be drawn from this analysis is that neither of the different versions of the pure

expectation hypothesis seem to be consistent with any reasonable description of the term structure

of interest rates.

10.7.3 The weak expectation hypothesis

Above we looked at versions of the pure expectation hypothesis that all aligns an expected return

or yield with a current interest rate or yield. However, as pointed out by Campbell (1986), there

is also a weak expectation hypothesis that allows for a difference between the relevant expected

return/yield and the current rate/yield, but restricts this difference to be constant over time.

The local weak expectation hypothesis says that

Et

[
dBTt
BTt

]

= (rt + g(T − t)) dt

for some deterministic function g. In the pure version g is identically zero. For a given time-to-

maturity there is a constant “instantaneous holding term premium”. Comparing with (10.75), we

see that this hypothesis will hold when the market price of risk λt is constant and the bond price

sensitivity vector σTt is a deterministic function of time-to-maturity. These conditions are satisfied

in the Vasicek (1977) model and in other models of the Gaussian class.

Similarly, the weak yield-to-maturity expectation hypothesis says that

fTt = Et[rT ] + h(T − t)

for some deterministic function h with h(0) = 0, i.e. that there is a constant “instantaneous forward

term premium”. The pure version requires h to be identically equal to zero. It can be shown that

this condition implies that the drift of lnBTt equals rt + h(T − t).6 Comparing with (10.77), we

5 According to the yield-to-maturity hypothesis

1

∆t
Et

h
ln BT

t+∆t − ln BT
t

i
=

1

∆t
Et

�
−Et+∆t

�Z T

t+∆t

rs ds

�
+ Et

�Z T

t

rs ds

��
=

1

∆t
Et

�Z t+∆t

t

rs ds

�
,

which approaches rt as ∆t → 0. This means that the absolute drift of ln Bt equals rt.
6From the weak yield-to-maturity hypothesis, it follows that − ln BT

t =
R T

t
(Et[rs] + h(s − t)) ds. Hence,

1

∆t
Et

h
ln BT

t+∆t − ln BT
t

i
=

1

∆t
Et

�
−

Z T

t+∆t

(Et+∆t[rs] + h(s − (t + ∆t))) ds +

Z T

t

(Et[rs] + h(s − t)) ds

�
=

1

∆t
Et

�Z t+∆t

t

rs ds

�
−

1

∆t

�Z T

t+∆t

h(s − (t + ∆t)) ds −

Z T

t

h(s − t) ds

�
.
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see that also this hypothesis will hold when λt is constant and σTt is a deterministic function of

T − t as is the case in the Gaussian models.

The class of Gaussian models have several unrealistic properties. For example, such models

allow negative interest rates and requires bond and interest rate volatilities to be independent of

the level of interest rates. So far, the validity of even weak versions of the expectation hypothesis

has not been shown in more realistic term structure models.

10.8 Liquidity preference, market segmentation, and pre-

ferred habitats

Another traditional explanation of the shape of the yield curve is given by the liquidity pref-

erence hypothesis introduced by Hicks (1939). He realized that the expectation hypothesis

basically ignores investors’ aversion towards risk and argued that expected returns on long-term

bonds should exceed the expected returns on short-term bonds to compensate for the higher price

fluctuations of long-term bonds. According to this view the yield curve should tend to be increas-

ing. Note that the word “liquidity” in the name of the hypothesis is not used in the usual sense of

the word. Short-term bonds are not necessarily more liquid than long-term bonds. A better name

would be “the maturity preference hypothesis”.

In contrast the market segmentation hypothesis introduced by Culbertson (1957) claims

that investors will typically prefer to invest in bonds with time-to-maturity in a certain interval, a

maturity segment, perhaps in an attempt to match liabilities with similar maturities. For example,

a pension fund with liabilities due in 20-30 years can reduce risk by investing in bonds of similar

maturity. On the other hand, central banks typically operate in the short end of the market.

Hence, separated market segments can exist without any relation between the bond prices and the

interest rates in different maturity segments. If this is really the case, we cannot expect to see

continuous or smooth yield curves and discount functions across the different segments.

A more realistic version of this hypothesis is the preferred habitats hypothesis put forward

by Modigliani and Sutch (1966). An investor may prefer bonds with a certain maturity, but should

be willing to move away from that maturity if she is sufficiently compensated in terms of a higher

yield.7 The different segments are therefore not completely independent of each other, and yields

and discount factors should depend on maturity in a smooth way.

It is really not possible to quantify the market segmentation or the preferred habitats hypothesis

without setting up an economy with individuals having different favorite maturities. The resulting

equilibrium yield curve will depend heavily on the degree of risk aversion of the various individuals

as illustrated by an analysis of Cox, Ingersoll, and Ross (1981a).

The limit of 1

∆t

�R T

t+∆t
h(s − (t + ∆t)) ds −

R T

t
h(s − t) ds

�
as ∆t → 0 is exactly the derivative of

R T

t
h(s − t) ds

with respect to t. Applying Leibnitz’ rule and h(0) = 0, this derivative equals −
R T

t
h′(s − t) ds = −h(T − t). In

sum, the drift rate of ln BT
t becomes rt + h(T − t) according to the hypothesis.

7In a sense the liquidity preference hypothesis simply says that all investors prefer short bonds.



250 Chapter 10. The economics of the term structure of interest rates

10.9 Concluding remarks

For models of the equilibrium term structure of interest rates with investor heterogeneity or more

general utility functions than studied in this chapter, see, e.g., Duffie and Epstein (1992a), Wang

(1996), Riedel (2000, 2004), Wachter (2006). The effects of central banks on the term structure are

discussed and modeled by, e.g., Babbs and Webber (1994), Balduzzi, Bertola, and Foresi (1997),

and Piazzesi (2001).

10.10 Exercises

EXERCISE 10.1 Show that if there is no arbitrage and the short rate can never go negative,

then the discount function is non-increasing and all forward rates are non-negative.

EXERCISE 10.2 Show Equation (10.48).

EXERCISE 10.3 The term premium at time t for the future period [t′, T ] is the current forward

rate for that period minus the expected spot rate, i.e. f t
′,T
t −Et[y

T
t′ ]. This exercise will give a link

between the term premium and a state-price deflator ζ = (ζt).

(a) Show that

BTt = Bt
′

t Et
[
BTt′
]
+ Covt

[
ζt′

ζt
,
ζT
ζt′

]

for any t ≤ t′ ≤ T .

(b) Using the above result, show that

Et

[

e−y
T
t′

(T−t′)
]

− e−f
t′,T
t (T−t′) = − 1

Bt
′

t

Covt

[
ζt′

ζt
,
ζT
ζt′

]

.

Using the previous result and the approximation ex ≈ 1 + x, show that

f t
′,T
t − Et[y

T
t′ ] ≈ − 1

(T − t′)Bt
′

t

Covt

[
ζt′

ζt
,
ζT
ζt′

]

.

EXERCISE 10.4 The purpose of this exercise is to show that the claim of the gross return pure

expectation hypothesis is inconsistent with interest rate uncertainty. In the following we consider

time points t0 < t1 < t2.

(a) Show that if the hypothesis holds, then

1

Bt1t0
=

1

Bt2t0
Et0

[
Bt2t1
]
.

Hint: Compare two investment strategies over the period [t0, t1]. The first strategy is to buy

at time t0 zero-coupon bonds maturing at time t1. The second strategy is to buy at time t0

zero-coupon bonds maturing at time t2 and to sell them again at time t1.
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(b) Show that if the hypothesis holds, then

1

Bt2t0
=

1

Bt1t0
Et0

[

1

Bt2t1

]

.

(c) Show from the two previous questions that the hypothesis implies that

Et0

[

1

Bt2t1

]

=
1

Et0
[
Bt2t1
] . (*)

(d) Show that (*) can only hold under full certainty. Hint: Use Jensen’s inequality.

EXERCISE 10.5 Show (10.60) and (10.61).

EXERCISE 10.6 Go through the derivations in the subsection with the heading “An example”

in Section 10.6.3.

EXERCISE 10.7 Constantinides (1992) develops the so-called SAINTS model of the nominal

term structure of interest rates by specifying exogenously the nominal state-price deflator ζ̃. In a

slightly simplified version, his assumption is that

ζ̃t = ke−gt+(Xt−α)2 ,

where k, g, and α are constants, and X = (Xt) follows the Ornstein-Uhlenbeck process

dXt = −κXt dt+ σ dzt,

where κ and σ are positive constants with σ2 < κ and z = (zt) is a standard one-dimensional

Brownian motion.

(a) Derive the dynamics of the nominal state-price deflator. Express the nominal short-term

interest rate, r̃t, and the nominal market price of risk, λ̃t, in terms of the variable Xt.

(b) Find the dynamics of the nominal short rate.

(c) Find parameter constraints that ensure that the short rate stays positive? Hint: The short

rate is a quadratic function of X. Find the minimum value of this function.

(d) What is the distribution of XT given Xt?

(e) Let Y be a normally distributed random variable with mean µ and variance v2. Show that

E
[

e−γY
2
]

= (1 + 2γv2)−1/2 exp

{

− γµ2

1 + 2γv2

}

.
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(f) Use the results of the two previous questions to derive the time t price of a nominal zero-

coupon bond with maturity T , i.e. B̃Tt . It will be an exponential-quadratic function of Xt.

What is the yield on this bond?

(g) Find the percentage volatility σTt of the price of the zero-coupon bond maturing at T .

(h) The instantaneous expected excess rate of return on the zero-coupon bond maturing at T is

often called the term premium for maturity T . Explain why the term premium is given by

σTt λ̃t and show that the term premium can be written as

4σ2α2 (1 − F (T − t))

(
Xt

α
− 1

)(
Xt

α
− 1 − F (T − t)eκ(T−t)

1 − F (T − t)

)

,

where

F (τ) =
1

σ2

κ +
(
1 − σ2

κ

)
e2κτ

.

For which values of Xt will the term premium for maturity T be positive/negative? For a

given state Xt, is it possible that the the term premium is positive for some maturities and

negative for others?

EXERCISE 10.8 Assume a continuous-time economy where the state-price deflator ζ = (ζt)

has dynamics

dζt = −ζt [rt dt+ λ dz1t] ,

where z1 = (z1t) is a (one-dimensional) standard Brownian motion, λ is a constant, and r = (rt)

follows the Ornstein-Uhlenbeck process

drt = κ[r̄ − rt] dt+ σr dz1t.

This is the Vasicek model so we know that the prices of zero-coupon bonds are given by (10.34)

and the corresponding yields are given by (10.36).

Suppose you want to value a real uncertain cash flow of FT coming at time T . Let xt = Et[FT ]

and assume that

dxt = xt

[

µx dt+ σxρ dz1t + σx
√

1 − ρ2 dz2t

]

,

where µx, σx, and ρ are constants, and where z2 = (z2t) is another (one-dimensional) standard

Brownian motion independent of z1.

(a) Argue that x = (xt) must be a martingale and hence that µx = 0.

(b) Show that the time t value of the claim to the cash flow FT is given by

Vt ≡ V (t, rt, xt) = xte
−A(T−t)−B(T−t)rt , (*)

where B(τ) = b(τ) and

A(τ) = a(τ) + ρλσxτ +
ρσxσr
κ

(τ − b(τ)) .
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(c) Write the dynamics of V = (Vt) as dVt = Vt[µ
V
t dt + σV1t dz1t + σV2t dz2t]. Use (*) to identify

µVt , σV1t, and σV2t. Verify that µVt = rt +
(
σVt
)

⊤

λt, where σV = (σV1 , σ
V
2 )⊤ and λ is the

market price of risk vector (the market price of risk associated with z2 is zero! Why?).

(d) Define the risk-adjusted discount rateRt for the cash flow by the relation Vt = Et[FT ]e−Rt[T−t].

What is the difference between Rt and yTt ? How does this difference depend on the cash flow

payment date T?

EXERCISE 10.9 Consider an economy with complete financial markets and a representative

agent with CRRA utility, u(C) = C1−γ

1−γ , where γ > 0, and a time preference rate of δ. The

aggregate consumption level C is assumed to follow the stochastic process

dct = ct
[(
a1X

2
t + a2Xt + a3

)
dt+ σc dzt

]
,

where z = (zt) is a standard one-dimensional Brownian motion under the real-life probability

measure P and where a1, a2, a3, σc are constants with σc > 0. Furthermore, X = (Xt) is a

stochastic process with dynamics

dXt = −κXt dt+ dzt,

where κ is a positive constant.

(a) Show that the short-term interest rate is of the form rt = d1X
2
t + d2Xt + d3 and determine

the constants d1, d2, d3.

(b) Find a parameter condition under which the short-term interest rate is always non-negative.

(c) Write up the dynamics of rt.

(d) What is the market price of risk in this economy?

Suppose that the above applies to the real economy and that money has no effects on the real

economy. The consumer price index Ft is supposed to have dynamics

dFt = Ft

[

µϕt dt+ ρCFσϕt dzt +
√

1 − ρ2
CFσϕt dẑt

]

,

where ρCF is a constant correlation coefficient and ẑ = (ẑt) is another standard Brownian motion

independent of z. Assume that µϕt and σϕt are on the form

µϕt = b1X
2
t + b2Xt + b3, σϕt = kXt.

(e) Write up an expression for the nominal short-term interest rate, r̃t.

Assume in the rest of the problem that γa1 + b1 = k2.

(f) Show that the nominal short rate r̃t is affine in Xt and express Xt as an affine function of

r̃t.
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(g) Compute the nominal market price of risk λ̃t.

(h) Determine the dynamics of the nominal short rate. The drift and volatility should be ex-

pressed in terms of r̃t, not Xt.



Chapter 11

Risk-adjusted probabilities

11.1 Introduction

Chapter 4 illustrated how the general pricing mechanism in a financial market can be represented

by a state-price deflator. However, the state-price deflator is not the only way to represent the

pricing mechanism of a financial market. As indicated in a one-period framework in Section 4.5.1,

one can equivalently represent the pricing mechanism by a risk-neutral probability measure and the

risk-free return. This chapter explores and generalizes this idea and also outlines some applications

of this alternative representation. The risk-neutral pricing technique is the standard approach in

the valuation of derivative securities. The next chapter focuses on derivatives and will illustrate

the use of risk-neutral valuation for derivative pricing.

Apparently, the idea of risk-neutral valuation stems from Arrow (1970) and Drèze (1971) and

was further explored by Harrison and Kreps (1979).

The rest of this chapter is organized in the following way. Section 11.2 outlines how a general

change of the probability measure is formalized. The risk-neutral probability measure is defined

and studied in Section 11.3, while the so-called forward risk-adjusted probability measures are in-

troduced in Section 11.4. Section 11.5 shows that an appropriate risk-adjusted probability measure

can be defined for any given asset or trading strategy with a positive value. Section 11.6 demon-

strates that the risk-adjusted probability measure associated with the so-called growth-optimal

trading strategy is identical to the real-world probability measure.

11.2 Change of probability measure

Any financial model with uncertainty formally builds on a probability space (Ω,F,P), where Ω is

the state space (the set of possible realizations of all relevant uncertain objects), F is the set of

events that can be assigned a probability, and P is a probability measure assigning probabilities to

events. It is implicitly understood that P gives the true or real-world probabilities of events. The

consumption and investment decisions of individuals will depend on the probabilities they asso-

ciate with different events and, hence, the equilibrium asset prices will reflect those probabilities.

However, as we will see in the following sections, for some purposes it will be interesting to consider

other probability measures on the same set of events. We will use the term real-world probability

255
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measure for P but in the literature P is also referred to as the true, the physical, or the empirical

probability measure.

A word on notation. Whenever the expectation operator is written without a superscript,

it means the expectation using the probability measure P. The expectation under a different

probability measure Q will be denoted by EQ. Similarly for variances and covariances and for

conditional moments.

The alternative probability measures we will consider will be equivalent to P. Two probability

measures P and Q on the same set of events F are said to be equivalent probability measures

if they assign probability zero to exactly the same events, i.e.

P(F ) = 0 ⇔ Q(F ) = 0.

The link between two equivalent probability measures P and Q can be represented by a random

variable, which is typically denoted by dQ
dP

and referred to as the Radon-Nikodym derivative

of Q with respect to P. For any state ω ∈ Ω, the value of dQ
dP

shows what the P-probability of ω

should be multiplied by in order to get the Q-probability of ω. In the special case of a finite state

space Ω = {1, 2, . . . , S}, the probability measures P and Q are defined by the probabilities pω and

qω, respectively, of the individual states ω = 1, 2, . . . , S. The Radon-Nikodym derivative of Q with

respect to P is then captured by the S possible realizations

dQ

dP
(ω) =

qω
pω
, ω = 1, . . . , S.

The Radon-Nikodym derivative dQ
dP

must be strictly positive on all events having a non-zero P-

probability. Furthermore, to ensure that the Q-probabilities sum up to one, we must have E
[
dQ
dP

]
=

1. For example, with a finite state space

E

[
dQ

dP

]

=

S∑

ω=1

pω
dQ

dP
(ω) =

S∑

ω=1

pω
qω
pω

=

S∑

ω=1

qω = 1.

The expected value under the measure Q of a random variable X is given by

EQ[X] = E

[
dQ

dP
X

]

. (11.1)

Again, this is easily demonstrated with a finite state space:

EQ[X] =
S∑

ω=1

qωX(ω) =
S∑

ω=1

pω
qω
pω
X(ω) =

S∑

ω=1

pω
dQ

dP
(ω)X(ω) = E

[
dQ

dP
X

]

.

In a multi-period model where all the uncertainty is resolved at time T , the Radon-Nikodym

derivative dQ
dP

will be realized at time T , but usually not known before time T . Define the stochastic

process ξ = (ξt)t∈T by

ξt = Et

[
dQ

dP

]

.

In particular, ξT = dQ
dP

. The process ξ is called the change-of-measure process or the likelihood

ratio process. Note that the process ξ is a P-martingale since, for any t < t′ ≤ T , we have

Et [ξt′ ] = Et [Et′ [ξT ]] = Et [ξT ] = ξt.
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Here the first and the third equalities follow from the definition of ξ. The second equality follows

from the Law of Iterated Expectations, Theorem 2.1.

In multi-period models we often work with conditional probabilities and the following result

turns out to be very useful. Let X = (Xt)t∈T be any stochastic process. Then we have

EQ
t [Xt′ ] =

Et [ξt′Xt′ ]

Et[ξt′ ]
= Et

[
ξt′

ξt
Xt′

]

. (11.2)

This is called Bayes’ Formula. For a proof, see Björk (2004, Prop. B.41).

A change of the probability measure can be handled very elegantly in continuous-time models

where the underlying uncertainty is represented by a standard Brownian motion z = (zt)t∈[0,T ]

(under the real-world probability measure P), which is the case in all the continuous-time models

considered in this book. Let λ = (λt)t∈[0,T ] be any adapted and sufficiently well-behaved stochastic

process.1 Here, z and λ must have the same dimension. For notational simplicity, we assume in

the following that they are one-dimensional, but the results generalize naturally to the multi-

dimensional case. We can generate an equivalent probability measure Qλ in the following way.

Define the process ξλ = (ξλt )t∈[0,T ] by

ξλt = exp

{

−
∫ t

0

λs dzs −
1

2

∫ t

0

λ2
s ds

}

. (11.3)

Then ξλ0 = 1, ξλ is strictly positive, and an application of Itô’s Lemma shows that dξλt = −ξλt λt dzt
so that ξλ is a P-martingale (see Exercise 2.4) and E[ξλT ] = ξλ0 = 1. Consequently, an equivalent

probability measure Qλ can be defined by the Radon-Nikodym derivative

dQλ

dP
= ξλT = exp

{

−
∫ T

0

λs dzs −
1

2

∫ T

0

λ2
s ds

}

.

From (11.2), we get that

EQλ

t [Xt′ ] = Et

[
ξλt′

ξλt
Xt′

]

= Et

[

Xt′ exp

{

−
∫ t′

t

λs dzs −
1

2

∫ t′

t

λ2
s ds

}]

(11.4)

for any stochastic process X = (Xt)t∈[0,T ]. A central result is Girsanov’s Theorem:

Theorem 11.1 (Girsanov) The process zλ = (zλt )t∈[0,T ] defined by

zλt = zt +

∫ t

0

λs ds, 0 ≤ t ≤ T, (11.5)

is a standard Brownian motion under the probability measure Qλ. In differential notation,

dzλt = dzt + λt dt.

This theorem has the attractive consequence that the effects on a stochastic process of changing

the probability measure from P to some Qλ are captured by a simple adjustment of the drift. If

X = (Xt) is an Itô-process with dynamics

dXt = µt dt+ σt dzt,

1Basically, λ must be square-integrable in the sense that
R T

0
λ2

t dt is finite with probability 1 and that λ satisfies

Novikov’s condition, i.e. the expectation E
h
exp

n
1

2

R T

0
λ2

t dt
oi

is finite.
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then

dXt = µt dt+ σt
(
dzλt − λt dt

)
= (µt − σtλt) dt+ σt dz

λ
t . (11.6)

Hence, µ−σλ is the drift under the probability measure Qλ, which is different from the drift under

the original measure P unless σ or λ are identically equal to zero. In contrast, the volatility remains

the same as under the original measure. We will say that the equation (11.6) is the Qλ-dynamics

of the process X.

In many financial models, the relevant change of measure is such that the distribution under Qλ

of the future value of the central processes is of the same class as under the original P measure,

but with different moments. However, in general, a shift of probability measure may change not

only some or all moments of future values, but also the distributional class.

11.3 Risk-neutral probabilities

11.3.1 Definition

A risk-neutral probability measure for a given financial market can only be defined if the investors

at any point in time considered in the model and for any state can trade in an asset which provides

a risk-free return until the next point in time where the investors can rebalance their portfolios.

In a one-period economy, this is simply a one-period risk-free asset. As before, Rf denotes the

gross return on that asset. In a discrete-time economy with trading at t = 0, 1, 2, . . . , T − 1, the

assumptions is that investors can roll over in one-period risk-free investments. Investing one unit

in a one-period risk-free investment at time t will give you Rft at time t + 1. Reinvesting that in

a risk-free manner over the next period will give you Rft,t+2 = RftR
f
t+1 at time t + 2. Continuing

that procedure, you end up with

Rft,t+n = RftR
f
t+1R

f
t+2 . . . R

f
t+n−1 =

n−1∏

m=0

Rft+m

at time t+n. Note that, in general, this return is not known before time t+n−1 and in particular

not at time t where the investment strategy is initiated. An investment with a truly risk-free return

between time t and t+ n is a zero-coupon bond maturing at time t+ n. If Bt+nt denotes the price

of this bond at time t and the face value of the bond is normalized at 1, the gross risk-free return

between t and t+ n is 1/Bt+nt .

In a continuous-time economy we can think of the limit of the above roll-over strategy. If rft

denotes the continuously compounded risk-free net rate of return at time t (the interest rate over

the instant following time t), an investment of 1 in this roll-over strategy at time t will give you

Rft,t′ = exp

{
∫ t′

t

rfu du

}

at time t′.

Whether the model is formulated in discrete or in continuous time we refer to the roll-over

strategy in short risk-free investments as the bank account and refer to Rft,s as the gross return

on the bank account between time t and time s > t. In the one-period model, the bank account is

simply a one-period risk-free asset.
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We can now give a unified definition of a risk-neutral probability measure. A probability measure

Q is called a risk-neutral probability measure for a given financial market in which a bank

account is traded if the following conditions are satisfied:

(i) P and Q are equivalent;

(ii) the Radon-Nikodym derivative dQ
dP

has finite variance;

(iii) the price of a future dividend equals the Q-expectation of the ratio of the dividend to the

gross return on the bank account between the pricing date and the dividend payment date.

When Q is a risk-neutral probability measure, we will refer to the Q-expectation as the risk-neutral

expectation.

The pricing condition (iii) is a bit vague at this point. In a one-period framework, it means that

Pi = EQ
[
(Rf )−1Di

]
= (Rf )−1 EQ [Di] , (11.7)

and, consequently, E[Ri] = Rf . In a discrete-time model, the pricing condition (iii) is

Pit = EQ
t

[
T∑

s=t+1

Dis

Rft,s

]

, (11.8)

which is equivalent to

Pit = EQ
t




Pit′

Rft,t′
+

t′∑

s=t+1

Dis

Rft,s



 , t < t′ ≤ T, (11.9)

cf. Exercise 11.1. In particular, for t′ = t+ 1 this reduces to

Pit =
1

Rft
EQ
t [Pi,t+1 +Di,t+1] (11.10)

so that Et[Ri,t+1] = Rft . In the continuous-time framework, the pricing condition (iii) is interpreted

as

Pit = EQ
t

[
∫ T

t

(Rft,s)
−1δisPis ds+ (Rft,T )−1DiT

]

= EQ
t

[

(Rft,T )−1e
R T

t
δis dsDiT

]

= EQ
t

[

e−
R T

t
(rf

s −δis) dsDiT

]

,

(11.11)

from which the relation

Pit = EQ
t

[
∫ t′

t

(Rft,s)
−1δisPis ds+ (Rft,t′)

−1Pi,t′

]

= EQ
t

[

e−
R t′

t
(rf

s −δis) dsPi,t′
]

(11.12)

follows. This implies that

dPit = Pit

[

(rft − δit) dt+ σ⊤

it dz
Q
t

]

(11.13)

so that the total instantaneous rate of return has a risk-neutral expectation equal to the risk-free

rate. Therefore, in all of the modeling frameworks, the risk-neutral expected return on any asset

over the next period equals the risk-free return over that period. The above considerations also

hold for all trading strategies (as always, in the continuous-time framework some “wild” trading

strategies must be ruled out).
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We can see from the above equations that given the stochastic process for the risk-free return

and a risk-neutral probability measure, we can price any dividend process. Therefore the risk-

free return process and a risk-neutral probability measure jointly capture the market-wide pricing

mechanism of the financial market.

A risk-neutral probability measure is sometimes called an equivalent martingale measure.

Of course, the word equivalent refers to the equivalence of the risk-neutral probability measure and

the real-world probability measure. The word martingale is used here since the risk-free discounted

gains process of any asset will be a Q-martingale. The risk-free discounted gains process of asset i

is denoted by Ḡi = (Ḡit)t∈T. In the discrete-time setting, it is defined as

Ḡit =
Pit

Rf0,t
+

t∑

s=1

Dis

Rf0,s

Since Rf0,s = Rf0,tR
f
t,s for all t < s, the pricing condition (11.9) can be rewritten as

Pit

Rf0,t
= EQ

t




Pit′

Rf0,t′
+

t′∑

s=t+1

Dis

Rf0,s



 , t < t′ ≤ T,

which is equivalent to

Pit

Rf0,t
+

t∑

s=1

Dis

Rf0,s
= EQ

t




Pit′

Rf0,t′
+

t′∑

s=1

Dis

Rf0,s



 , t < t′ ≤ T,

i.e. Ḡit = EQ
t [Ḡi,t′ ] so that Ḡi indeed is a Q-martingale. In the continuous-time setting, the

discounted gains process of asset i is defined as

Ḡit =
Pit

Rf0,t
+

∫ t

0

δisPis

Rf0,s
ds,

and again it can be shown that the pricing condition (11.12) is equivalent to Ḡi being a Q-

martingale.

11.3.2 Relation to state-price deflators

Since we can represent the general pricing mechanism of a financial market either by a state-price

deflator or by a risk-neutral probability measure and the risk-free return process, it should come

as no surprise that there is a close relation between these quantities.

First, consider a one-period economy with a risk-free asset. Given a state-price deflator ζ, the

risk-free rate is Rf = 1/E[ζ] and we can define the random variable

dQ

dP
= Rfζ,

which is a strictly positive random variable with

E

[
dQ

dP

]

= Rf E[ζ] = 1.

Therefore, dQ
dP

defines a probability measure Q, which is equivalent to P. Since a state-price deflator

has finite variance and Rf is a constant, dQ
dP

has finite variance. Furthermore, from (11.1) we get

EQ

[
Di

Rf

]

= E

[
dQ

dP

Di

Rf

]

= E[ζDi] = Pi.
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Hence Q is indeed a risk-neutral probability measure. Conversely, if Q is a risk-neutral probability

measure, a state-price deflator can be defined by

ζ = (Rf )−1 dQ

dP
.

Changing the probability measure is a reallocation of probability mass over the states. We can see

that the risk-neutral measure allocates a higher probability to states ω for which ζω > (Rf )−1 =

E[ζ], i.e. if the value of the state-price deflator for state ω is higher than average.

Example 11.1 Consider the same one-period economy as in the Examples 3.1 and 4.2. The real-

world probabilities of the three states are p1 = 0.5, p2 = p3 = 0.25, respectively. The state-price

deflator is given by ζ1 = 0.6, ζ2 = 0.8, and ζ3 = 1.2. Since

E[ζ] = 0.5 · 0.6 + 0.25 · 0.8 + 0.25 · 1.2 = 0.8,

the gross risk-free return is Rf = 1/E[ζ] = 1.25 corresponding to a 25% risk-free net rate of return.

It follows that the risk-neutral probabilities are

q1 = Rfζ1p1 = 0.375, q2 = Rfζ2p2 = 0.25, q3 = Rfζ3p3 = 0.375.

The risk-neutral measure allocates a larger probability to state 3, the same probability to state 2,

and a lower probability to state 1 than the real-world measure. 2

In a multi-period model where all uncertainty is resolved at time T , the relation linking the

state-price deflator ζ = (ζt)t∈T and the risk-neutral probability measure is

ζt =
1

Rf0,t
Et

[
dQ

dP

]

=
ξt

Rf0,t
, (11.14)

where ξt = EP
t [
dQ
dP

] as before. Given a risk-neutral probability measure Q and the risk-free return

process (Rf0,t)t∈T, this equation defines the state-price deflator. Conversely, given a state-price

deflator ζ, the risk-free return process is

Rf0,t = Rf0R
f
1 . . . R

f
t−1 =

(

E

[
ζ1
ζ0

]

E1

[
ζ2
ζ1

]

. . .Et

[
ζt
ζt−1

])−1

and
dQ

dP
= Rf0,T ζT (11.15)

defines a risk-neutral probability measure Q.

Let us consider a discrete-time framework and verify that the pricing condition (11.9) in the

definition of a risk-neutral probability measure is satisfied when ζ is a state-price deflator and Q

is defined through the Radon-Nikodym derivative (11.15). First note that when ζ is a state-price

deflator,

1 = Et

[
ζT
ζt
Rft,T

]

and hence

ξt = Et

[
dQ

dP

]

= Et

[

ζTR
f
0,T

]

= ζtR
f
0,t Et

[
ζT
ζt
Rft,T

]

= ζtR
f
0,t,

so that

ξt = ζtR
f
0,t, t = 0, 1, . . . , T,
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and, thus,
ξs
ξt

=
ζs
ζt
Rft,s, t < s ≤ T. (11.16)

We now have that

EQ
t




Pit′

Rft,t′
+

t′∑

s=t+1

Dis

Rft,s



 = EQ
t

[

Pit′

Rft,t′

]

+

t′∑

s=t+1

EQ
t

[

Dis

Rft,s

]

= Et

[

ξt′

ξt

Pit′

Rft,t′

]

+
t′∑

s=t+1

Et

[

ξs
ξt

Dis

Rft,s

]

= Et




ξt′

ξt

Pit′

Rft,t′
+

t′∑

s=t+1

ξs
ξt

Dis

Rft,s





= Et




ζt′

ζt
Pit′ +

t′∑

s=t+1

ζs
ζt
Dis





= Pit,

as was to be shown. Here the second equality is due to the relation (11.2), the fourth equality

comes from inserting (11.16), and the final equality holds since ζ is a state-price deflator. Taking

the above steps in the reverse order will show that if the pricing condition in the definition of

a risk-neutral probability measure is satisfied, then the pricing condition in the definition of a

state-price deflator is satisfied when ζ is defined as in (11.14). An analogous procedure works in

the continuous-time setting.

Combining the relation between risk-neutral measures and state-price deflators with the results

on the existence and uniqueness of state-price deflators derived in Section 4.3, we can make the

following conclusions:

Theorem 11.2 Assume that a bank account is traded. Prices admit no arbitrage if and only if a

risk-neutral probability measure exists. An arbitrage-free market is complete if and only if there is

a unique risk-neutral probability measure.

In the continuous-time framework some technical conditions have to be added or the definition of

arbitrage must be slightly adjusted. In that framework, we know from Chapter 4 that a state-price

deflator is of the form

ζt = exp

{

−
∫ t

0

rfs ds−
1

2

∫ t

0

‖λs‖2 ds−
∫ t

0

λ⊤

s dzs

}

, (4.43)

where λ = (λt) is a market price of risk process so that

µt + δt − rft 1 = σ tλt.

The corresponding risk-neutral probability measure is defined by

dQ

dP
= Rf0,T ζT = e

R T
0
rf

s dsζT = exp

{

−1

2

∫ T

0

‖λs‖2 ds−
∫ T

0

(λs)
⊤ dzs

}

(11.17)

and

ξt = Et

[
dQ

dP

]

= exp

{

−1

2

∫ t

0

‖λs‖2 ds−
∫ t

0

(λs)
⊤ dzs

}

. (11.18)
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It follows by the Girsanov Theorem 11.1 that the process zQ = (zQ)t∈[0,T ] defined by zQ
0 = 0 and

dzQ
t = dzt + λt dt (11.19)

is a standard Brownian motion under the risk-neutral probability measure. We can then transform

the dynamics of any process X = (Xt)t∈[0,T ] as follows:

dXt = µXt dt+ σ⊤

Xt dzt

= µXt dt+ σ⊤

Xt

(

dzQ
t − λt dt

)

= (µXt − σ⊤

Xtλt) dt+ σ⊤

Xtdz
Q
t .

The instantaneous sensitivity is unchanged, but the product of the sensitivity vector and the market

price of risk is subtracted from the drift. In particular, for a price process we get

dPit = Pit [µit dt+ σ⊤

it dzt]

= Pit

[

(µit − σ⊤

itλt) dt+ σ⊤

it dz
Q
t

]

= Pit

[(

rft − δit

)

dt+ σ⊤

it dz
Q
t

]

,

(11.20)

where the last equality follows from the definition of a market price of risk. Again we see that

the risk-neutral expectation of the total instantaneous rate of return is identical to the risk-free

interest rate.

11.3.3 Valuation with risk-neutral probabilities

From the pricing condition in the definition of a risk-neutral probability measure, it is clear that

the valuation of an asset requires knowledge of the joint risk-neutral probability distribution of the

risk-free discount factor (Rft,s)
−1 and the asset dividend Di,s. More precisely, we have to know the

covariance under the risk-neutral probability measure of the two variables. For example, in the

discrete-time setting, (11.8) implies that

Pit =
T∑

s=t+1

(

EQ
t

[(

Rft,s

)−1
]

EQ
t [Dis] + CovQ

t

[(

Rft,s

)−1

,Dis

])

.

Note that EQ
t

[(

Rft,s

)−1
]

= Bst , the time t price of a zero-coupon bond maturing with a unit

payment at time s. Therefore, we can rewrite the above equation as

Pit =

T∑

s=t+1

Bst







EQ
t [Dis] +

CovQ
t

[(

Rft,s

)−1

,Dis

]

Bst






.

Example 11.2 Consider the two-period economy illustrated in Figures 2.1 and 2.2 and also

studied in Exercise 4.8. There are six states. The real-world state probabilities and the assumed

values of the state-price deflator at time 1 and time 2 are listed in left-most columns of Table 11.1.

Figure 11.1 illustrates the economy as a two-period tree. Each state corresponds to a path through

the tree. Two numbers are written along each branch. The left-most number is the value of the

next-period deflator along that branch (ζ1 over the first period and ζ2/ζ1 over the second period).
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ω p ζ1 ζ2/ζ1 ζ2 Rf1 Rf0,2
dQ
dP

q

1 0.24 1.2 1 1.2 1.0714 1.1398 1.3678 0.3283

2 0.06 1.2 0.6667 0.8 1.0714 1.1398 0.9119 0.0547

3 0.04 1 1 1 1.0989 1.1690 1.1690 0.0468

4 0.16 1 0.9 0.9 1.0989 1.1690 1.0521 0.1683

5 0.2 1 0.9 0.9 1.0989 1.1690 1.0521 0.2104

6 0.3 0.6 0.9 0.54 1.1111 1.1820 0.6383 0.1915

Table 11.1: P, Q, Rf , and ζ in Example 11.2.

The right-most number is the conditional real-world probability of that branch. The conditional

probabilities can be computed from the state probabilities, e.g. the conditional probability for the

upward branch leaving the upper node at time 1 is the probability that state 1 is realized given

that it is known that the true state is either 1 or 2, i.e. 0.24/(0.24 + 0.06) = 0.8.

Before the risk-neutral probabilities can be computed, we have to find the gross return Rf0,2 =

Rf0R
f
1 on the bank account. We can identify this from the state-price deflator and the real-world

probabilities. Over the first period the risk-free gross return is

Rf0 =
1

E[ζ1]
=

1

0.3 · 1.2 + 0.4 · 1 + 0.3 · 0.6 =
1

0.94
≈ 1.0638.

Over the second period the risk-free gross return depends on the information at time 1. In the

upper node at time 1 the one-period gross risk-free return is

Rf1 =
1

E1[ζ2/ζ1]
=

1

0.8 · 1 + 0.2 · 0.6667
=

1

0.9333
≈ 1.0714.

Similarly, Rf1 ≈ 1.0989 in the middle node and Rf1 ≈ 1.1111 in the lower node at time 1. Now the

risk-neutral probabilities can be computed as shown in the right-most part of Table 11.1.

Given the risk-neutral probabilities of each state, we can compute the conditional risk-neutral

probabilities of transitions from one point in time to the next, exactly as for the real-world prob-

abilities. Together with the one-period risk-free returns, the conditional risk-neutral probabilities

contain all the necessary information to price a given dividend process by backwards recursions

through the tree. This information is illustrated in Figure 11.2. The conditional risk-neutral proba-

bilities can also be computed directly from the conditional real-world probabilities and the risk-free

return and the state-price deflator for that transition. For example, the conditional risk-neutral

probability of the upper branch leaving the upper node at time 1 equals 1.0714 · 1 · 0.8 ≈ 0.8571.

Let us compute the price process of an asset with the dividends written in the circles in Fig-

ure 11.3 (this is asset 2 from Exercise 4.8). The ex-dividend price in the upper node at time 1 is

simply

Pu1 =
1

1.0714
(0.8571 · 2 + 0.1429 · 1) ≈ 1.7333.

Similarly, the time 1 prices in the middle and lower node are Pm1 = 2.27 and P l1 = 2.7, respectively.

The time 0 price is then computed as

P0 =
1

1.0638
(0.3830 · [1.7333 + 2] + 0.4255 · [2.27 + 3] + 0.1915 · [2.7 + 4]) = 4.658.

2
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Figure 11.1: Real-world probabilities and the state-price deflator in Example 11.2.
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Figure 11.2: Risk-neutral probabilities and one-period risk-free returns in Example 11.2.
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Figure 11.3: Risk-neutral valuation of a dividend process in Example 11.2.

11.4 Forward risk-adjusted probability measures

When valuing an asset with the risk-neutral valuation approach, we have to know the risk-neutral

covariance between the risk-free discount factor (Rft,s)
−1 and the asset dividend Dis. Except for

simple cases, such covariances are hard to compute analytically. In this section we introduce an

alternative probability measure where we do not need to deal with such covariances. The downside

is that we have to use a separate probability measure for each payment date.

11.4.1 Definition

Let s ∈ T be a trading date and assume that zero-coupon bonds with a face value of 1 maturing at

time s are traded. As before, the price at time t ≤ s of such a bond is denoted by Bst . A probability

measure Qs on (Ω,Fs) is then called a forward risk-adjusted probability measure (or just a

forward measure) for maturity s if the following conditions are satisfied:

(i) P and Qs are equivalent;

(ii) the Radon-Nikodym derivative dQs

dP
has finite variance;

(iii) the time t price of a dividend paid at time s ≥ t equals the product of the zero-coupon bond

price Bst and the Qs-expectation of the dividend.

The time t price of a discrete-time dividend process Di = (Dis) is then

Pit =

T∑

s=t+1

Bst EQs

t [Dis]. (11.21)

No covariance or joint distribution is necessary, but a separate probability measure must be used

for each payment date. If you trust the market valuation of bonds, you can observe Bst in the bond
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market and you only have to find the expected dividend under the appropriate forward measure.

If zero-coupon bonds are not traded, implicit zero-coupon bond prices can be derived or estimated

from market prices of traded coupon bonds, see e.g. Munk (2005b, Ch. 2).

Apparently, forward measures were introduced by Jamshidian (1987) and Geman (1989). Some

authors use the names forward neutral measure or forward martingale measure instead.

The word forward can be explained as follows. A forward (contract) on a given asset, say asset i,

is a binding agreement between two parties stipulating that one party has to sell a unit of the asset

to the other party at a given future point in time, say time s, for a price already set today. The

(unique) delivery price that ensures that the present value of this contract equals zero is called the

forward price of asset i with delivery at time s. If asset i is assumed to pay no dividends before

time s, the forward price for delivery at time s can be shown to be Pit/B
s
t , i.e. the current price of

the asset “discounted forward in time” using the zero-coupon bond price maturing at the delivery

date. The Qs-measure is defined such that the Qs-expectation of the dividend equals the forward

price of the asset with delivery at time s (in case of no intermediary dividends).

11.4.2 Relation to state-price deflators and risk-neutral measures

The time 0 price of a dividend payment of Ds at time s is given by both E[ζsDs] and

Bs0 EQs

[Ds] = Bs0 E

[
dQs

dP
Ds

]

.

Therefore, a forward measure for maturity s is related to a state-price deflator through

Bs0
dQs

dP
= ζs ⇔ dQs

dP
=

ζs
Bs0

=
ζs

E[ζs]
. (11.22)

The zero-coupon bond price and therefore the Radon-Nikodym derivative dQs

dP
only “makes sense”

up to time s. Results on the existence and uniqueness of Qs follow from the corresponding con-

clusions about state-price deflators.

In terms of a risk-neutral probability measure Q, the time 0 value of the dividend Ds is

EQ[(Rf0,s)
−1Ds] and therefore a forward measure for maturity s is related to a risk-neutral proba-

bility measure through the equation

Bs0
dQs

dQ
=
(

Rf0,s

)−1

⇔ dQs

dQ
= (Bs0)

−1
(

Rf0,s

)−1

=

(

Rf0,s

)−1

EQ

[(

Rf0,s

)−1
] . (11.23)

In a continuous-time framework, the last equality can be rewritten as

dQs

dQ
=

e−
R s
0
rf

u du

EQ
[

e−
R s
0
rf

u du
] . (11.24)

If the future risk-free rates are non-random, we see that the forward measure for maturity s and the

risk-neutral probability measure will assign identical probabilities to all events that are decidable

at time s, i.e. Qs = Q on Fs. In a one-period economy, Q and Q1 are always identical.

Assume a continuous-time setting and write the dynamics of the zero-coupon bond price matur-

ing at time s as

dBst = Bst

[(

rft + (σst )
⊤

λt

)

dt+ (σst )
⊤

dzt

]

. (11.25)
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ω p ζ2
dQ2

dP
q2

1 0.24 1.2 1.3921 0.3341

2 0.06 0.8 0.9281 0.0557

3 0.04 1 1.1601 0.0464

4 0.16 0.9 1.0441 0.1671

5 0.2 0.9 1.0441 0.2088

6 0.3 0.54 0.6265 0.1879

Table 11.2: The Q2-probabilities in Example 11.3.

This implies that

1 = Bss = Bs0 exp

{∫ s

0

(

rft + (σst )
⊤

λt +
1

2
‖σst‖2

)

dt−
∫ s

0

(σst )
⊤

dzt

}

.

The Radon-Nikodym derivative of the forward measure with respect to the real-world probability

measure can now be written as

dQs

dP
=

ζs
Bs0

= exp

{

−1

2

∫ s

0

‖λt − σst‖2 −
∫ s

0

(λt − σst )⊤

dzt

}

. (11.26)

According to the Girsanov Theorem 11.1 the process zs = (zs)t∈[0,T ] defined by zs0 = 0 and

dzst = dzt + (λt − σst ) dt (11.27)

is a standard Brownian motion under the forward measure for maturity s. The dynamics of any

process X = (Xt)t∈[0,T ] is transformed via

dXt = µXt dt+ σ⊤

Xt dzt = (µXt − σ⊤

Xt (λt − σst )) dt+ σ⊤

Xtdz
s
t (11.28)

and for a price process the analogue is

dPit = Pit [µit dt+ σ⊤

it dzt] = Pit

[(

rft − δit + σ⊤

itσ
s
t

)

dt+ σ⊤

it dz
s
t

]

. (11.29)

11.4.3 Valuation with forward measures

Example 11.3 Consider the same two-period economy as in Example 11.2. Let us find the

forward measure for maturity at time 2, i.e. Q2. First, we must find the price of the zero-coupon

bond maturing at time 2:

B2
0 = E[ζ2] = 0.862.

Now the forward probabilities of the states can be computed as q2ω = ζ2(ω)pω/B
2
0 yielding the

numbers in Table 11.2. Note that the forward probabilities are different from the risk-neutral

probabilities computed in Table 11.1.

Given the forward probabilities for maturity 2, it is easy to value a dividend received at time 2.

The time 0 value of the time 2 dividend illustrated in Figure 11.3 is

B2
0 EQ2

[D2] = 0.862 ·
(
1 · q22 + 2 · [q21 + q23 + q24 ] + 3 · [q25 + q26 ]

)
= 2.018.
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The dividend received at time 1 is not valued using the forward measure for maturity 2 but with

the forward measure for time 1, i.e. Q1. The forward measure at time 1 only assigns probabilities to

the decidable events at time 1, i.e. the events {1, 2}, {3, 4, 5}, {6} and unions of these events. Since

the one-period bond is the risk-free asset over the first period, the Q1-probabilities are identical to

the risk-neutral probabilities of these events, which are depicted in Figure 11.2. Note that these are

different from the Q2-probabilities of the same events, e.g. q21 +q22 = 0.3898 while q1 +q2 = 0.3830.

The time 0 value of the time 1 dividend illustrated in Figure 11.3 is

B1
0 EQ1

[D1] = (Rf0 )−1 EQ[D1] = 2.64

so that the total time 0 value of the asset is 2.64 + 2.018 = 4.658 as found in Example 11.2.

Exercise 11.3 has more on the forward measures in this example. 2

11.5 General risk-adjusted probability measures

Consider an asset with a single dividend payment ofDs at time s. Using the risk-neutral probability

measure Q the price at time t < s of this asset is

Pt = EQ
t

[(

Rft,s

)−1

Ds

]

.

If we invest 1 in the bank account at time 0 and roll-over at the short-term interest rate, the value

at time t will be P ft = Rf0,t. We can think of P f = (P ft ) as the price process of the bank account.

Since Rft,s = Rf0,s/R
f
0,t = P fs /P

f
t , we can rewrite the above equation as

Pt

P ft
= EQ

t

[
Ds

P fs

]

.

Both the current price and the future dividend of the asset is measured relative to the price of the

bank account, i.e. the bank account is used as the numeraire. By the Law of Iterated Expectations

(Theorem 2.1),

Pt

P ft
= EQ

t

[

EQ
t′

[
Ds

P fs

]]

= EQ
t

[

Pt′

P ft′

]

, t < t′ ≤ s,

so the relative price process (Pt/P
f
t ) is a Q-martingale.

Valuation with the forward measure for maturity s uses the zero-coupon bond maturing at s

as the numeraire. The price of the bond Bst converges to its face value of 1 as t → s. If we let

Bss = 1 denote the cum-dividend price of the bond at maturity, the price Pt of the asset paying

Ds at time s > t will satisfy
Pt
Bst

= EQs

t

[
Ds

Bss

]

from which it is clear that the zero-coupon bond is used as a numeraire. The relative price process

(Pt/B
s
t ) is a Qs-martingale.

In fact we can use any asset or trading strategy having a strictly positive price process as the

numeraire and find an equivalent probability measure under which the relative price processes

are martingales. Let θ be a trading strategy with associated value process V θ = (V θ
t )t∈T (see

Chapter 3 for the precise definition) so that V θ
t > 0 with probability 1 for all t ∈ T. Then Qθ is

said to be a risk-adjusted measure for θ if
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(i) P and Qθ̄ are equivalent;

(ii) the Radon-Nikodym derivative dQθ̄

dP
has finite variance;

(iii) the time t price of an asset paying a dividend of Ds at time s > t is

Pt = V θ
t EQθ

t

[
Ds

V θ
s

]

. (11.30)

Clearly, the pricing condition (11.30) can be rewritten as

Pt
V θ
t

= EQθ

t

[
Ds

V θ
s

]

,

and the relative price process (Pt/V
θ
t ) is a Qθ-martingale. If the trading strategy θ is self-financing,

its gross return between t and s will be Rθ
t,s = V θ

s /V
θ
t so that the pricing condition can also be

written as

Pt = EQθ

t

[(
Rθ
t,s

)−1
Ds

]

.

For a full discrete dividend process Di = (Dit)t=1,2,...,T , the price will be

Pit = V θ
t EQθ

t

[
T∑

s=t+1

Dis

V θ
s

]

.

Comparing the pricing expressions involving expectations under P and Qθ, we see that the

Radon-Nikodym derivative dQθ

dP
is linked to a state-price deflator through the relations

ζt =
V θ

0

V θ
t

Et

[
dQθ

dP

]

,
dQθ

dP
= ζT

V θ
T

V θ
0

. (11.31)

Now take a continuous-time framework and write the real-world dynamics of the value of the

numeraire as

dV θ
t = V θ

t

[(

rft +
(
σθ
t

)⊤

λt

)

dt+
(
σθ
t

)⊤

dzt

]

,

which implies that

V θ
T

V θ
0

= exp{
∫ T

0

(

rft +
(
σθ
t

)⊤

λt −
1

2
‖σθ

t ‖2

)

dt+

∫ T

0

(
σθ
t

)⊤

dzt}.

Hence,
dQθ

dP
= ζT

V θ
T

V θ
0

= exp{−1

2

∫ T

0

‖λt − σθ
t ‖2 dt−

∫ T

0

(
λt − σθ

t

)⊤

dzt},

and it follows from the Girsanov Theorem that the process zθ defined by

dzθ
t = dzt +

(
λt − σθ

t

)
dt

is a standard Brownian motion under the measure Qθ. The dynamics of any processX = (Xt)t∈[0,T ]

is transformed via

dXt = µXt dt+ σ⊤

Xt dzt =
(
µXt − σ⊤

Xt

(
λt − σθ

t

))
dt+ σ⊤

Xtdz
θ
t

and for a price process the analogue is

dPit = Pit [µit dt+ σ⊤

it dzt] = Pit

[(

rft − δit + σ⊤

itσ
θ
t

)

dt+ σ⊤

it dz
θ
t

]

.
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In particular for the numeraire itself,

dV θ
t = V θ

t

[(

rft + ‖σθ
t ‖2
)

dt+
(
σθ
t

)⊤

dzθ
t

]

. (11.32)

Risk-adjusted probability measures are often used in the pricing of derivatives. If the payoff of

the derivative is fully determined by some underlying asset, it is sometimes helpful to express the

price of the derivative using the risk-adjusted probability measure with the underlying asset as the

numeraire. Some examples will be given in Chapter 12.

11.6 Changing the numeraire without changing the measure

Now consider the following question: Is there a trading strategy θ for which the associated risk-

adjusted probability measure is identical to the real-world probability measure, i.e. Qθ = P? The

answer is affirmative. The so-called growth-optimal portfolio (or just GOP) strategy does the job.

Let us first consider a one-period setting. Here, the growth-optimal portfolio is defined as the

portfolio maximizing the expected log-return (or expected log-growth rate of the invested amount)

among all portfolios, i.e. it solves

max
π

E[ln (π⊤R)] s.t. π⊤1 = 1.

The Lagrangian for this problem is L = E[ln (π⊤R)] + ν (1 − π⊤1), where ν is the Lagrange

multiplier, with first-order condition

E

[
1

π⊤R
R

]

= ν1.

We cannot solve explicitly for the portfolio πGOP satisfying this equation, but we can see that its

gross return RGOP = π⊤

GOPR satisfies

E

[
1

RGOP
R

]

= ν1.

Pre-multiplying by any portfolio π we get

E

[
Rπ

RGOP

]

= νπ⊤1 = ν.

In particular, with π = πGOP, we see that

ν = E

[
RGOP

RGOP

]

= E[1] = 1.

We can thus conclude that for any asset i, we have

E

[
Ri

RGOP

]

= 1 ⇔ Pi = E
[

(RGOP)
−1
Di

]

. (11.33)

Note that the expectations are under the real-world probability measure.

If the state space is finite, Ω = {1, 2, . . . , S}, and the market is complete, it is possible to

construct an Arrow-Debreu asset for any state ω ∈ Ω, i.e. an asset with a dividend of 1 if state

ω is realized and a zero dividend otherwise. In this case, any portfolio π of the basic assets can

be seen as a portfolio π̂ of the S Arrow-Debreu assets. If ψω denotes the state price of state ω,
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the gross return on the Arrow-Debreu asset for state ω will be a random variable RAD(ω), which if

state s is realized takes on the value

RAD(ω)
s =







1
ψs

if s = ω,

0 otherwise.

Let RAD =
(
RAD(1), . . . , RAD(S)

)⊤

denote the random return vector of the S Arrow-Debreu assets.

The gross return on a portfolio π̂ of Arrow-Debreu assets will be

Rπ̂s = π̂⊤RAD
s =

π̂s
ψs
, s = 1, 2, . . . , S.

If we use the first-order condition (11.33) for the Arrow-Debreu asset for state ω, we therefore get

1 = E

[
RAD(ω)

Rπ̂
GOP

]

= pω
1/ψω
π̂ω/ψω

=
pω
π̂ω
,

where pω is the real-world probability of state ω. Therefore, in terms of the Arrow-Debreu assets,

the GOP consists of pω units of the Arrow-Debreu asset for state ω for each ω = 1, 2, . . . , S.

In a multi-period setting the growth-optimal trading strategy is the trading strategy maximiz-

ing E[lnV π
T ] among all self-financing trading strategies. Hence, it also maximizes E[ln(V π

T /V
π
0 )],

the expected log-growth rate between time 0 and time T . For now, focus on the discrete-time

framework. Note that

ln

(
V π
T

V π
0

)

= ln

(
V π

1

V π
0

V π
2

V π
1

. . .
V π
T

V π
T−1

)

= ln

(
V π

1

V π
0

)

+ ln

(
V π

2

V π
1

)

+ · · · + ln

(
V π
T

V π
T−1

)

= lnRπ
1 + lnRπ

2 + · · · + lnRπ
T ,

where Rπ
t+1 = V π

t+1/V
π
t is the gross return on the trading strategy between time t and time t+ 1,

i.e. the gross return on the portfolio πt chosen at time t. Therefore the growth-optimal trading

strategy π = (πt)t∈T is such that each πt maximizes Et[lnR
πt
t+1] = Et[ln(π⊤

t Rt+1)], where Rt+1

is the vector of gross returns on all the basic assets between time t and time t + 1. As in the

one-period setting, the first-order condition implies that

Et

[
Ri,t+1

Rπ
t+1

]

= 1

for all assets i (and portfolios). Again, it is generally not possible to solve explicitly for the

portfolio πt.

In the continuous-time framework assume that a bank account is traded with instantaneous risk-

free rate of return rft and let πt denote the portfolio weights of the instantaneously risky assets.

Then the dynamics of the value V π
t of a self-financing trading strategy π = (πt)t∈[0,T ] is given by

dV π
t = V π

t

[(

rft + π⊤

t [µt + δt − rft 1]
)

dt+ π⊤

t σ t dzt

]

, (11.34)

cf. Sections 3.3.3 and 6.5.2. This implies that

V π
T = V π

0 exp

{
∫ T

0

(

rft + π⊤

t [µt + δt − rft 1] − 1

2
π⊤

t σ tσ
⊤

t πt

)

dt+

∫ T

0

π⊤

t σ t dzt

}

,
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and thus

ln

(
V π
T

V π
0

)

=

∫ T

0

(

rft + π⊤

t [µt + δt − rft 1] − 1

2
π⊤

t σ tσ
⊤

t πt

)

dt+

∫ T

0

π⊤

t σ t dzt.

If the process π⊤

t σ t is sufficiently nice, the stochastic integral in the above equation will have

mean zero so that the growth-optimal trading strategy is maximizing the expectation of the first

integral, which can be found by maximizing π⊤

t [µt + δt − rft 1] − 1
2π

⊤

t σ tσ
⊤

t πt for each t and each

state. The first-order condition implies that

σ tσ
⊤

t πt = µt + δt − rft 1, (11.35)

which means that

σ⊤

t πt = λt (11.36)

for some market price of risk process λ = (λt). If σ t is a square, non-singular matrix, the unique

GOP strategy is given by

πt =
(
σ⊤

t

)−1
λt =

(
σ tσ

⊤

t

)−1
(

µt + δt − rft 1
)

. (11.37)

This shows that the GOP strategy is a combination of the instantaneously risk-free asset and

the tangency portfolio of risky assets, introduced in Section 6.5.2. The GOP strategy is the

optimal trading strategy for an individual with time-additive logarithmic utility. Substituting the

expression for πt back into the value dynamics, we see that the value of the GOP strategy evolves

as

dV π
t = V π

t

[(

rft + ‖λt‖2
)

dt+ λ⊤

t dzt

]

. (11.38)

The value process of the GOP strategy (and the real-world probability measure) contain sufficient

information to price any specific dividend process. Since knowing the value process of the GOP

strategy boils down to knowing the risk-free rate process and the market price of risk process, this

is not a surprise. Also note that ζt = V π
0 /V

π
t defines a state-price deflator.

11.7 Concluding remarks

This chapter has introduced several risk-adjusted probability measures and discussed the appli-

cation of these measures in the pricing of assets. Each risk-adjusted probability measure (in

conjunction with the price process for the associated numeraire) is in a one-to-one relation with

a state-price deflator. The models for state-price deflators developed in the previous chapters

are therefore also models concretizing the risk-adjusted probability measures. For example, the

consumption-based CAPM will define a risk-neutral probability measure in terms of the (aggre-

gate) consumption of a given (representative) individual. Any full factor pricing model will also

nail down the risk-neutral probability measure.

As discussed in Chapter 4, there is a distinction between real state-price deflators and nominal

state-price deflators. Similarly, we can distinguish between a real risk-neutral probability measure

and a nominal risk-neutral probability measure. The real (nominal, respectively) risk-neutral

probability measure is defined with a bank account yielding the real (nominal, respectively) short-

term risk-free interest rate as the numeraire. In the same manner real and nominal forward

measures are defined with a real and nominal, respectively, zero-coupon bond as the numeraire.
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11.8 Exercises

EXERCISE 11.1 Show that the Equations (11.8) and (11.9) are equivalent.

EXERCISE 11.2 Take a continuous-time framework and assume that ζ = (ζt)t∈[0,T ] is a state-

price deflator. What is the Q-dynamics of ζ?

EXERCISE 11.3 Consider Example 11.3. Compute the conditional Q2-probabilities of the

transitions over the second period of the tree. Compare with conditional Q-probabilities illustrated

in Figure 11.2 and explain why they are (not?) different.

EXERCISE 11.4 In the same two-period economy considered in Examples 11.2 and 11.3, com-

pute the price of an asset giving a time 1 dividend of 0 in the upper or middle node and 1 in the

lower node and a time 2 dividend of 3, 2, 3, 3, 4, or 5 from the top node and down (this is asset 3

in Exercise 4.8).



Chapter 12

Derivatives

12.1 Introduction

A derivative is an asset whose dividend(s) and price are derived from the price of another asset, the

underlying asset, or the value of some other variable. The main types of derivatives are forwards,

futures, options, and swaps. While a large number of different derivatives are traded in today’s

financial markets, most of them are variations of these four main types.

A forward is the simplest derivative. A forward contract is an agreement between two parties

on a given transaction at a given future point in time and at a price that is already fixed when

the agreement is made. For example, a forward on a bond is a contract where the parties agree to

trade a given bond at a future point in time for a price which is already fixed today. This fixed

price is usually set so that the value of the contract at the time of inception is equal to zero so

that no money changes hand before the delivery date. Forward contracts are not traded or listed

at financial exchanges but traded in quite organized over-the-counter (OTC) markets dominated

by large financial institutions. For example, forwards on foreign exchange are quite common.

As a forward contract, a futures contract is an agreement upon a specified future transaction,

e.g. a trade of a given security. The special feature of a future is that changes in its value are settled

continuously throughout the life of the contract (usually once every trading day). This so-called

marking-to-market ensures that the value of the contract (i.e. the value of the payments still to

come) is zero immediately following a settlement. This procedure makes it practically possible

to trade futures at organized exchanges, since there is no need to keep track of when the futures

position was originally taken. Futures on many different assets or variables are traded at different

exchanges around the world, including futures on stocks, bonds, interest rates, foreign exchange,

oil, metals, frozen concentrate orange juice, live cattle, and the temperature in Las Vegas!

An option gives the holder the right to make some specified future transaction at terms that are

already fixed. A call option gives the holder the right to buy a given security at a given price at

or before a given date. Conversely, a put option gives the holder the right to sell a given security.

If the option gives the right to make the transaction at only one given date, the option is said

to be European-style. If the right can be exercised at any point in time up to some given date,

the option is said to be American-style. Both European- and American-style options are traded.

Options on stocks, bonds, foreign exchange, and many other assets, commodities, and variables

275
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Instruments/ Futures Options

Location Amount outstanding Turnover Amount outstanding Turnover

All markets 17,662 213,455 31,330 75,023

Interest rate 17,024 202,064 28,335 63,548

Currency 84 1,565 37 120

Equity index 553 9,827 2,958 11,355

North America 9,778 122,516 18,120 49,278

Europe 5,534 77,737 12,975 19,693

Asia-Pacific 2,201 11,781 170 5,786

Other markets 149 1,421 66 266

Table 12.1: Derivatives traded on organized exchanges. All amounts are in billions of US dollars.

The amount outstanding is of September 2004, while the turnover figures are for the third quarter

of 2004. Source: Table 23A in BIS (2004).

are traded at many exchanges around the world and also on the OTC-markets. Also options on

futures on some asset or variable are traded, i.e. a derivative on a derivative! In addition, many

financial assets or contracts have “embedded” options. For example, many mortgage-backed bonds

and corporate bonds are callable, in the sense that the issuer has the right to buy back the bond

at a pre-specified price.

A swap is an exchange of two dividend streams between two parties. In a “plain vanilla”

interest rate swap, two parties exchange a stream of fixed interest rate payments and a stream of

floating interest rate payments. In a currency swap, streams of payments in different currencies

are exchanged. Many exotic swaps with special features are widely used.

The markets for derivatives are of an enormous size. Table 12.1 provides some interesting

statistics published by the Bank for International Settlements (BIS) on the size of derivatives

markets at organized exchanges. The markets for interest rate derivatives are much larger than

the markets for currency- or equity-linked derivatives. The option markets generally dominate

futures markets measured by the amounts outstanding but ranked according to turnover futures

markets are larger than options markets.

The BIS statistics also contain information about the size of OTC markets for derivatives.

BIS estimates that in June 2004 the total amount outstanding on OTC derivative markets was

220,058 billions of US dollars, of which single-currency interest rate derivatives account for 164,626

billions, currency derivatives account for 26,997 billions, equity-linked derivatives for 4,521 billions,

commodity contracts for 1,270 billions, while the remaining 22,644 billions cannot be split into any

of these categories, cf. Table 19 in BIS (2004). Table 12.2 shows how the interest rate derivatives

market can be disaggregated according to instrument and maturity. Approximately 38% of these

OTC-traded interest rate derivatives are denominated in Euro, 35% in US dollars, 13% in yen, and

7% in pound sterling, cf. Table 21B in BIS (2004).

This chapter gives an introduction to frequently traded derivatives and their valuation. We

will specify the payments of these derivatives, discuss the links between different derivatives, and

we will also indicate what we can conclude about their prices from general asset pricing theory.
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Maturity in years
Contracts total ≤ 1 1–5 ≥ 5

All interest rate 164,626 57,157 66,093 41,376

Forward rate agreements 13,144

Swaps 127,570
49,397 56,042 35,275

Options 23,912 7,760 10,052 6,101

Table 12.2: Amounts outstanding (billions of US dollars) on OTC single-currency interest rate

derivatives as of June 2004. Source: Tables 21A and 21C in BIS (2004).

Throughout the chapter we assume that prices are arbitrage-free and that a bank account and

zero-coupon bonds of relevant maturities are traded so that we can define and work with the risk-

neutral probability measures and forward measures introduced in Chapter 11. We will denote the

continuously compounded risk-free short-term interest rate by rt instead of rft .

Section 12.2 deals with forwards and futures, Section 12.3 with options, and Section 12.4 with

swaps and swaptions. Some features of American-style derivatives are discussed in Section 12.5.

12.2 Forwards and futures

12.2.1 General results on forward prices and futures prices

A forward with maturity date T and delivery price K provides a dividend of PT −K at time T ,

where P is the underlying variable, typically the price of an asset or a specific interest rate. If you

plan to buy a unit of an asset at time T , you can lock in the effective purchase price with a forward

on that asset. Conversely, if you plan to sell a unit of an asset, you can lock in the effective selling

price by taking a short position in a forward on the asset, which will give a terminal dividend of

K − PT . Of course, forwards can also be used for speculation. If you believe in high values of PT ,

you can take a long position in a forward. If you believe in low values of PT , you can take a short

position in a forward.

In terms of a risk-neutral probability measure Q, the time t value of such a future payoff can be

written as

Vt = EQ
t

[(

Rft,T

)−1

(PT −K)

]

= EQ
t

[(

Rft,T

)−1

PT

]

−K EQ
t

[(

Rft,T

)−1
]

= EQ
t

[(

Rft,T

)−1

PT

]

−KBTt ,

where BTt = EQ
t [(Rft,T )−1] is the price of the zero-coupon bond maturing at time T with a unit

payment. Here Rft,T is the gross return between time t and T on the bank account, i.e. a roll-over

in short risk-free investments, cf. the discussion in Section 11.3.

For forwards contracted upon at time t, the delivery price K is typically set so that the value of

the forward at time t is zero. This value of K is called the forward price at time t (for the delivery

date T ) and is denoted by FTt . We define the terminal forward price to be FTT = PT , the only
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reasonable price for immediate delivery. Solving the equation Vt = 0, we get that the forward price

is given by

FTt =

EQ
t

[(

Rft,T

)−1

PT

]

BTt
.

If the underlying variable is the price of a traded asset with no payments in the period [t, T ], we

have

EQ
t

[(

Rft,T

)−1

PT

]

= Pt,

so that the forward price can be written as FTt = Pt/B
T
t . Applying a well-known property of

covariances, we have that

EQ
t

[(

Rft,T

)−1

PT

]

= CovQ
t

[(

Rft,T

)−1

, PT

]

+ EQ
t

[(

Rft,T

)−1
]

EQ
t [PT ]

= CovQ
t

[(

Rft,T

)−1

, PT

]

+BTt EQ
t [PT ]

and therefore

FTt = EQ
t [PT ] +

CovQ
t

[(

Rft,T

)−1

, PT

]

BTt
. (12.1)

We can also characterize the forward price in terms of the forward measure for maturity T . The

forward price process for contracts with delivery date T is a QT -martingale. This is clear from the

following considerations. With BTt as the numeraire, we have that the forward price FTt is set so

that
0

BTt
= EQT

t

[
PT − FTt
BTT

]

and hence

FTt = EQT

t [PT ] = EQ
T

t [FTT ],

which implies that the forward price FTt is a QT -martingale.

We summarize our findings in the following theorem.

Theorem 12.1 The forward price for delivery at time T is given by

FTt =

EQ
t

[(

Rft,T

)−1

PT

]

BTt
= EQT

t [PT ]. (12.2)

If the underlying variable is the price of a traded asset with no payments in the period [t, T ], the

forward price can be written as

FTt =
Pt
BTt

. (12.3)

Note that when (12.3) holds, the forward price of an asset follows immediately from the spot

price of the asset and the price of the zero-coupon bond maturing at the delivery date. No model

for the price dynamics of the underlying asset is needed. This is because the forward is perfectly

replicated by a portfolio of one unit of the underlying asset and a short position in K zero-coupon

bonds maturing at the delivery date of the forward.

Consider now a futures contract with final settlement at time T . The marking-to-market at a

given date involves the payment of the change in the so-called futures price of the contract relative
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to the previous settlement date. Let ΦTt be the futures price at time t. The futures price at

the settlement time is by definition equal to the price of the underlying security, ΦTT = PT . At

maturity of the contract the futures thus gives a payoff equal to the difference between the price of

the underlying asset at that date and the futures price at the previous settlement date. After the

last settlement before maturity, the futures is therefore indistinguishable from the corresponding

forward contract, so the values of the futures and the forward at that settlement date must be

identical. At the next-to-last settlement date before maturity, the futures price is set to that

value that ensures that the net present value of the upcoming settlement at the last settlement

date before maturity (which depends on this futures price) and the final payoff is equal to zero.

Similarly at earlier settlement dates. We assume that the futures is marked-to-market at every

trading date considered in the model. In the discrete-time framework, the dividend from the

futures at time t + 1 is therefore ΦTt+1 − ΦTt . In a continuous-time setting, the dividend over any

infinitesimal interval [t, t+ dt] is dΦTt . The following theorem characterizes the futures price:

Theorem 12.2 The futures price ΦTt is a martingale under the risk-neutral probability measure Q.

In particular,

ΦTt = EQ
t [PT ] . (12.4)

Proof: We give a proof in the discrete-time framework, a proof originally due to Cox, Ingersoll,

and Ross (1981b). Then the continuous-time version of the result follows by taking a limit. For

a proof based on the same idea but formulated directly in continuous time, see Duffie and Stanton

(1992).

Consider a discrete-time setting in which positions can be changed and the futures contracts

marked-to-market at times t, t+ ∆t, t+ 2∆t, . . . , t+N∆t ≡ T . Let Rft denote the risk-free gross

return between t and t + ∆t and let Rft,t+n∆t = RftR
f
t+∆t . . . R

f
t+(n−1)∆t. The idea is to set up

a self-financing strategy that requires an initial investment at time t equal to the futures price

ΦTt . Hence, at time t, ΦTt is invested in the bank account. In addition, Rft futures contracts are

acquired (at a price of zero).

At time t+ ∆t, the deposit at the bank account has grown to Rft Φ
T
t . The marking-to-market of

the futures position yields a payoff of Rft
(
ΦTt+∆t − ΦTt

)
, which is deposited at the bank account,

so that the balance of the account becomes Rft Φ
T
t+∆t. The position in futures is increased (at no

extra costs) to a total of RftR
f
t+∆t = Rft,t+2∆t contracts.

At time t+ 2∆t, the deposit has grown to Rft,t+2∆tΦ
T
t+∆t, which together with the marking-to-

market payment of Rft,t+2∆t

(
ΦTt+2∆t − ΦTt+∆t

)
gives a total of Rft,t+2∆tΦ

T
t+2∆t.

Continuing this way, the balance of the bank account at time T = t+N∆t will be

Rft,t+N∆tΦ
T
t+N∆t = Rft,TΦTT = Rft,TPT .

This is true for any value of ∆t and ∆t = 1 covers our standard discrete-time framework and

∆t→ 0 gives the continuous-time limit.

So a self-financing trading strategy with an initial time t investment of ΦTt will give a dividend

of Rft,TPT at time T . On the other hand, we can value the time T dividend by multiplying by

(Rft,T )−1 and taking the risk-neutral expectation. Hence,

ΦTt = EQ
t

[(

Rft,T

)−1

Rft,TPT

]

= EQ
t [PT ],
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as was to be shown. 2

Note that in order to compute the futures price of an asset we generally have to model the dynamics

of the underlying spot price.

Comparing (12.4) with (11.12), we see that we can think of the futures price as the price of a

traded asset with a continuous dividend given by the product of the current price and the short-

term interest rate.

From (12.1) and (12.4) we get that the difference between the forward price FTt and the futures

price ΦTt is given by

FTt − ΦTt =

CovQ
t

[(

Rft,T

)−1

, PT

]

BTt
. (12.5)

The forward price and the futures price will only be identical if the two random variables PT and

(Rft,T )−1 are uncorrelated under the risk-neutral probability measure. In particular, this is true if

the short-term risk-free rate is constant or deterministic.

The forward price is larger [smaller] than the futures price if the variables (Rft,T )−1 and PT

are positively [negatively] correlated under the risk-neutral probability measure. An intuitive,

heuristic argument for this goes as follows. If the forward price and the futures price are identical,

the total undiscounted payments from the futures contract will be equal to the terminal payment

of the forward. Suppose the interest rate and the spot price of the underlying asset are positively

correlated, which ought to be the case whenever (Rft,T )−1 and PT are negatively correlated. Then

the marking-to-market payments of the futures tend to be positive when the interest rate is high

and negative when the interest rate is low. So positive payments can be reinvested at a high interest

rate, whereas negative payments can be financed at a low interest rate. With such a correlation,

the futures contract is clearly more attractive than a forward contract when the futures price and

the forward price are identical. To maintain a zero initial value of both contracts, the futures price

has to be larger than the forward price. Conversely, if the sign of the correlation is reversed.

If the underlying asset has a constant or deterministic volatility and pays no dividends before

time T , we can write the risk-neutral price dynamics as

dPt = Pt

[

rt dt+ σ(t) dzQ
t

]

,

where zQ = (zQ
t ) is a standard Brownian motion under the risk-neutral measure Q. If, further-

more, the short-term risk-free rate is constant or follows a Gaussian process as for example in the

Vasicek model introduced in Section 10.5.1, the future values of PT will be lognormally distributed

under the risk-neutral measure. In that case, the futures price can be stated in closed form. In

Exercise 12.6 you are asked to compute and compare the forward price and the futures price on a

zero-coupon bond under the assumptions of the Vasicek model of interest rate dynamics introduced

in Section 10.5.1.

12.2.2 Interest rates forwards and futures

Forward interest rates are rates for a future period relative to the time where the rate is set. Many

participants in the financial markets may on occasion be interested in “locking in” an interest rate

for a future period, either in order to hedge risk involved with varying interest rates or to speculate
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in specific changes in interest rates. In the money markets the agents can lock in an interest rate by

entering a forward rate agreement (FRA). Suppose the relevant future period is the time interval

between T and S, where S > T . In principle, a forward rate agreement with a face value H

and a contract rate of K involves two payments: a payment of −H at time T and a payment of

H[1 + (S−T )K] at time S. (Of course, the payments to the other part of the agreement are H at

time T and −H[1 + (S − T )K] at time S.) In practice, the contract is typically settled at time T

so that the two payments are replaced by a single payment of BSTH[1 + (S − T )K]−H at time T .

Usually the contract rate K is set so that the present value of the future payment(s) is zero at

the time the contract is made. Suppose the contract is made at time t < T . Then the time t value

of the two future payments of the contract is equal to −HBTt +H[1 + (S − T )K]BSt . This is zero

if and only if

K =
1

S − T

(
BTt
BSt

− 1

)

= LT,St ,

cf. (10.6), i.e. when the contract rate equals the forward rate prevailing at time t for the period

between T and S. For this contract rate, we can think of the forward rate agreement having a

single payment at time T , which is given by

BSTH[1 + (S − T )K] −H = H

(

1 + (S − T )LT,St
1 + (S − T )lST

− 1

)

=
(S − T )(LT,St − lST )H

1 + (S − T )lST
. (12.6)

The numerator is exactly the interest lost by lending out H from time T to time S at the forward

rate given by the FRA rather than the realized spot rate. Of course, this amount may be negative,

so that a gain is realized. The division by 1 + (S − T )lST corresponds to discounting the gain/loss

from time S back to time T .

Interest rate futures trade with a very high volume at several international exchanges, e.g.

CME (Chicago Mercantile Exchange), LIFFE (London International Financial Futures & Options

Exchange), and MATIF (Marché à Terme International de France). The CME interest rate futures

involve the three-month Eurodollar deposit rate and are called Eurodollar futures. The interest

rate involved in the futures contracts traded at LIFFE and MATIF is the three-month LIBOR rate

on the Euro currency. We shall simply refer to all these contracts as Eurodollar futures and refer

to the underlying interest rate as the three-month LIBOR rate, whose value at time t we denote

by lt+0.25
t .

The price quotation of Eurodollar futures is a bit complicated since the amounts paid in the

marking-to-market settlements are not exactly the changes in the quoted futures price. We must

therefore distinguish between the quoted futures price, ẼTt , and the actual futures price, ETt , with

the settlements being equal to changes in the actual futures price. At the maturity date of the

contract, T , the quoted Eurodollar futures price is defined in terms of the prevailing three-month

LIBOR rate according to the relation

ẼTT = 100
(
1 − lT+0.25

T

)
, (12.7)

which using (10.5) on page 222 can be rewritten as

ẼTT = 100

(

1 − 4

(

1

BT+0.25
T

− 1

))

= 500 − 400
1

BT+0.25
T

.
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Traders and analysts typically transform the Eurodollar futures price to an interest rate, the so-

called LIBOR futures rate, which we denote by ϕTt and define by

ϕTt = 1 − ẼTt

100
⇔ ẼTt = 100

(
1 − ϕTt

)
.

It follows from (12.7) that the LIBOR futures rate converges to the three-month LIBOR spot rate,

as the maturity of the futures contract approaches.

The actual Eurodollar futures price is given by

ETt = 100 − 0.25(100 − ẼTt ) =
1

4

(

300 + ẼTt

)

= 100 − 25ϕTt

per 100 dollars of nominal value. It is the change in the actual futures price which is exchanged

in the marking-to-market settlements. At the CME the nominal value of the Eurodollar futures is

1 million dollars. A quoted futures price of ẼTt = 94.47 corresponds to a LIBOR futures rate of

5.53% and an actual futures price of

1 000 000

100
· [100 − 25 · 0.0553] = 986 175.

If the quoted futures price increases to 94.48 the next day, corresponding to a drop in the LIBOR

futures rate of one basis point (0.01 percentage points), the actual futures price becomes

1 000 000

100
· [100 − 25 · 0.0552] = 986 200.

An investor with a long position will therefore receive 986 200 − 986 175 = 25 dollars at the

settlement at the end of that day.

If we simply sum up the individual settlements without discounting them to the terminal date,

the total gain on a long position in a Eurodollar futures contract from t to expiration at T is given

by

ETT − ETt =
(
100 − 25ϕTT

)
−
(
100 − 25ϕTt

)
= −25

(
ϕTT − ϕTt

)

per 100 dollars of nominal value, i.e. the total gain on a contract with nominal value H is equal

to −0.25
(
ϕTT − ϕTt

)
H. The gain will be positive if the three-month spot rate at expiration turns

out to be below the futures rate when the position was taken. Conversely for a short position.

The gain/loss on a Eurodollar futures contract is closely related to the gain/loss on a forward rate

agreement, as can be seen from substituting S = T +0.25 into (12.6). Recall that the rates ϕTT and

lT+0.25
T are identical. However, it should be emphasized that in general the futures rate ϕTt and

the forward rate LT,T+0.25
t will be different due to the marking-to-market of the futures contract.

The final settlement is based on the terminal actual futures price

ETT ≡ 100 − 0.25
(

100 − ẼTT

)

= 100 − 0.25
(
400

[
(BT+0.25

T )−1 − 1
])

= 100
[
2 − (BT+0.25

T )−1
]
.

It follows from Theorem 12.2 that the actual futures price at any earlier point in time t can be

computed as

ETt = EQ
t

[
ETT
]

= 100
(

2 − EQ
t

[
(BT+0.25

T )−1
])

.
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The quoted futures price is therefore

ẼTt = 4ETt − 300 = 500 − 400EQ
t

[
(BT+0.25

T )−1
]
. (12.8)

In several models of interest rate dynamics and bond prices, including the Vasicek and Cox-

Ingersoll-Ross models introduced in Chapter 10, the expectation in (12.8) can be computed in

closed form; see, e.g., Munk (2005b).

12.3 Options

In this section, we focus on European options. Some aspects of American options are discussed in

Section 12.5.

12.3.1 General pricing results for European options

A European call option with an exercise price of K and expiration at time T gives a dividend at T

of

CT = max(PT −K, 0),

where PT is the value at time T of the underlying variable of the option. For an option on a traded

asset, PT is the price of the underlying asset at the expiry date. For an option on a given interest

rate, PT denotes the value of this interest rate at the expiry date. With a call option you can

speculate in high values of PT . A call option on an asset offers protection to an investor who wants

to purchase the underlying asset at time T . The call option ensures that the investor effectively

pays at most K for the underlying asset. The call option price is the price of that protection.

Similarly, a European put option with an exercise price of K and expiration at time T gives a

dividend at T of

ΠT = max(K − PT , 0).

With a put option you can speculate in low values of PT . A put option offers protection to an

investor who wants to sell the underlying asset at time T . The put option ensures that the effective

selling price is at least K.

Prices of European call and put options on the same underlying variable are closely related.

Since CT +K = Πt + PT , it is clear that

Ct +KBTt = Πt +BTt EQT

t [PT ] ,

where QT is the T -forward martingale measure. In particular, if the underlying variable is the

price of a non-dividend paying asset, we have Pt = BTt EQT

t [PT ] and thus the following result:

Theorem 12.3 (Put-call parity) The prices of a European call option and a European put op-

tion on a non-dividend paying asset are related through the equation

Ct +KBTt = Πt + Pt. (12.9)

A portfolio of a call option and K zero-coupon bonds maturing at time T gives exactly the same

dividend as a portfolio of a put option and the underlying asset. The put-call parity (12.9) follows
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by absence of arbitrage. A consequence of the put-call parity is that we can focus on the pricing

of European call options. The prices of European put options will then follow immediately.

Now let us focus on the call option. In terms of the forward measure QT for maturity T , the

time t price of the option is

Ct = BTt EQT

t [max(PT −K, 0)] . (12.10)

We can rewrite the payoff as

CT = (PT −K)1{PT>K},

where 1{PT>K} is the indicator for the event PT > K. This indicator is a random variable whose

value will be 1 if the realized value of PT turns out to be larger than K and the value is 0 otherwise.

Hence, the option price can be rewritten as1

Ct = BTt EQT

t

[
(PT −K)1{PT>K}

]

= BTt

(

EQT

t

[
PT1{PT>K}

]
−K EQT

t

[
1{PT>K}

])

= BTt

(

EQT

t

[
PT1{PT>K}

]
−KQT

t (PT > K)
)

= BTt EQT

t

[
PT1{PT>K}

]
−KBTt QT

t (PT > K).

(12.11)

Here QT
t (PT > K) denotes the probability (using the probability measure QT ) of PT > K given

the information known at time t, i.e. the forward risk-adjusted probability of the option finishing

in-the-money.

The term BTt EQT

t [PT1{PT>K}] is the value at time t of a dividend of PT1{PT>K} at time T . For

an option on a traded asset with a strictly positive price we can value the same payment using that

underlying asset as the numeraire. In terms of the associated risk-adjusted measure QP , the time t

value of getting a dividend of DT at time T is Pt E
QP

t [DT /PT ]. Using this with DT = PT1{PT>K},

we conclude that

BTt EQT

t

[
PT1{PT>K}

]
= Pt E

QP

t

[
1{PT>K}

]
= PtQ

P
t (PT > K).

This assumes that the underlying asset pays no dividends in the interval [t, T ]. Now the call price

formula in the following theorem is clear. The put price can be derived analogously or from the

put-call parity.

Theorem 12.4 The price of a European call option on a non-dividend paying asset is given by

Ct = PtQ
P
t (PT > K) −KBTt QT

t (PT > K). (12.12)

1In the computation we use the fact that the expected value of the indicator of an event is equal to the probability

of that event. This follows from the general definition of an expected value, E[g(ω)] =
R

ω∈Ω
g(ω)f(ω) dω, where

f(ω) is the probability density function of the state ω and the integration is over all possible states. The set of

possible states can be divided into two sets, namely the set of states ω for which PT > K and the set of ω for which

PT ≤ K. Consequently,

E[1{PT >K}] =

Z
ω∈Ω

1{PT >K}f(ω) dω

=

Z
ω:PT >K

1⊤f(ω) dω +

Z
ω:PT ≤K

0⊤f(ω) dω

=

Z
ω:PT >K

f(ω) dω,

which is exactly the probability of the event PT > K.
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The price Πt of a put option is given as

Πt = KBTt QT
t (PT ≤ K) − PtQ

P
t (PT ≤ K). (12.13)

Both probabilities in (12.12) show the probability of the option finishing in-the-money, but under

two different probability measures. To compute the price of the European call option in a concrete

model we “just” have to compute these probabilities. In some cases, however, it is easier to work

directly on (12.10) or (12.11).

12.3.2 European option prices when the underlying is lognormal

If we assume that the value of the underlying variable at the maturity of the option is lognormally

distributed under the forward measure for maturity T , a more explicit option pricing formula can

be derived without too much work. For this reason many specific option pricing models build on

assumptions leading to PT being lognormal under the measure QT .

If lnPT ∼ N(m, v2) under the QT -measure conditional on the information at time t < T , it

follows that

QT
t (PT > K) = QT

t (lnPT > lnK) = QT
t

(
lnPT −m

v
>

lnK −m

v

)

= QT
t

(
lnPT −m

v
< − lnK −m

v

)

= N

(
m− lnK

v

)

,

where N(·) is the cumulative probability distribution function of a normally distributed random

variable with mean zero and variance one. The last equality follows since (lnPT −m)/v ∼ N(0, 1).

Moreover, it follows from Theorem B.3 in Appendix B that

EQT

t

[
PT1{PT>K}

]
= EQT

t [PT ]N

(
m− lnK

v
+ v

)

= EQT

t [PT ]N




ln
(

EQT

t [PT ]/K
)

+ 1
2v

2

v



 .

Substituting these results into (12.11), we get

Ct = BTt EQT

t [PT ]N




ln
(

EQT

t [PT ]/K
)

+ 1
2v

2

v



−KBTt N




ln
(

EQT

t [PT ]/K
)

− 1
2v

2

v





In the typical case where P is the price of a non-dividend paying asset, we know that Pt =

BTt EQT

t [PT ]. Let us identify the relevant v2. By convention the forward price of the underlying

at time T for immediate delivery is FTT = PT so we can focus on the dynamics of the forward

price FTt = Pt/B
T
t . This is easier since we know that the forward price is a martingale under the

measure QT so that the drift is zero. By Itô’s Lemma the sensitivity of the forward price is given

by the sensitivity of the underlying and the sensitivity of the zero-coupon bond price so for this

purpose we can ignore the drift terms in Pt and BTt . If we write their QT -dynamics as

dPt = Pt
[
. . . dt+ σ(t) dzT1t

]
,

dBTt = BTt

[

. . . dt+ σB(T − t)ρ dzT1t + σB(T − t)
√

1 − ρ2 dzT2t

]

,

where (zT1 , z
T
2 ) is a two-dimensional standard Brownian motion under QT , then σ(t) is the volatility

of the underlying asset, σB(T − t) is the volatility of the zero-coupon bond price, and ρ is the
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correlation between shocks to those two prices. We have assumed that ρ is a constant, that

the volatility of the underlying asset σ(t) is a deterministic function of time, and that σB(·) is

a deterministic function of the time-to-maturity of the bond since these are the only reasonable

assumptions that will lead to PT being lognormal under QT . Now the forward price dynamics will

be

dFTt =
1

BTt
σ(t)St dz

T
1t −

St
(BTt )2

BTt

(

σB(T − t)ρ dzT1t + σB(T − t)
√

1 − ρ2 dzT2t

)

= FTt

[

(σ(t) − ρσB(T − t)) dzT1t −
√

1 − ρ2σB(T − t) dzT2t

]

,

(12.14)

which implies that

lnPT = lnFTT = lnFTt − 1

2
vF (T, t)2 +

∫ T

t

(σ(u) − ρσB(T − u)) dzT1u−
∫ T

t

√

1 − ρ2σB(T −u) dzT2u,

where

vF (t, T ) =

(
∫ T

t

(
σ(u)2 + σB(T − u)2 − 2ρσ(u)σB(T − u)

)
du

)1/2

(12.15)

is the volatility of the forward price. Now we see that lnPT ∼ N(lnFTt − 1
2vF (t, T )2, vF (t, T )2)

under QT .

We summarize the above results in the following theorem:

Theorem 12.5 If lnPT conditional on time t information is normally distributed with variance

v2 under the forward measure QT , the price of a European option maturing at time T is given by

Ct = BTt EQT

t [PT ]N(d) −KBTt N(d− v), (12.16)

where

d =
ln
(

EQT

t [PT ]/K
)

+ 1
2v

2

v
.

In particular, if P is the price of a non-dividend paying asset and lnPT is normally distributed

under QT , the call price is

Ct = PtN
(
d(FTt , t)

)
−KBTt N

(
d(FTt , t) − vF (t, T )

)
, (12.17)

where FTt = Pt/B
T
t ,

d(FTt , t) =
ln
(
FTt /K

)
+ 1

2vF (t, T )2

vF (t, T )

and vF (t, T ) is given by (12.15).

12.3.3 The Black-Scholes-Merton model for stock option pricing

While option pricing models date back at least to Bachelier (1900), the most famous model is the

Black-Scholes-Merton model developed by Black and Scholes (1973) and Merton (1973c) for the

pricing of a European option on a stock. The model is formulated in continuous time and assumes

that the risk-free interest rate r (continuously compounded) is constant over time and that the

price St of the underlying stock follows a continuous stochastic process with a constant relative

volatility, i.e.

dSt = µtSt dt+ σSt dzt, (12.18)
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where σ is a constant and µ is a “nice” process. Furthermore, we assume that the underlying stock

pays no dividends in the life of the option.

With constant interest rates, BTt = e−r(T−t) and the risk-neutral measure is identical to the

forward measure, Q = QT . Since the risk-neutral expected rate of return of any asset is equal to

the risk-free rate of return, the risk-neutral dynamics of the stock price is

dSt = St

[

r dt+ σ dzQ
t

]

, (12.19)

where zQ = (zQ
t ) is a standard Brownian motion under Q. It follows that the stock price is a

geometric Brownian motion under Q = QT and, in particular, we know from Section 2.6.7 that

lnST = lnSt +

(

r − 1

2
σ2

)

(T − t) + σ(zQ
T − zQ

t ).

Hence ST is lognormal and VarQ
t [lnST ] = σ2(T − t). We can apply Theorem 12.5 and since

σB(T − t) = 0 with constant interest rates, vF = σ
√
T − t. The forward price of the stock is

FTt = Ste
r(T−t). We summarize in the following theorem:

Theorem 12.6 (Black-Scholes-Merton) Assume that the stock pays no dividend, the stock

price dynamics is of the form (12.18) and the short-term risk-free rate is constant. Then the

price of a European call option on the stock is given by

Ct = StN (d(St, t)) −Ke−r(T−t)N
(

d(St, t) − σ
√
T − t

)

, (12.20)

where

d(St, t) =
ln(St/K) +

(
r + 1

2σ
2
)
(T − t)

σ
√
T − t

.

Equation (12.20) is the famous Black-Scholes-Merton equation.

Alternatively, we can derive the above result using (12.12) which implies that the price of a

European call option on a stock is given by

Ct = StQ
S
t (ST > K) −KBTt Qt(ST > K),

where QS is the risk-adjusted measure associated with the underlying stock. With the risk-neutral

dynamics (12.19), we have

Qt(ST > K) = Qt(lnST > lnK)

= Qt

(

lnSt +

(

r − 1

2
σ2

)

(T − t) + σ(zQ
T − zQ

t ) > lnK

)

= Qt

(

zQ
T − zQ

t√
T − t

> − ln(St/K) +
(
r − 1

2σ
2
)
(T − t)

σ
√
T − t

)

= Qt

(

zQ
T − zQ

t√
T − t

<
ln(St/K) +

(
r − 1

2σ
2
)
(T − t)

σ
√
T − t

)

= N

(

ln(St/K) +
(
r − 1

2σ
2
)
(T − t)

σ
√
T − t

)

.

According to (11.32), the dynamics of the stock price under the measure QS is

dSt = St
[(
r + σ2

)
dt+ σ dzSt

]
(12.21)
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so that S is also a geometric Brownian motion under the measure QS . Analogously to the above

equations it can be shown that

QS
t (ST > K) = N

(

ln(St/K) +
(
r + 1

2σ
2
)
(T − t)

σ
√
T − t

)

.

Now the option price in (12.20) follows.

The Black-Scholes-Merton equation states the call option price in terms of five quantities:

(1) the price of the underlying stock,

(2) the price of the zero-coupon bond maturing at expiry of the option (or, equivalently, the

risk-free interest rate),

(3) the time-to-expiration of the option,

(4) the exercise price (or, equivalently, the moneyness St/K of the option),

(5) the volatility of the underlying stock.

It can be shown (you are asked to do that in Exercise 12.2) by straightforward differentiation that

∂Ct
∂St

= N (d(St, t)) ,
∂2Ct
∂S2

t

=
n (d(St, t))

Stσ
√
T − t

, (12.22)

where n(·) = N ′(·) is the probability density function of a N(0, 1) random variable, and

∂Ct
∂t

= −−Stσn (d(St, t))

2
√
T − t

− rKBTt N
(

d(St, t) − σ
√
T − t

)

, (12.23)

using that BTt = exp{−r(T − t)}. In particular, the call option price is an increasing, convex

function of the price of the underlying stock. The call price is increasing in the volatility σ,

(obviously) decreasing in the exercise price K, and increasing in the zero-coupon bond price (and,

hence, decreasing in the risk-free rate r).

Note that the Black-Scholes-Merton price of the call option does not involve any preference

parameters or a market price of risk associated with the shock z to the underlying stock price.

On the other hand, it involves the price of the underlying stock. In the Black-Scholes-Merton

model the option is a redundant asset. There is only one source of risk and with the stock and

the risk-free asset, the market is already complete. Any additional asset affected only by the same

shock will be redundant.

The option can be perfectly replicated by a trading strategy in the stock and the risk-free asset.

At any time t < T , the portfolio consists of θSt = N (d(St, t)) ∈ (0, 1) units of the stock and

θBt = −KN
(
d(St, t) − σ

√
T − t

)
∈ (−K, 0) units of the zero-coupon bond maturing at time T .

Clearly, the value of this portfolio is identical to the value of the call option, θSt St + θBt B
T
t = Ct.

Since Ct = C(St, t), it follows from Itô’s Lemma and the derivatives of C computed above that

the dynamics of the call price is

dCt =
∂Ct
∂t

dt+
∂Ct
∂St

dSt +
1

2

∂2Ct
∂S2

t

(dSt)
2

=
(

N (d(St, t))µ(St, t) − rKBTt N
(

d(St, t) − σ
√
T − t

))

dt+N (d(St, t))σSt dzt.

(12.24)



12.3 Options 289

The dynamics of the trading strategy is

θSt dSt + θBt dB
T
t = N (d(St, t)) dSt −KN

(

d(St, t) − σ
√
T − t

)

dBTt

=
(

N (d(St, t))µ(St, t) − rKBTt N
(

d(St, t) − σ
√
T − t

))

dt+N (d(St, t))σSt dzt,

(12.25)

which is identical to dCt. The trading strategy is therefore replicating the option.

Applying the put-call parity (12.9), we obtain a European put option price of

Π(St, t) = KBTt N
(

−[d(St, t) − σ
√
T − t]

)

− StN (−d(St, t)) . (12.26)

In the above model, interest rates and hence bond price were assumed to be constant. However,

we can easily generalize to the case where bond prices vary stochastically with a deterministic

volatility and a constant correlation with the stock price. Assuming that the dynamics of the

stock price and the price of the zero-coupon bond maturing at time T are given by

dSt = St [. . . dt+ σ dz1t] ,

dBTt = BTt

[

. . . dt+ σB(T − t)ρ dz1t + σB(T − t)
√

1 − ρ2 dz2t

]

,

we are still in the setting of Section 12.3.2 and can apply Theorem 12.5.

Theorem 12.7 Suppose the stock pays no dividend, has a constant volatility σ, and a constant

correlation ρ with the price of the zero-coupon bond maturing at time T , and suppose that this bond

has a deterministic volatility σB(T − t). Then the price of a European call option on the stock is

given by

Ct = StN
(
d(FTt , t)

)
−KBTt N

(
d(FTt , t) − vF (t, T )

)
, (12.27)

where FTt = St/B
T
t ,

d(FTt , t) =
ln(FTt /K) + 1

2vF (t, T )2

vF (t, T )
,

vF (t, T ) =

(
∫ T

t

(
σ2 + σB(T − u)2 − 2ρσσB(T − u)

)
du

)1/2

.

In practice σB(T − t) is typically much smaller than σ and the approximation

vF (t, T ) ≈
√
∫ T

t

σ2 du = σ
√
T − t

is not too bad. With that approximation you will get the same call price using (12.27) as by using

the Black-Scholes-Merton equation (12.20) with the zero-coupon yield yTt = −(lnBTt )/(T − t)

replacing r. In this sense the above theorem supports the use of the Black-Scholes-Merton equation

even when interest rates are stochastic. Note, however, that the above theorem requires the bond

price volatility to be a deterministic function of the time-to-maturity of the bond. This will only

be satisfied if the short-term risk-free interest rate rt follows a Gaussian process, e.g. an Ornstein-

Uhlenbeck process as assumed in the Vasicek model introduced in Section 10.5.1. While such

models are very nice to work with, they are not terribly realistic. On the other hand, for short

maturities and relatively stable interest rates, it is probably reasonable to approximate the bond
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price volatility with a deterministic function or even approximate it with zero as the Black-Scholes-

Merton model implicitly does.

The assumption of a constant stock price volatility is important for the derivations of the Black-

Scholes-Merton option pricing formula. Alas, it is not realistic. The volatility of a stock can

be estimated from historical variations in the stock price and the estimate varies with the time

period used in the estimation—both over short periods and long periods. Another measure of

the volatility of a stock is its implied volatility. Given the current stock price St and interest

rate r, we can define an implied volatility of the stock for any option traded upon that stock (i.e.

for any exercise price K and any maturity T ) as the value of σ you need to plug into the Black-

Scholes-Merton formula to get a match with the observed market price of the option. Since the

Black-Scholes-Merton option price is an increasing function of the volatility, there will be a unique

value of σ that does the job. Looking at simultaneous prices of different options on the same stock,

the implied volatility is found to vary with the exercise price and the maturity of the option. If

the Black-Scholes-Merton assumptions were correct, you would find the same implied volatility for

all options on the same underlying.

Various alternatives to the constant volatility assumption have been proposed. Black and Cox

(1976) replace the constant σ by σSαt for some power α. Here the volatility is a function of the

stock price and therefore perfectly correlated with the stock price. This extension does not seem

sufficient. The stochastic volatility models of Hull and White (1987) and Heston (1993) allow the

volatility to be affected by another exogenous shock than the shock to the stock price itself. With

these extensions it is possible to match the option prices in the model with observed option prices.

In the stochastic volatility models, the market is no longer complete, and the option prices will

depend on the market price of volatility risk, which then has to be specified and estimated.

Occasionally stock prices change a lot over a very short period of time, for example in the

so-called stock market crashes. Such dramatic variations are probably better modeled by jump

processes than by pure diffusion models like those discussed in this book. Several papers study

the pricing of options on stocks, when the stock price can jump. Some prominent examples are

Merton (1976) and Madan, Carr, and Chang (1998).

12.3.4 Options on bonds

Consider a European call option on a zero-coupon bond. Let T be the maturity of the option and

T ∗ > T the maturity of the bond. K is the exercise price. Let CK,T,T
∗

t denote the price at time t

of a European call option on this zero-coupon bond. The dividend of the option at time T is

CK,T,T
∗

T = max
(

BT
∗

T −K, 0
)

.

The option price is generally characterized by

CK,T,T
∗

t = BT
∗

t QT∗

t

(

BT
∗

T > K
)

−KBTt QT
t

(

BT
∗

T > K
)

, (12.28)

where QT∗

and QT are the forward measures for maturities T ∗ and T , respectively.

If BT
∗

T is lognormally distributed under the forward measure for maturity T , we know from

Theorem 12.5 that we can find a nice closed-form solution. This is for example the case in the
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Vasicek model introduced in Section 10.5.1. Given the Ornstein-Uhlenbeck process for the short-

term risk-free rate,

drt = κ (r̄ − rt) dt+ σr dzt, (10.28)

and a constant market price of interest rate risk λ, the price of a zero-coupon bond price maturing

at time s is

Bst = e−a(s−t)−b(s−t)rt , (10.34)

cf. (10.34), where a(·) and b(·) are defined in (10.35) and (10.33), respectively. The change to

the forward measure requires identification of the bond price sensitivity. An application of Itô’s

Lemma gives the bond price dynamics

dBst = Bst [. . . dt− σrb(s− t) dzt]

so that the bond price sensitivity is σB(s − t) = −σrb(s − t). (Since this is negative, the bond

price volatility is −σB(s − t) = σrb(s − t).) It now follows from (11.28) that the QT -dynamics of

the short-term interest rate is

drt = (κ[r̄ − rt] − σr[λ− σB(T − t)]) dt+ σr dz
T
t

= κ (r̃(T − t) − rt) dt+ σr dz
T
t ,

where r̃(τ) = r̄ − σrλ/κ − σ2
rb(τ)/κ and zT = (zTt ) is a standard Brownian motion under QT .

Under the QT -measure, the short rate behaves as an Ornstein-Uhlenbeck process but with a de-

terministically changing mean-reversion level r̃(T − t). Hence, rT will be normally distributed

under QT and, consequently, the price of the underlying zero-coupon bond at the maturity of the

option, BT
∗

T = exp{−a(T ∗ − T ) − b(T ∗ − T )rT }, will be lognormally distributed under QT . We

can therefore apply Theorem 12.5 and conclude that the price of the option is

CK,T,T
∗

t = BT
∗

t N(d) −KBTt N (d− vF (t, T, T ∗)) , (12.29)

where

d =
ln
(
BT∗

t

KBT
t

)

+ 1
2vF (t, T, T ∗)2

vF (t, T, T ∗)

and, using the fact that the underlying zero-coupon bond price is perfectly correlated with the

price of the zero-coupon bond maturing at T ,

vF (t, T, T ∗)2 =

∫ T

t

(σB(T ∗ − u) − σB(T − u))
2
du

= σ2
r

∫ T

t

(b(T ∗ − u) − b(T − u))
2
du

=
σ2
r

κ2

∫ T

t

(

e−κ(T−u) − e−κ(T
∗−u)

)2

du

=
σ2
r

κ3

(

1 − e−κ(T
∗−T )

)2 (

1 − e−2κ(T−t)
)

.

In many other models of interest rates and bond prices, an option pricing formula very simi-

lar to (12.29) can be derived. For example, in the Cox-Ingersoll-Ross model introduced in Sec-

tion 10.5.2, the price of a European call option on a zero-coupon bond is of the form

CK,T,T
∗

t = BT
∗

t χ2(h1; f, g1) −KBTt χ
2(h2; f, g2),
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where χ2(·; f, g) is the cumulative probability distribution function of a non-centrally χ2-distributed

random variable with f degrees of freedom and non-centrally parameter g. For details see, e.g.,

Munk (2005b, Ch. 7).

The options considered above are options on zero-coupon bonds. Traded bond options usually

have a coupon bond as the underlying. Fortunately, the pricing formulas for options on zero-

coupon bonds can, under some assumptions, be used in the pricing of options on coupon bonds.

First some notation. The underlying coupon bond is assumed to pay Yi at time Ti (i = 1, 2, . . . , n),

where T1 < T2 < · · · < Tn, so that the price of the bond is

Bt =
∑

Ti>t

YiB
Ti
t ,

where we sum over all the future payment dates. Let CK,T,cpn
t denote the price at time t of a

European call option on the coupon bond, where K is the exercise price and T is the expiration

date of the option. In reasonable one-factor models, the price of a given zero-coupon bond will

be a decreasing function of the short-term interest rate. In both the Vasicek model and the Cox-

Ingersoll-Ross model the zero-coupon bond price is of the form BTt = exp{−a(T − t)− b(T − t)rt}
and since the b-function is positive in both models, the bond price is indeed decreasing in maturity.

Then the following result, first derived by Jamshidian (1989), applies:

Theorem 12.8 Suppose that the zero-coupon bond prices are of the form BTt = BT (rt, t) and BT

is decreasing in rt. Then the price of a European call on a coupon bond is

CK,T,cpnt =
∑

Ti>T

YiC
Ki,T,Ti

t , (12.30)

where Ki = BTi(r∗, T ), and r∗ is defined as the solution to the equation

B(r∗, T ) ≡
∑

Ti>T

YiB
Ti(r∗, T ) = K. (12.31)

Proof: The payoff of the option on the coupon bond is

max(B(rT , T ) −K, 0) = max

(
∑

Ti>T

YiB
Ti(rT , T ) −K, 0

)

.

Since the zero-coupon bond price BTi(rT , T ) is a monotonically decreasing function of the interest

rate rT , the whole sum
∑

Ti>T
YiB

Ti(rT , T ) is monotonically decreasing in rT . Therefore, exactly

one value r∗ of rT will make the option finish at the money so that (12.31) holds. Letting Ki =

BTi(r∗, T ), we have that
∑

Ti>T
YiKi = K.

For rT < r∗,
∑

Ti>T

YiB
Ti(rT , T ) >

∑

Ti>T

YiB
Ti(r∗, T ) = K, BTi(rT , T ) > BTi(r∗, T ) = Ki,

so that

max

(
∑

Ti>T

YiB
Ti(rT , T ) −K, 0

)

=
∑

Ti>T

YiB
Ti(rT , T ) −K

=
∑

Ti>T

Yi
(
BTi(rT , T ) −Ki

)

=
∑

Ti>T

Yi max
(
BTi(rT , T ) −Ki, 0

)
.
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For rT ≥ r∗,

∑

Ti>T

YiB
Ti(rT , T ) ≤

∑

Ti>T

YiB
Ti(r∗, T ) = K, BTi(rT , T ) ≤ BTi(r∗, T ) = Ki,

so that

max

(
∑

Ti>T

YiB
Ti(rT , T ) −K, 0

)

= 0 =
∑

Ti>T

Yi max
(
BTi(rT , T ) −Ki, 0

)
.

Hence, for all possible values of rT we may conclude that

max

(
∑

Ti>T

YiB
Ti(rT , T ) −K, 0

)

=
∑

Ti>T

Yi max
(
BTi(rT , T ) −Ki, 0

)
.

The payoff of the option on the coupon bond is thus identical to the payoff of a portfolio of options

on zero-coupon bonds, namely a portfolio consisting (for each i with Ti > T ) of Yi options on a

zero-coupon bond maturing at time Ti and an exercise price of Ki. Consequently, the value of

the option on the coupon bond at time t ≤ T equals the value of that portfolio of options on

zero-coupon bonds. A formal derivation goes as follows:

CK,T,cpn
t = EQ

r,t

[

e−
R T

t
ru du max (B(rT , T ) −K, 0)

]

= EQ
r,t

[

e−
R T

t
ru du

∑

Ti>T

Yi max
(
BTi(rT , T ) −Ki, 0

)

]

=
∑

Ti>T

Yi E
Q
r,t

[

e−
R T

t
ru du max

(
BTi(rT , T ) −Ki, 0

)]

=
∑

Ti>T

YiC
Ki,T,Ti

t ,

which completes the proof. 2

To compute the price of a European call option on a coupon bond we must numerically solve

one equation in one unknown (to find r∗) and calculate n′ prices of European call options on

zero-coupon bonds, where n′ is the number of payment dates of the coupon bond after expiration

of the option. For example, in the Vasicek model we can use (12.29).

Practitioners often use Black-Scholes-Merton type formulas for pretty much all types of options,

including options on bonds. The formulas are based on the Black (1976) variant of the Black-

Scholes-Merton model developed for stock option pricing, originally developed for options on futures

on an asset with a lognormally distributed value. Black’s formula for a European call option on a

bond is

CK,T,cpn
t = BTt

[

FT,cpn
t N

(

d(FT,cpn
t , t)

)

−KN
(

d(FT,cpn
t , t) − σB

√
T − t

)]

,

= B̃tN
(

d(FT,cpn
t , t)

)

−KBTt N
(

d(FT,cpn
t , t) − σB

√
T − t

)

,
(12.32)

where σB is the volatility of the bond, FT,cpn
t = B̃t/B

T
t is the forward price of the bond, B̃t =

Bt −
∑

t<Ti<T
YiB

Ti
t is the present value of the bond payments after maturity of the option, and

d(FT,cpn
t , t) =

ln(FT,cpn
t /K)

σ
√
T − t

+
1

2
σB

√
T − t.

The use of Black’s formula for bond options is not theoretically supported and may lead to prices

allowing arbitrage. At best, it is a reasonable approximation to the correct price.
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12.3.5 Interest rate options: caps and floors

An (interest rate) cap is designed to protect an investor who has borrowed funds on a floating

interest rate basis against the risk of paying very high interest rates. Suppose the loan has a face

value of H and payment dates T1 < T2 < · · · < Tn, where Ti+1 − Ti = δ for all i.2 The interest

rate to be paid at time Ti is determined by the δ-period money market interest rate prevailing at

time Ti−1 = Ti − δ, i.e. the payment at time Ti is equal to HδlTi

Ti−δ
, cf. the notation for interest

rates introduced in Section 10.2. Note that the interest rate is set at the beginning of the period,

but paid at the end. Define T0 = T1 − δ. The dates T0, T1, . . . , Tn−1 where the rate for the coming

period is determined are called the reset dates of the loan.

A cap with a face value of H, payment dates Ti (i = 1, . . . , n) as above, and a so-called cap rate

K yields a time Ti payoff of Hδmax(lTi

Ti−δ
−K, 0), for i = 1, 2, . . . , n. If a borrower buys such a

cap, the net payment at time Ti cannot exceed HδK. The period length δ is often referred to as

the frequency or the tenor of the cap.3 In practice, the frequency is typically either 3, 6, or 12

months. Note that the time distance between payment dates coincides with the “maturity” of the

floating interest rate. Also note that while a cap is tailored for interest rate hedging, it can also

be used for interest rate speculation.

A cap can be seen as a portfolio of n caplets, namely one for each payment date of the cap.

The i’th caplet yields a payoff at time Ti of

CiTi
= Hδmax

(

lTi

Ti−δ
−K, 0

)

(12.33)

and no other payments. A caplet is a call option on the zero-coupon yield prevailing at time Ti− δ
for a period of length δ, but where the payment takes place at time Ti although it is already fixed

at time Ti − δ.

In the following we will find the value of the i’th caplet before time Ti. Since the payoff becomes

known at time Ti − δ, we can obtain its value in the interval between Ti − δ and Ti by a simple

discounting of the payoff, i.e.

Cit = BTi
t Hδmax

(

lTi

Ti−δ
−K, 0

)

, Ti − δ ≤ t ≤ Ti.

In particular,

CiTi−δ = BTi

Ti−δ
Hδmax

(

lTi

Ti−δ
−K, 0

)

. (12.34)

To find the value before the fixing of the payoff, i.e. for t < Ti−δ, we shall use two strategies. The

first is simply to take relevant expectations of the payoff. Since the payoff comes at Ti, we know

from Section 11.4 that the value of the payoff can be found as the product of the expected payoff

computed under the Ti-forward martingale measure and the current discount factor for time Ti

payments, i.e.

Cit = HδBTi
t EQTi

t

[

max
(

lTi

Ti−δ
−K, 0

)]

, t < Ti − δ. (12.35)

The price of a cap can therefore be determined as

Ct = Hδ
n∑

i=1

BTi
t EQTi

t

[

max
(

lTi

Ti−δ
−K, 0

)]

, t < T0. (12.36)

2In practice, there will not be exactly the same number of days between successive reset dates, and the calculations

below must be slightly adjusted by using the relevant day count convention.
3The word tenor is sometimes used for the set of payment dates T1, . . . , Tn.
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If each LIBOR rate lT−i
Ti−δ

is lognormally distributed under the QTi-forward measure, we can obtain a

nice closed-form pricing formula. This is satisfied in the so-called LIBOR market model introduced

by Miltersen, Sandmann, and Sondermann (1997) and Brace, Gatarek, and Musiela (1997). See

Munk (2005b, Ch. 11) for a review. In fact, the resulting pricing formula is the Black formula

often applied in practice:

Cit = HδBTi
t

[

LTi−δ,Ti

t N
(

di(LTi−δ,Ti

t , t)
)

−KN
(

di(LTi−δ,Ti

t , t) − σi
√

Ti − δ − t
)]

, t < Ti − δ,

(12.37)

where σi is the (relative) volatility of the forward LIBOR rate LTi−δ,Ti

t , and di is given by

di(LTi−δ,Ti

t , t) =
ln(LTi−δ,Ti

t /K)

σi
√
Ti − δ − t

+
1

2
σi
√

Ti − δ − t.

The second pricing strategy links caps to bond options. Applying (10.5) on page 222, we can

rewrite (12.34) as

CiTi−δ = BTi

Ti−δ
H max

(

1 + δlTi

Ti−δ
− [1 + δK], 0

)

= BTi

Ti−δ
H max

(

1

BTi

Ti−δ

− [1 + δK], 0

)

= H(1 + δK)max

(
1

1 + δK
−BTi

Ti−δ
, 0

)

.

We can now see that the value at time Ti − δ is identical to the payoff of a European put option

expiring at time Ti − δ that has an exercise price of 1/(1 + δK) and is written on a zero-coupon

bond maturing at time Ti. Accordingly, the value of the i’th caplet at an earlier point in time

t ≤ Ti − δ must equal the value of that put option, i.e.

Cit = H(1 + δK)Π
(1+δK)−1,Ti−δ,Ti

t . (12.38)

To find the value of the entire cap contract we simply have to add up the values of all the caplets

corresponding to the remaining payment dates of the cap. Before the first reset date, T0, none of

the cap payments are known, so the value of the cap is given by

Ct =

n∑

i=1

Cit = H(1 + δK)

n∑

i=1

Π
(1+δK)−1,Ti−δ,Ti

t , t < T0. (12.39)

At all dates after the first reset date, the next payment of the cap will already be known. If we

use the notation Ti(t) for the nearest following payment date after time t, the value of the cap at

any time t in [T0, Tn] (exclusive of any payment received exactly at time t) can be written as

Ct = HB
Ti(t)

t δmax
(

l
Ti(t)

Ti(t)−δ
−K, 0

)

+ (1 + δK)H

n∑

i=i(t)+1

Π
(1+δK)−1,Ti−δ,Ti

t , T0 ≤ t ≤ Tn.
(12.40)

If Tn−1 < t < Tn, we have i(t) = n, and there will be no terms in the sum, which is then considered

to be equal to zero. In various models of interest rate dynamics, nice pricing formulas for European

options on zero-coupon bonds can be derived. This is for example the case in the Vasicek model

studied above. Cap prices will then follow from prices of European puts on zero-coupon bonds.
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Note that the interest rates and the discount factors appearing in the expressions above are taken

from the money market, not from the government bond market. Also note that since caps and

most other contracts related to money market rates trade OTC, one should take the default risk

of the two parties into account when valuing the cap. Here, default simply means that the party

cannot pay the amounts promised in the contract. Official money market rates and the associated

discount function apply to loan and deposit arrangements between large financial institutions, and

thus they reflect the default risk of these corporations. If the parties in an OTC transaction have a

default risk significantly different from that, the discount rates in the formulas should be adjusted

accordingly. However, it is quite complicated to do that in a theoretically correct manner, so we

will not discuss this issue any further at this point.

An (interest rate) floor is designed to protect an investor who has lent funds on a floating rate

basis against receiving very low interest rates. The contract is constructed just as a cap except

that the payoff at time Ti (i = 1, . . . , n) is given by

FiTi
= Hδmax

(

K − lTi

Ti−δ
, 0
)

, (12.41)

where K is called the floor rate. Buying an appropriate floor, an investor who has provided another

investor with a floating rate loan will in total at least receive the floor rate. Of course, an investor

can also speculate in low future interest rates by buying a floor. The (hypothetical) contracts that

only yield one of the payments in (12.41) are called floorlets. Obviously, we can think of a floorlet

as a European put on the floating interest rate with delayed payment of the payoff.

Analogously to the analysis for caps, we can price the floor directly as

Ft = Hδ

n∑

i=1

BTi
t EQTi

t

[

max
(

K − LTi−δ,Ti

Ti−δ
, 0
)]

, t < T0. (12.42)

Again a pricing formula consistent with the Black formula is obtained assuming lognormally dis-

tributed forward LIBOR rates. Alternatively, we can express the floorlet as a European call on a

zero-coupon bond, and hence a floor is equivalent to a portfolio of European calls on zero-coupon

bonds. More precisely, the value of the i’th floorlet at time Ti − δ is

FiTi−δ = H(1 + δK)max

(

BTi

Ti−δ
− 1

1 + δK
, 0

)

. (12.43)

The total value of the floor contract at any time t < T0 is therefore given by

Ft = H(1 + δK)

n∑

i=1

C
(1+δK)−1,Ti−δ,Ti

t , t < T0, (12.44)

and later the value is

Ft = HB
Ti(t)

t δmax
(

K − l
Ti(t)

Ti(t)−δ
, 0
)

+ (1 + δK)H

n∑

i=i(t)+1

C
(1+δK)−1,Ti−δ,Ti

t , T0 ≤ t ≤ Tn.
(12.45)

12.4 Interest rate swaps and swaptions

12.4.1 Interest rate swaps

Many different types of swaps are traded on the OTC markets, e.g. currency swaps, credit swaps,

asset swaps, but we focus here on interest rate swaps. An (interest rate) swap is an exchange
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of two cash flow streams that are determined by certain interest rates. In the simplest and most

common interest rate swap, a plain vanilla swap, two parties exchange a stream of fixed interest

rate payments and a stream of floating interest rate payments. The payments are in the same

currency and are computed from the same (hypothetical) face value or notional principal. The

floating rate is usually a money market rate, e.g. a LIBOR rate, possibly augmented or reduced by

a fixed margin. The fixed interest rate is usually set so that the swap has zero net present value

when the parties agree on the contract. While the two parties can agree upon any maturity, most

interest rate swaps have a maturity between 2 and 10 years.

Let us briefly look at the uses of interest rate swaps. An investor can transform a floating rate

loan into a fixed rate loan by entering into an appropriate swap, where the investor receives floating

rate payments (netting out the payments on the original loan) and pays fixed rate payments. This

is called a liability transformation. Conversely, an investor who has lent money at a floating

rate, i.e. owns a floating rate bond, can transform this to a fixed rate bond by entering into a

swap, where he pays floating rate payments and receives fixed rate payments. This is an asset

transformation. Hence, interest rate swaps can be used for hedging interest rate risk on both

(certain) assets and liabilities. On the other hand, interest rate swaps can also be used for taking

advantage of specific expectations of future interest rates, i.e. for speculation.

Swaps are often said to allow the two parties to exploit their comparative advantages in

different markets. Concerning interest rate swaps, this argument presumes that one party has a

comparative advantage (relative to the other party) in the market for fixed rate loans, while the

other party has a comparative advantage (relative to the first party) in the market for floating rate

loans. However, these markets are integrated, and the existence of comparative advantages conflicts

with modern financial theory and the efficiency of the money markets. Apparent comparative

advantages can be due to differences in default risk premia. For details we refer the reader to the

discussion in Hull (2006, Ch. 7).

Next, we will discuss the valuation of swaps. As for caps and floors, we assume that both parties

in the swap have a default risk corresponding to the “average default risk” of major financial

institutions reflected by the money market interest rates. For a description of the impact on the

payments and the valuation of swaps between parties with different default risk, see Duffie and

Huang (1996) and Huge and Lando (1999). Furthermore, we assume that the fixed rate payments

and the floating rate payments occur at exactly the same dates throughout the life of the swap.

This is true for most, but not all, traded swaps. For some swaps, the fixed rate payments only

occur once a year, whereas the floating rate payments are quarterly or semi-annual. The analysis

below can easily be adapted to such swaps.

In a plain vanilla interest rate swap, one party pays a stream of fixed rate payments and receives

a stream of floating rate payments. This party is said to have a pay fixed, receive floating swap or

a fixed-for-floating swap or simply a payer swap. The counterpart receives a stream of fixed rate

payments and pays a stream of floating rate payments. This party is said to have a pay floating,

receive fixed swap or a floating-for-fixed swap or simply a receiver swap. Note that the names

payer swap and receiver swap refer to the fixed rate payments.

We consider a swap with payment dates T1, . . . , Tn, where Ti+1 − Ti = δ. The floating interest

rate determining the payment at time Ti is the money market (LIBOR) rate lTi

Ti−δ
. In the following

we assume that there is no fixed extra margin on this floating rate. If there were such an extra
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charge, the value of the part of the flexible payments that is due to the extra margin could be

computed in the same manner as the value of the fixed rate payments of the swap, see below. We

refer to T0 = T1−δ as the starting date of the swap. As for caps and floors, we call T0, T1, . . . , Tn−1

the reset dates, and δ the frequency or the tenor. Typical swaps have δ equal to 0.25, 0.5, or 1

corresponding to quarterly, semi-annual, or annual payments and interest rates.

We will find the value of an interest rate swap by separately computing the value of the fixed

rate payments (V fix) and the value of the floating rate payments (V fl). The fixed rate is denoted

by K. This is a nominal, annual interest rate, so that the fixed rate payments equal HKδ, where

H is the notional principal or face value (which is not swapped). The value of the remaining fixed

payments is simply

V fix
t =

n∑

i=i(t)

HKδBTi
t = HKδ

n∑

i=i(t)

BTi
t . (12.46)

The floating rate payments are exactly the same as the coupon payments on a floating rate bond

with annualized coupon rate lTi

Ti−δ
. Immediately after each reset date, the value of such a bond will

equal its face value. To see this, first note that immediately after the last reset date Tn−1 = Tn−δ,
the bond is equivalent to a zero-coupon bond with a coupon rate equal to the market interest

rate for the last coupon period. By definition of that market interest rate, the time Tn−1 value of

the bond will be exactly equal to the face value H. In mathematical terms, the market discount

factor to apply for the discounting of time Tn payments back to time Tn−1 is (1+ δlTn

Tn−1
)−1, so the

time Tn−1 value of a payment of H(1 + δlTn

Tn−1
) at time Tn is precisely H. Immediately after the

next-to-last reset date Tn−2, we know that we will receive a payment of Hδl
Tn−1

Tn−2
at time Tn−1 and

that the time Tn−1 value of the following payment (received at Tn) equals H. We therefore have

to discount the sum Hδl
Tn−1

Tn−2
+H = H(1 + δl

Tn−1

Tn−2
) from Tn−1 back to Tn−2. The discounted value

is exactly H. Continuing this procedure, we get that immediately after a reset of the coupon rate,

the floating rate bond is valued at par. Note that it is crucial for this result that the coupon rate

is adjusted to the interest rate considered by the market to be “fair.” Suppose we are interested in

the value at some time t between T0 and Tn. Let Ti(t) be the nearest following payment date after

time t. We know that the following payment at time Ti(t) equals Hδl
Ti(t)

Ti(t)−1
and that the value at

time Ti(t) of all the remaining payments will equal H. The value of the bond at time t will then be

Bfl
t = H(1 + δl

Ti(t)

Ti(t)−δ
)B

Ti(t)

t , T0 ≤ t < Tn. (12.47)

This expression also holds at payment dates t = Ti, where it results in H, which is the value

excluding the payment at that date.

The value of the floating rate bond is the value of both the coupon payments and the final

repayment of face value so the value of the coupon payments only must be

V fl
t = H(1 + δl

Ti(t)

Ti(t)−δ
)B

Ti(t)

t −HBTn
t

= Hδl
Ti(t)

Ti(t)−δ
B
Ti(t)

t +H
[

B
Ti(t)

t −BTn
t

]

, T0 ≤ t < Tn.

At and before time T0, the first term is not present, so the value of the floating rate payments is

simply

V fl
t = H

[

BT0
t −BTn

t

]

, t ≤ T0. (12.48)
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We will also develop an alternative expression for the value of the floating rate payments of the

swap. The time Ti − δ value of the coupon payment at time Ti is

HδlTi

Ti−δ
BTi

Ti−δ
= Hδ

lTi

Ti−δ

1 + δlTi

Ti−δ

,

where we have applied (10.5) on page 222. Consider a strategy of buying a zero-coupon bond with

face value H maturing at Ti − δ and selling a zero-coupon bond with the same face value H but

maturing at Ti. The time Ti − δ value of this position is

HBTi−δ
Ti−δ

−HBTi

Ti−δ
= H − H

1 + δlTi

Ti−δ

= Hδ
lTi

Ti−δ

1 + δlTi

Ti−δ

,

which is identical to the value of the floating rate payment of the swap. Therefore, the value of

this floating rate payment at any time t ≤ Ti − δ must be

H
(

BTi−δ
t −BTi

t

)

= HδBTi
t

B
Ti−δ
t

B
Ti
t

− 1

δ
= HδBTi

t L
Ti−δ,Ti

t , (12.49)

where we have applied (10.6) on page 222. Thus, the value at time t ≤ Ti− δ of getting HδlTi

Ti−δ
at

time Ti is equal to HδBTi
t L

Ti−δ,Ti

t , i.e. the unknown future spot rate lTi

Ti−δ
in the payoff is replaced

by the current forward rate for LTi−δ,Ti

t and then discounted by the current riskfree discount factor

BTi
t . The value at time t > T0 of all the remaining floating coupon payments can therefore be

written as

V fl
t = HδB

Ti(t)

t l
Ti(t)

Ti(t)−δ
+Hδ

n∑

i=i(t)+1

BTi
t L

Ti−δ,Ti

t , T0 ≤ t < Tn.

At or before time T0, the first term is not present, so we get

V fl
t = Hδ

n∑

i=1

BTi
t L

Ti−δ,Ti

t , t ≤ T0. (12.50)

The value of a payer swap is

Pt = V fl
t − V fix

t ,

while the value of a receiver swap is

Rt = V fix
t − V fl

t .

In particular, the value of a payer swap at or before its starting date T0 can be written as

Pt = Hδ

n∑

i=1

BTi
t

(

LTi−δ,Ti

t −K
)

, t ≤ T0, (12.51)

using (12.46) and (12.50), or as

Pt = H

(
[

BT0
t −BTn

t

]

−
n∑

i=1

KδBTi
t

)

, t ≤ T0, (12.52)

using (12.46) and (12.48). If we let Yi = Kδ for i = 1, . . . , n − 1 and Yn = 1 + Kδ, we can

rewrite (12.52) as

Pt = H

(

BT0
t −

n∑

i=1

YiB
Ti
t

)

, t ≤ T0. (12.53)
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Also note the following relation between a cap, a floor, and a payer swap having the same payment

dates and where the cap rate, the floor rate, and the fixed rate in the swap are all identical:

Ct = Ft + Pt. (12.54)

This follows from the fact that the payments from a portfolio of a floor and a payer swap exactly

match the payments of a cap.

The swap rate l̃δT0
prevailing at time T0 for a swap with frequency δ and payments dates

Ti = T0 + iδ, i = 1, 2, . . . , n, is defined as the unique value of the fixed rate that makes the present

value of a swap starting at T0 equal to zero, i.e. PT0
= RT0

= 0. The swap rate is sometimes called

the equilibrium swap rate or the par swap rate. Applying (12.51), we can write the swap rate as

l̃δT0
=

∑n
i=1 L

Ti−δ,Ti

T0
BTi

T0
∑n
i=1B

Ti

T0

,

which can also be written as a weighted average of the relevant forward rates:

l̃δT0
=

n∑

i=1

wiL
Ti−δ,Ti

T0
, (12.55)

where wi = BTi

T0
/
∑n
i=1B

Ti

T0
. Alternatively, we can let t = T0 in (12.52) yielding

PT0
= H

(

1 −BTn

T0
−Kδ

n∑

i=1

BTi

T0

)

,

so that the swap rate can be expressed as

l̃δT0
=

1 −BTn

T0

δ
∑n
i=1B

Ti

T0

. (12.56)

Substituting (12.56) into the expression just above it, the time T0 value of an agreement to pay a

fixed rate K and receive the prevailing market rate at each of the dates T1, . . . , Tn, can be written

in terms of the current swap rate as

PT0
= H

(

l̃δT0
δ

(
n∑

i=1

BTi

T0

)

−Kδ

(
n∑

i=1

BTi

T0

))

=

(
n∑

i=1

BTi

T0

)

Hδ
(

l̃δT0
−K

)

.

(12.57)

A forward swap (or deferred swap) is an agreement to enter into a swap with a future starting

date T0 and a fixed rate which is already set. Of course, the contract also fixes the frequency, the

maturity, and the notional principal of the swap. The value at time t ≤ T0 of a forward payer

swap with fixed rate K is given by the equivalent expressions (12.51)–(12.53). The forward swap

rate L̃δ,T0

t is defined as the value of the fixed rate that makes the forward swap have zero value at

time t. The forward swap rate can be written as

L̃δ,T0

t =
BT0
t −BTn

t

δ
∑n
i=1B

Ti
t

=

∑n
i=1 L

Ti−δ,Ti

t BTi
t

∑n
i=1B

Ti
t

. (12.58)

Note that both the swap rate and the forward swap rate depend on the frequency and the

maturity of the underlying swap. To indicate this dependence, let l̃δt (n) denote the time t swap
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rate for a swap with payment dates Ti = t + iδ, i = 1, 2, . . . , n. If we depict the swap rate as a

function of the maturity, i.e. the function n 7→ l̃δt (n) (only defined for n = 1, 2, . . . ), we get a term

structure of swap rates for the given frequency. Many financial institutions participating in the

swap market will offer swaps of varying maturities under conditions reflected by their posted term

structure of swap rates. In Exercise 12.7, you are asked to show how the discount factors BTi

T0
can

be derived from a term structure of swap rates.

12.4.2 Swaptions

A swaption is an option on a swap. A European swaption gives its holder the right, but not the

obligation, at the expiry date T0 to enter into a specific interest rate swap that starts at T0 and has

a given fixed rate K. No exercise price is to be paid if the right is utilized. The rate K is sometimes

referred to as the exercise rate of the swaption. We distinguish between a payer swaption, which

gives the right to enter into a payer swap, and a receiver swaption, which gives the right to enter

into a receiver swap. As for caps and floors, two different pricing strategies can be taken. One

strategy is to link the swaption payoff to the payoff of another well-known derivative. The other

strategy is to directly take relevant expectations of the swaption payoff.

Let us first see how we can link swaptions to options on bonds. Let us focus on a European

receiver swaption. At time T0, the value of a receiver swap with payment dates Ti = T0 + iδ,

i = 1, 2, . . . , n, and a fixed rate K is given by

RT0
= H

(
n∑

i=1

YiB
Ti

T0
− 1

)

,

where Yi = Kδ for i = 1, . . . , n − 1 and Yn = 1 +Kδ; cf. (12.53). Hence, the time T0 payoff of a

receiver swaption is

RT0
= max (RT0

− 0, 0) = H max

(
n∑

i=1

YiB
Ti

T0
− 1, 0

)

, (12.59)

which is equivalent to the payoff of H European call options on a bullet bond with face value 1,

n payment dates, a period of δ between successive payments, and an annualized coupon rate K.

The exercise price of each option equals the face value 1. The price of a European receiver swaption

must therefore be equal to the price of these call options. In many models of interest rate dynamics,

we can compute such prices quite easily. For the Vasicek model, the swaption prices follow from

Equation 12.29 and Theorem 12.8.

Similarly, a European payer swaption yields a payoff of

PT0
= max (PT0

− 0, 0) = max (−RT0
, 0) = H max

(

1 −
n∑

i=1

YiB
Ti

T0
, 0

)

. (12.60)

This is identical to the payoff from H European put options expiring at T0 and having an exercise

price of 1 with a bond paying Yi at time Ti, i = 1, 2, . . . , n, as its underlying asset.

Alternatively, we can apply (12.57) to express the payoff of a European payer swaption as

PT0
=

(
n∑

i=1

BTi

T0

)

Hδmax
(

l̃δT0
−K, 0

)

, (12.61)
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where l̃δT0
is the (equilibrium) swap rate prevailing at time T0. What is an appropriate numeraire

for pricing this swaption? If we were to use the zero-coupon bond maturing at T0 as the numeraire,

we would have to find the expectation of the payoff PT0
under the T0-forward martingale measure

QT0 . But since the payoff depends on several different bond prices, the distribution of PT0
under

QT0 is rather complicated. It is more convenient to use another numeraire, namely the annuity

bond, which at each of the dates T1, . . . , Tn provides a payment of 1 dollar. The value of this

annuity at time t ≤ T0 equals Gt =
∑n
i=1B

Ti
t . In particular, the payoff of the swaption can be

restated as

PT0
= GT0

Hδmax
(

l̃δT0
−K, 0

)

,

and the payoff expressed in units of the annuity bond is simply Hδmax
(

l̃δT0
−K, 0

)

. The risk-

adjusted probability measure corresponding to the annuity being the numeraire is sometimes called

the swap martingale measure and will be denoted by QG in the following. The price of the

European payer swaption can now be written as

Pt = Gt E
QG

t

[
PT0

GT0

]

= GtHδ EQG

t

[

max
(

l̃δT0
−K, 0

)]

, (12.62)

so we only need to know the distribution of the swap rate l̃δT0
under the swap martingale measure.

In the so-called lognormal swap rate model introduced by Jamshidian (1997), the swap rate l̃δT0
is

assumed to be lognormally distributed under the QG-measure and the resulting swaption pricing

formula is identical to the Black formula for swaptions often applied by practitioners:

Pt = Hδ

(
n∑

i=1

BTi
t

)[

L̃δ,T0

t N
(

d(L̃δ,T0

t , t)
)

−KN
(

d(L̃δ,T0

t , t) − σ̃
)]

, t < T0, (12.63)

where σ̃ is the (relative) volatility of the foward swap rate L̃δ,T0

t and

d(L̃δ,T0

t , t) =
ln(L̃δ,T0

t /K)

σ̃
√
T0 − t

+
1

2
σ̃
√

T0 − t.

See Munk (2005b, Ch. 11) for a presentation and discussion of the lognormal swap rate model.

Similar to the put-call parity for options we have the following payer-receiver parity for

European swaptions having the same underlying swap and the same exercise rate:

Pt − Rt = Pt, t ≤ T0, (12.64)

cf. Exercise 12.8. In words, a payer swaption minus a receiver swaption is indistinguishable from

a forward payer swap.

12.5 American-style derivatives

Consider an American-style derivative where the holder has the right to choose when to exercise the

derivative, at least within some limits. Typically exercise can take place at the expiration date T

or at any time before T . Let Pτ denote the payoff if the derivative is exercised at time τ ≤ T .

In general, Pτ may depend on the evolution of the economy up to and including time τ , but it

is usually a simple function of the time τ price of an underlying security or the time τ value of a

particular interest rate. At each point in time the holder of the derivative must decide whether
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or not he will exercise. Of course, this decision must be based on the available information, so we

are seeking an entire exercise strategy that tell us exactly in what states of the world we should

exercise the derivative. We can represent an exercise strategy by an indicator function I(ω, t),

which for any given state of the economy ω at time t either has the value 1 or 0, where the value 1

indicates exercise and 0 indicates non-exercise. For a given exercise strategy I, the derivative will

be exercised the first time I(ω, t) takes on the value 1. We can write this point in time as

τ(I) = min{s ∈ [t, T ] | I(ω, s) = 1}.

This is called a stopping time in the literature on stochastic processes. By our earlier analysis, the

value of getting the payoff Vτ(I) at time τ(I) is given by EQ
t

[

e−
R τ(I)

t
ru duPτ(I)

]

. If we let I[t, T ]

denote the set of all possible exercise strategies over the time period [t, T ], the time t value of the

American-style derivative must therefore be

Vt = sup
I∈I[t,T ]

EQ
t

[

e−
R τ(I)

t
ru duPτ(I)

]

. (12.65)

An optimal exercise strategy I∗ is such that

Vt = EQ
t

[

e−
R τ(I∗)

t
ru duPτ(I∗)

]

.

Note that the optimal exercise strategy and the price of the derivative must be solved for simul-

taneously. This complicates the pricing of American-style derivatives considerably. In fact, in

all situations where early exercise may be relevant, we will not be able to compute closed-form

pricing formulas for American-style derivatives. We have to resort to numerical techniques. See

Hull (2006) for an introduction to the standard techniques of binomial or trinomial trees, finite

difference approximation of the partial differential equation that the pricing function must satisfy,

and Monte Carlo simulation.

It is well-known that it is never strictly advantageous to exercise an American call option on a

non-dividend paying asset before the final maturity date T , cf. Merton (1973c) and Hull (2006,

Ch. 9). In contrast, premature exercise of an American put option on a non-dividend paying asset

will be advantageous for sufficiently low prices of the underlying asset. If the underlying asset

pays dividends at discrete points in time, it can be optimal to exercise an American call option

prematurely but only immediately before each dividend payment date. Regarding early exercise

of put options, it can never be optimal to exercise an American put on a dividend-paying asset

just before a dividend payment, but at all other points in time early exercise will be optimal for

sufficiently low prices of the underlying asset.

12.6 Concluding remarks

This chapter has given an introduction to standard derivatives and the pricing of such derivatives.

Numerous continuous-time models have been proposed in the literature for the pricing of derivatives

on stocks, interest rates, bonds, commodities, foreign exchange, and other variables. Also many

“exotic” variations of the basic derivatives are traded and studied in the literature. In many

cases the prices of some relevant derivatives cannot be computed explicitly given the modeling

assumptions found to be reasonable so the prices have to be computed by approximations or
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numerical solution techniques. The design of efficient computational techniques for derivatives

pricing is also an active research area.

The interested reader can find much more information on derivatives in specialized textbooks

such as Björk (2004), Brigo and Mercurio (2001), Hull (2006), James and Webber (2000), Munk

(2005b), Musiela and Rutkowski (1997). The market for derivatives with payoffs depending on

credit events, such as the default of a given corporation, has been rapidly growing recently. Such

derivatives and their pricing are studied in textbooks such as Bielecki and Rutkowski (2002), Duffie

and Singleton (2003), Lando (2004), and Schönbucher (2003).

12.7 Exercises

EXERCISE 12.1 Consider a coupon bond with payment dates T1 < T2 < · · · < Tn. For each

i = 1, 2, . . . , n, let Yi be the sure payment at time Ti. For some t < T < Ti, let ΦT,Ti

t denote the

futures price at time t for delivery at time T of the zero-coupon bond maturing at time Ti with a

unit payment. Show that futures price at time t for delivery at time T of the coupon bond satisfies

ΦT,cpn
t =

∑

Ti>T

YiΦ
T,Ti

t .

EXERCISE 12.2 Show by differentiation that the Black-Scholes-Merton call option price

satisfies (12.22) and (12.23).

EXERCISE 12.3 Show that the no-arbitrage price of a European call option on a non-dividend

paying stock must satisfy

max
(
0, St −KBTt

)
≤ Ct ≤ St.

Show that the no-arbitrage price of a European call on a zero-coupon bond will satisfy

max
(
0, BSt −KBTt

)
≤ CK,T,St ≤ BSt (1 −K)

provided that all interest rates are non-negative.

EXERCISE 12.4 We will adapt the Black-Scholes-Merton model and option pricing formula

to three cases in which the underlying asset provides dividend payments before the expiration of

the option at time T .

I. Discrete dividends known in absolute terms. Suppose that the underlying asset pays

dividends at n points in time before time T , namely t1 < t2 < · · · < tn. All the dividends are

known already. Let Dj denote the dividend at time tj . The time t value of all the remaining

dividends is then

D∗
t =

∑

tj>t

Dje
−r(tj−t),

where r is the constant interest rate. Define S∗
t = St −D∗

t . Note that S∗
T = ST .

(a) Show that S∗
t is the necessary investment at time t to end up with one unit of the underlying

asset at time T .
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(b) Assuming that S∗
t has constant volatility σ, so that

dS∗
t = S∗

t (µ(·) dt+ σ dzt)

for some drift term µ(·), derive a Black-Scholes-Merton-type equation for a European call

option on this asset. State the option price in terms of St (and the remaining dividends).

Compare with the standard Black-Scholes-Merton formula—in particular, check whether σ

is equal to the volatility of St under the assumptions on S∗.

II. Discrete dividends known as a percentage of the price of the underlying asset.

Again assume that dividends are paid at t1 < t2 < · · · < tn, but now assume that the dividend at

time tj is known to be Dj = δjStj−, where δj is a known constant and Stj− is the price just before

the dividend is paid out. The ex-dividend price is then Stj = (1 − δj)Stj−. Define the process S∗

by

S∗
t = St

∏

tj>t

(1 − δj), t < tn,

and S∗
t = St for t ≥ tn. Answer the questions (a) and (b) above using this definition of S∗.

III. Continuous dividend payments at a known rate. Now suppose that the underlying

asset pays dividends continuously at a constant and known relative rate δ. This means that over

any very short time interval [t, t+∆t], the total dollar dividends is
∫ t+∆t

t
δSu du or approximately

δSt+∆t∆t. Define

S∗
t = Ste

−δ(T−t).

Again, answer the questions (a) and (b) using this new definition of S∗. Hint: For part (a), you

may want to divide the interval [t, T ] into N equally long subintervals and assume that dividends

are paid only at the end of each subinterval. Use the result limN→∞(1 + δ T−t
N )N = eδ(T−t) to go

to the continuous-time limit.

EXERCISE 12.5 Let S1 = (S1t) and S2 = (S2t) be the price processes of two assets. Consider

the option to exchange (at zero cost) one unit of asset 2 for one unit of asset 1 at some prespecified

date T . The payoff is thus max (S1T − S2T , 0). The assets have no dividends before time T .

(a) Argue that the time t value of this option can be written as

Vt = S2t E
Q2
t

[

max

(
S1T

S2T
− 1, 0

)]

,

where Q2 is the risk-adjusted probability measure associated with asset 2.

Suppose that S1 and S2 are both geometric Brownian motions so that we may write their joint

dynamics as

dS1t = S1t [µ1 dt+ σ1 dz1t] ,

dS2t = S2t

[

µ2 dt+ ρσ2 dz1t +
√

1 − ρ2σ2 dz2t

]

.

(b) Find the dynamics of S1t/S2t under the probability measure Q2.
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(c) Use the two previous questions and your knowledge of lognormal random variables to show

that

Vt = S1tN(d1) − S2tN(d2), (12.66)

where

d1 =
ln(S1t/S2t)

v
+

1

2
v, d2 = d1 − v, v =

√

(σ2
1 + σ2

2 − 2ρσ1σ2)(T − t).

This formula was first given by Margrabe (1978).

(d) Give pricing formulas (in terms of S1t and S2t) for an option with payoff max(S1T , S2T ) and

an option with payoff min(S1T , S2T ).

(e) What happens to the pricing formula (12.66) if asset 2 is a zero-coupon bond maturing at

time T with a payment of K? And if, furthermore, interest rates are constant, what then?

EXERCISE 12.6 Let FT,St and ΦT,St denote the forward price and futures price at time t,

respectively, for delivery at time T > t of a zero-coupon bond maturing at time S > T . Under the

assumptions of the Vasicek model introduced in Section 10.5.1, show that

FT,St = exp{−[a(S − t) − a(T − t)] − [b(S − t) − b(T − t)]rt},
ΦT,St = exp{−ã(T − t, S − T ) − [b(S − t) − b(T − t)]rt},

where a(·) and b(·) are given by (10.35) and (10.33),

ã(T − t, S − T ) = a(S − T ) + κr̂b(S − T )b(T − t) − σ2
r

2
b(S − T )2

(

b(T − t) − κ

2
b(T − t)2

)

and r̂ = r̄ − σrλ/κ.

EXERCISE 12.7 Let l̃δT0
(k) be the equilibrium swap rate for a swap with payment dates

T1, T2, . . . , Tk, where Ti = T0 + iδ as usual. Suppose that l̃δT0
(1), . . . , l̃δT0

(n) are known. Find a

recursive procedure for deriving the associated discount factors BT1

T0
, BT2

T0
, . . . , BTn

T0
.

EXERCISE 12.8 Show the parity (12.64). Show that a payer swaption and a receiver swaption

(with identical terms) will have identical prices, if the exercise rate of the contracts is equal to the

forward swap rate L̃δ,T0

t .

EXERCISE 12.9 Consider a swap with starting date T0 and a fixed rate K. For t ≤ T0, show

that V fl
t /V

fix
t = L̃δ,T0

t /K, where L̃δ,T0

t is the forward swap rate.



Appendix A

A review of basic probability

concepts

Any asset pricing model must handle uncertainty. Therefore we need to apply some concepts and

results from probability theory. We will be a bit more formal than many textbooks on statistics

for business and economics. This section is meant to give a short introduction. We will discuss

further issues in later chapters when we need them in our asset pricing models.

The basic mathematical object for studies of uncertain events is a probability space, which is

a triple (Ω,F,P) consisting of a state space Ω, a sigma-algebra F, and a probability measure P.

Any study of uncertain events must explicitly or implicitly specify the probability space. Let us

discuss each of the three elements of a probability space in turn.

The state space Ω is the set of possible states or outcomes of the uncertain object. Only one

of these states will be realized. For example, if one studies the outcome of a throw of a die (the

number of “eyes” on the upside), the state space is Ω = {1, 2, 3, 4, 5, 6}. An event is a set of possible

outcomes, i.e. a subset of the state space. In the example with the die, some events are {1, 2, 3},
{4, 5}, {1, 3, 5}, {6}, and {1, 2, 3, 4, 5, 6}. This is an example where a finite state space is natural.

For other uncertain objects it is natural to take an infinite state space. If we only want to study

the dividend of a given stock at a given point in time, an appropriate state space is R+ ≡ [0,∞)

since the dividend may in principle be any non-negative real number. In our asset pricing models

we want to study the entire economy over a certain time span so the state space has to list all

the possible realizations of dividends of all assets and incomes of all individuals. Of course, this

requires a large state space. Note that some authors use the term sample space instead of state

space.

The second component of a probability space, F, is the set of events to which a probability can

be assigned, i.e. the set of “probabilizable” or “measurable” events. Hence, F is a set of

subsets of the state space! It is required that

(i) the entire state space can be assigned a probability, i.e. Ω ∈ F;

(ii) if some event F ⊆ Ω can be assigned a probability, so can its complement F c ≡ Ω \ F , i.e.

F ∈ F ⇒ F c ∈ F; and

307
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(iii) given a sequence of probabilizable events, the union is also probabilizable, i.e. F1, F2, · · · ∈
F ⇒ ∪∞

i=1Fi ∈ F.

A set F with these properties is called a sigma-algebra, a sigma-field, or a tribe. We will stick

to the term sigma-algebra.

An alternative way to represent the probabilizable events is by a partition F of Ω. By a partition

F of Ω we mean a collection A1, . . . , Ak of disjoint subsets of Ω, i.e. Ai ∩Aj = ∅ for i 6= j, so that

the union of these subsets equals the entire set Ω, i.e. Ω = A1 ∪ · · · ∪Ak. With a finite state space

Ω = {ω1, ω2, . . . , ωS} the natural partition is

F =
{

{ω1}, {ω2}, . . . , {ωS}
}

,

which intuitively means that we will learn exactly which state is realized. Given a partition F

we can define an associated sigma-algebra F as the set of all unions of (countably many) sets

in F including the “empty union”, i.e. the empty set ∅. Again, if Ω = {ω1, ω2, . . . , ωS} and

F =
{

{ω1}, {ω2}, . . . , {ωS}
}

, the corresponding sigma-algebra is the set of all subsets of Ω. On

the other hand we can also go from a sigma-algebra F to a partition F. Just remove all sets in F

that are unions of the sets in F. Again this includes the empty set ∅ since that is is an “empty

union” of the other sets in F. If the state space is infinite, the equivalence between a partition and

a sigma-algebra may break down, and the sigma-algebra formulation is the preferred one; see for

example the discussion in Björk (2004, App. B).

We can think of the sigma-algebra F or the associated partition F as representing full information

about the realization of the state. In some cases it can be relevant also to model some limited

information about the realized state. Many models in financial economics are designed to capture

uncertainty about many different variables or objects, for example the dividends on a large number

of stocks. It may be relevant to formalize what can be learned about the true state by just observing

the dividends of one particular stock. In other models some individuals are assumed to know more

about some uncertain objects than other individuals. Less-than-full information can be represented

formally by a sigma-algebra G on Ω, which is coarser than F in the sense that any set in G is also

in F. In terms of partitions, a partition G of Ω represent less information than F if any set in G

is the union of sets in F. In the example with the throw of a die, full information is represented

by the partition

F =
{

{1}, {2}, {3}, {4}, {5}, {6}
}

or the associated sigma-algebra. An example of less-than-perfect information is represented by the

partition

G =
{

{1, 3, 5}, {2, 4, 6}
}

or the associated sigma-algebra

G =
{

∅, {1, 3, 5}, {2, 4, 6},Ω
}

.

With G, you will only know whether the die will show an odd or an even number of eyes on the

upside. As mentioned above the link between partitions and sigma-algebras is more delicate in

infinite state spaces and so is the notion of information. Dubra and Echenique (2004) gives an

example in an economic setting where one partition represents more information than another
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partition but the sigma-algebra associated with the second partition seems to represent more

information than the sigma-algebra associated with the first!

The final component of a probability space is a probability measure P, which formally is a

function from the sigma-algebra F into the interval [0, 1]. To each event F ∈ F, the probability

measure assigns a number P(F ) in the interval [0, 1]. This number is called the P-probability (or

simply the probability) of F . A probability measure must satisfy the following conditions:

(i) P(Ω) = 1 and P(∅) = 0;

(ii) the probability of the state being in the union of disjoint sets is equal to the sum of the

probabilities for each of the sets, i.e. given F1, F2, · · · ∈ F with Fi ∩ Fj = ∅ for all i 6= j, we

have P(∪∞
i=1Fi) =

∑∞
i=1 P(Fi).

If the state space Ω is finite, say Ω = {ω1, ω2, . . . , ωS}, and each {ωi} is probabilizable, a probability

measure P is fully specified by the individual state probabilities P(ωi), i = 1, 2, . . . , S.

Many different probability measures can be defined on the same sigma-algebra, F, of events. In

the example of the die, a probability measure P corresponding to the idea that the die is “fair” is

defined by

P({1}) = P({2}) = · · · = P({6}) = 1/6.

Another probability measure, Q, can be defined by

Q({1}) = 1/12, Q({2}) = · · · = Q({5}) = 1/6, Q({6}) = 3/12,

which may be appropriate if the die is believed to be “unfair.”

Two probability measures P and Q defined on the same state space and sigma-algebra (Ω,F)

are called equivalent if the two measures assign probability zero to exactly the same events, i.e. if

P(A) = 0 ⇔ Q(A) = 0. The two probability measures in the die example are equivalent. In the

stochastic models of financial markets switching between equivalent probability measures turns out

to be useful.

A random variable is a function X from the state space Ω into the real numbers R. To each

possible outcome ω ∈ Ω the function assigns a real number X(ω). A random variable is thus the

formal way to represent a state-dependent quantity. To be meaningful, the function X must be

F-measurable. This means that for any interval I ∈ R, the set {ω ∈ Ω|X(ω) ∈ I} belongs to F, i.e.

we can assign a probability to the event that the random variable takes on a value in the interval I.

A random variable is thus defined relative to a probability space (Ω,F,P).

Any random variable is associated with a probability distribution. We can represent the distri-

bution by the cumulative distribution function FX : R → R defined for any x ∈ R by

FX(x) = P (X ≤ x) ≡ P ({ω ∈ Ω|X(ω) ≤ x}) .

If the random variable can only take on finitely many different values x1, x2, . . . , xm ∈ R, it is

said to be a discrete-valued or simply a discrete random variable, and we can represent the

probability distribution by the numbers fX(xi) ≡ P(X = xi) ≡ P ({ω ∈ Ω|X(ω) = xi}). Note

that this is surely the case if the state space Ω itself is finite. A random variable X is said to be

a continuous-valued or simply continuous random variable if it can take on a continuum of
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possible values and a function fX : R → R exists such that

FX(x) =

∫ x

−∞

fX(y) dy.

The function fX is then called the probability density function of X. It is also possible to

construct random variables that are neither discrete or continuous but they will not be important

for our purposes. In any case we can represent the probability distribution more abstractly by a

distribution measure µX , which is a probability measure on the real numbers R equipped with

the so-called Borel-algebra B. The Borel-algebra can be defined as the smallest sigma-algebra that

includes all intervals. The Borel-algebra includes all subsets of R “you can think of” but there are

in fact some very obscure subsets of R which are not in the Borel-algebra. Fortunately, this will

be unimportant for our purposes. The distribution measure is defined for any B ∈ B by

µX(B) = P (X ∈ B) ≡ P ({ω ∈ Ω|X(ω) ∈ B}) .

It is often useful to summarize the probability distribution of a random variable in a few infor-

mative numbers. The most frequently used are the expected value (or mean) and the variance.

For a discrete random variable X that can take on the values x1, . . . , xm ∈ R the expected value

E[X] is defined by

E[X] =

m∑

i=1

xiP (X = xi) .

For a continuous random variable X with probability density function fX , the expected value is

defined as

E[X] =

∫ ∞

−∞

xfX(x) dx

if this integral is finite; otherwise the random variable does not have an expected value. Similarly we

can define the expected value of a function g(X) as E[g(X)] =
∑m
i=1 g(xi)P (X = xi) or E[g(X)] =

∫∞

−∞
g(x)fX(x) dx, respectively.

For a general random variable X we can define the expected value of g(X) as

E[g(X)] =

∫

Ω

g (X(ω)) dP(ω)

which is an integral with respect to the probability measure P. For functions that are just modestly

nice (so-called Borel functions) one can rewrite the expected value as

E[g(X)] =

∫ ∞

−∞

g(x) dµX(x)

which is an integral with respect to the distribution measure µX of the random variable. We do

not want to go into the theory of integration with respect to various measures so let us just note

that for discrete and continuous random variables the general definition simplifies to the definitions

given in the paragraph above.

The variance of a random variable X is generally defined as

Var[X] = E
[

(X − E[X])
2
]

= E
[
X2
]
− (E[X])

2
.

The standard deviation of X is σ[X] =
√

Var[X]. The n’th moment of the random variable X is

E[Xn], while the n’th central moment is E [(X − E[X])
n
]. In particular, the variance is the second

central moment.
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It can be shown that, for any constants a and b,

E[aX + b] = aE[X] + b, Var[aX + b] = a2 Var[X].

In the example with the throw of a die, the random variable X defined by X(ω) = ω for all

ω ∈ Ω simply represents the uncertain number of eyes on the upside of the die after the throw.

Other random variables may be relevant also. Suppose that you bet 10 dollars with a friend that

the number of eyes on the upside will be even or odd. If even, you will win 10 dollars, if odd, you

will loose 10 dollars. A random variable Y capturing your uncertain gain on the bet can be defined

as follows:

Y (ω) =







10, if ω ∈ {2, 4, 6},
−10, if ω ∈ {1, 3, 5}.

If the die is believed to be fair, corresponding to the probability measure P, the distribution

associated with the random variable Y is given by

P (Y = −10) = P (ω ∈ {1, 3, 5}) =
1

2
, P (Y = 10) = P (ω ∈ {2, 4, 6}) =

1

2

or by the cumulative distribution function

FY (x) ≡ P (Y (ω) ≤ x) =







0, for x < −10,

1
2 , for −10 ≤ x < 10,

1, for x ≥ 10.

Observing the realization of a random variable can give you some information about which state

ω was realized. If the random variable X takes on different values in all states, i.e. you cannot

find ω1, ω2 ∈ Ω with ω1 6= ω2 and X(ω1) 6= X(ω2), observing the realized value X(ω) will tell you

exactly which state was realized. On the other extreme, if X takes on the same value in all states,

you cannot infer anything from observing X(ω). Other random variables will tell you something

but not all. In the example above, observing the realization of the random variable Y will tell you

either that the realized state is in {1, 3, 5} or in {2, 4, 6}. We can represent this by the partition

FY =
{

{1, 3, 5}, {2, 4, 6}
}

or the associated sigma-algebra

FY =
{

∅, {1, 3, 5}, {2, 4, 6},Ω
}

.

More generally, we can define the sigma-algebra associated with a random variable X : Ω → R

to be the smallest sigma-algebra on Ω with respect to which X is a measurable function. This

sigma-algebra will be denoted FX . Just think of this as the information generated by X.

We have defined a random variable to be a function from Ω to R. Given two random variables

X1 and X2 on the same probability space, we can form the vector (X1,X2)
⊤

, which is then a

(measurable) function from Ω to R2 said to be a two-dimensional random variable. For example,

X1 could represent the uncertain dividend of one asset and X2 the uncertain dividend of another

asset. Similarly we can define random variables of any other (integer) dimension. This will often

be notationally convenient.
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For a two-dimensional random variable (X1,X2)
⊤

the joint or simultaneous cumulative distri-

bution function is the function F(X1,X2) : R2 → R defined by

F(X1,X2)(x1, x2) = P (X1 ≤ x1,X2 ≤ x2) ≡ P ({ω ∈ Ω|X1(ω) ≤ x1 and X2(ω) ≤ x2}) .

If both X1 and X2 are discrete random variables, the vector random variable (X1,X2)
⊤ is also dis-

crete, and the joint probability distribution is characterized by probabilities P (X1 = x1,X2 = x2).

The two-dimensional random variable (X1,X2) is said to be continuous if a function f(X1,X2) :

R2 → R exists such that

F(X1,X2)(x1, x2) =

∫ x1

−∞

∫ x2

−∞

f(X1,X2)(y1, y2) dy1 dy2

and f(X1,X2) is then called the joint or simultaneous probability density function of (X1,X2).

Given the joint distribution of (X1,X2)
⊤, we can find the distributions of X1 and X2, the so-

called marginal distributions. For example, if (X1,X2)
⊤ is continuous with joint probability density

function f(X1,X2), we can find the marginal probability density function of X1 by integrating over

all possible values of X2, i.e.

fX1
(x1) =

∫ +∞

−∞

f(X1,X2)(x1, x2) dx2.

Two random variables X1 and X2 are said to be independent if

P (X1 ∈ B1,X2 ∈ B2) = P (X1 ∈ B1) P (X2 ∈ B2)

for all Borel sets B1, B2 ⊆ R or, equivalently, if

F(X1,X2)(x1, x2) = FX1
(x1)FX2

(x2)

for all (x1, x2) ∈ R2.

We can easily extend the definition of expected value to functions of multi-dimensional random

variables. If (X1,X2)
⊤ is a two-dimensional continuous random variable and g : R2 → R, the

expected value of g(X1,X2) is defined as

E[g(X1,X2)] =

∫ +∞

−∞

∫ +∞

−∞

g(x1, x2)f(X1,X2)(x1, x2) dx1 dx2.

We define the covariance between X1 and X2 by

Cov[X1,X2] = E [(X1 − E[X1]) (X2 − E[X2])] = E[X1X2] − E[X1] E[X2].

In particular, Cov[X1,X1] = Var[X1]. The correlation between X1 and X2 is

ρ[X1,X2] =
Cov[X1,X2]

σ[X1]σ[X2]
,

which is a number in the interval [−1, 1]. Some useful properties of covariances are

Cov[X1,X2] = Cov[X2,X1], Cov[aX1 + bX2,X3] = aCov[X1,X3] + bCov[X2,X3],

where X1,X2,X3 are three random variables and a, b ∈ R. An often used result is

Var[X1 +X2] = Var[X1] + Var[X2] + 2Cov[X1,X2].
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If X1 and X2 are independent, one can show that Cov[X1,X2] = 0 and, consequently, ρ[X1,X2] =

0.

If X = (X1, . . . ,XK)⊤ is a K-dimensional random variable, its variance-covariance matrix is the

K ×K matrix Var[X] with (i, j)’th entry given by Cov[Xi,Xj ]. If X is a K-dimensional random

variable and A is an M ×K matrix, then

Var[AX] = AVar[X]A⊤. (A.1)

If X = (X1, . . . ,XK)⊤ is a K-dimensional random variable and Y = (Y1, . . . , YL)⊤ is an L-

dimensional random variable, their covariance matrix Cov[X,Y ] is theK×Lmatrix whose (k, l)’th

entry is Cov[Xk, Yl]. If X is a K-dimensional random variable, Y is an L-dimensional random

variable, A is an M ×K matrix, and a is an M -dimensional vector, then

Cov[a+AX,Y ] = ACov[X,Y ]. (A.2)

Conditional expectations....





Appendix B

Results on the lognormal

distribution

A random variable Y is said to be lognormally distributed if the random variable X = lnY is

normally distributed. In the following we let m be the mean of X and s2 be the variance of X, so

that

X = lnY ∼ N(m, s2).

The probability density function for X is given by

fX(x) =
1√

2πs2
exp

{

− (x−m)2

2s2

}

, x ∈ R.

Theorem B.1 The probability density function for Y is given by

fY (y) =
1√

2πs2y
exp

{

− (ln y −m)2

2s2

}

, y > 0,

and fY (y) = 0 for y ≤ 0.

This result follows from the general result on the distribution of a random variable which is given

as a function of another random variable; see any introductory text book on probability theory

and distributions.

Theorem B.2 For X ∼ N(m, s2) and γ ∈ R we have

E
[
e−γX

]
= exp

{

−γm+
1

2
γ2s2

}

.

Proof: Per definition we have

E
[
e−γX

]
=

∫ +∞

−∞

e−γx
1√

2πs2
e−

(x−m)2

2s2 dx.

Manipulating the exponent we get

E
[
e−γX

]
= e−γm+ 1

2γ
2s2
∫ +∞

−∞

1√
2πs2

e−
1

2s2
[(x−m)2+2γ(x−m)s2+γ2s4] dx

= e−γm+ 1
2γ

2s2
∫ +∞

−∞

1√
2πs2

e−
(x−[m−γs2])2

2s2 dx

= e−γm+ 1
2γ

2s2 ,

315
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where the last equality is due to the fact that the function

x 7→ 1√
2πs2

e−
(x−[m−γs2])2

2s2

is a probability density function, namely the density function for an N(m − γs2, s2) distributed

random variable. 2

Using this theorem, we can easily compute the mean and the variance of the lognormally distributed

random variable Y = eX . The mean is (let γ = −1)

E[Y ] = E
[
eX
]

= exp

{

m+
1

2
s2
}

. (B.1)

With γ = −2 we get

E
[
Y 2
]

= E
[
e2X

]
= e2(m+s2),

so that the variance of Y is

Var[Y ] = E
[
Y 2
]
− (E[Y ])2

= e2(m+s2) − e2m+s2

= e2m+s2
(

es
2 − 1

)

.

(B.2)

The next theorem provides an expression of the truncated mean of a lognormally distributed

random variable, i.e. the mean of the part of the distribution that lies above some level. We define

the indicator variable 1{Y >K} to be equal to 1 if the outcome of the random variable Y is greater

than the constant K and equal to 0 otherwise.

Theorem B.3 If X = lnY ∼ N(m, s2) and K > 0, then we have

E
[
Y 1{Y >K}

]
= em+ 1

2 s
2

N

(
m− lnK

s
+ s

)

= E [Y ]N

(
m− lnK

s
+ s

)

.

Proof: Because Y > K ⇔ X > lnK, it follows from the definition of the expectation of a random

variable that

E
[
Y 1{Y >K}

]
= E

[
eX1{X>lnK}

]

=

∫ +∞

lnK

ex
1√

2πs2
e−

(x−m)2

2s2 dx

=

∫ +∞

lnK

1√
2πs2

e−
(x−[m+s2])2

2s2 e
2ms2+s4

2s2 dx

= em+ 1
2 s

2

∫ +∞

lnK

fX̄(x) dx,

where

fX̄(x) =
1√

2πs2
e−

(x−[m+s2])2

2s2
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is the probability density function for an N(m+ s2, s2) distributed random variable. The calcula-

tions
∫ +∞

lnK

fX̄(x) dx = Prob(X̄ > lnK)

= Prob

(
X̄ − [m+ s2]

s
>

lnK − [m+ s2]

s

)

= Prob

(
X̄ − [m+ s2]

s
< − lnK − [m+ s2]

s

)

= N

(

− lnK − [m+ s2]

s

)

= N

(
m− lnK

s
+ s

)

complete the proof. 2

Theorem B.4 If X = lnY ∼ N(m, s2) and K > 0, we have

E [max (0, Y −K)] = em+ 1
2 s

2

N

(
m− lnK

s
+ s

)

−KN

(
m− lnK

s

)

= E [Y ]N

(
m− lnK

s
+ s

)

−KN

(
m− lnK

s

)

.

Proof: Note that

E [max (0, Y −K)] = E
[
(Y −K)1{Y >K}

]

= E
[
Y 1{Y >K}

]
−KProb (Y > K) .

The first term is known from Theorem B.3. The second term can be rewritten as

Prob (Y > K) = Prob (X > lnK)

= Prob

(
X −m

s
>

lnK −m

s

)

= Prob

(
X −m

s
< − lnK −m

s

)

= N

(

− lnK −m

s

)

= N

(
m− lnK

s

)

.

The claim now follows immediately. 2
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